直接数字频率合成器预习报告
- 格式:doc
- 大小:278.50 KB
- 文档页数:3
直接数字频率合成器原理直接数字频率合成器(Direct Digital Frequency Synthesizer,简称DDFS)是一种用于产生高精度、稳定的频率信号的电子设备。
它通过数字电路实现频率的直接合成,可以产生任意频率的信号,并且具有快速调谐、高精度以及低相位噪声等优点。
本文将介绍DDFS的工作原理及其在实际应用中的重要性。
一、工作原理DDFS的核心组成部分是相位累加器(Phase Accumulator)、频率控制字(Frequency Control Word)和查表器(Look-up Table)。
相位累加器通过不断累加频率控制字的值,从而产生一个随时间线性增加的相位值。
查表器中存储了正弦波的采样值,通过查表器可以根据相位值得到对应的正弦波样本。
最后,通过数模转换器将数字信号转换为模拟信号输出。
具体来说,DDFS的工作原理如下:1. 频率控制字:频率控制字是一个二进制数,用于控制相位累加器的累加速度。
频率控制字的大小决定了相位累加器每个时钟周期累加的值,从而决定了输出信号的频率。
2. 相位累加器:相位累加器是一个寄存器,用于存储当前的相位值。
相位累加器的值会在每个时钟周期根据频率控制字的大小进行累加。
相位累加器的位数决定了相位的分辨率,位数越多,相位分辨率越高,输出信号的频率分辨率也越高。
3. 查表器:查表器中存储了一个周期内的正弦波样本值(或余弦波样本值),通过查表器可以根据相位累加器的值得到对应的正弦波样本值。
4. 数模转换器:数模转换器将数字信号转换为模拟信号输出。
通常使用的是高速数模转换器,能够将数字信号以高速率转换为模拟信号输出。
二、应用领域DDFS在许多领域中都有广泛的应用,其中包括通信、雷达、测量、音频处理等。
1. 通信领域:在通信系统中,DDFS被广泛应用于频率合成器、频率调制器和频率解调器等模块中。
通过DDFS可以快速、精确地合成所需的信号频率,实现高速数据传输和频谱分析等功能。
电子线路课程设计 --直接数字频率合成器(DDS)2014 年 11 月摘要本实验通过使用 QuartusⅡ软件,并结合数字逻辑电路的知识设计,使用DDS 的方法设计一个任意频率的正弦信号发生器,要求具有频率控制、相位控制、以及使能开关等功能。
在此基础上,本实验还设计了扩展功能,包括测频、切换波形,动态显示。
在控制电路的作用下能实现保持、清零功能,另外还能同时显示输出频率、相位控制字、频率控制字。
在利用 QuartusⅡ进行相应的设计、仿真、调试后下载到SmartSOPC实验实现 D/A转换,验证实验的准确性,并用示波器观察输出波形。
关键词:SmartSOPC实验箱 QUARTUSⅡ数字频率合成仿真AbstractThis experiment is based on QuartusⅡ,with the help of knowledge relating to the digital logic circuits and system design,to design a sine signal generator which generates any frequency by the method of DDS. This generator is provided with the functions of frequency control,phase control and switch control. Based on the basic design,I also design extra functions,including frequency measurement,changes of wave forms and dynamic display.The control circuit can be maintained time clearing and time keeping functions,and also shows the output frequency,phase control characters,frequency control word. All the designing and simulating work are based on QuartusⅡ. After all the work finished on computer, I downloaded the final circuit to SmartSOPC experiment system to realize the transformation of D/A ,and then test the accuracy of the design by means of oscilloscope observing the wave forms.Key words: SmartSOPC QUARTUSⅡ DDS Simulation目录摘要 (1)目录 (2)一、设计要求 (3)二、方案论证 (3)三、直接数字频率合成器总电路图 (4)四、各子模块设计原理及分析说明 (5)4.1、脉冲发生电路 (5)4.2、频率相位预置与调节电路 (9)4.3、累加器电路 (10)4.4、相位控制电路 (11)4.5、波形存储器ROM电路 (12)4.6、测频电路 (14)4.7、不同波形选择电路 (15)4.8、动态译码显示电路 (16)五、程序下载、仿真与调试 (17)六、实验结果 (18)七、实验总结与感想 (23)八、参考文献 (23)一、设计要求1、利用QuartusII软件和SmartSOPC实验箱实现直接数字频率合成器(DDS)的设计;2、DDS中的波形存储器模块用Altera公司的Cyclone系列FPGA芯片中的RAM 实现,RAM结构配置成212×10类型;3、具体参数要求:频率控制字K取4位;基准频率fc=1MHz,由实验板上的系统时钟分频得到;4、系统具有使能功能;5、利用实验箱上的D/A转换器件将ROM输出的数字信号转换为模拟信号,能够通过示波器观察到正弦波形;6、通过开关(实验箱上的Ki)输入DDS的频率和相位控制字,并能用示波器观察加以验证;7、可适当添加其他功能二、方案论证直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。
直接数字频率合成器(直接数字频率合成器(DDS DDS DDS)总结)总结知识收集2008-07-2113:45:46阅读128评论0字号:大中小订阅直接合成法是用一个或多个石英晶体振荡器的振荡频率作为基准频率,由这些基准频率产生一系列的谐波,这些谐波具有与石英晶体振荡器同样的频率稳定度和准确度;然后,从这一系列的谐波中取出两个或两个以上的频率进行组合,得出这些频率的和或差,经过适当方式处理(如经过滤波)后,获得所需要的频率。
DDS 是直接数字式频率合成器(Direct Digital Synthesizer )的英文缩写。
直接数字式频率合成器(DDS )是从相位概念出发直接合成所需波形的一种新的频率合成技术,由相位累加器、波形ROM 、D/A 转换器和低通滤波器构成。
时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM 的地址线位数,幅度量化噪声取决于ROM 的数据位字长和D/A 转换器位数。
结构框图如图2-1所示。
先分部分介绍其结构,后面会讲到总体原理。
相位增量(Phase Increment )M ,也称为频率控制字,单纯的无单位(不代表弧度或者角度)无符号数。
相位累加器(Phase Accumulator )由一个无符号数的加法器和一个寄存器构成,一个时钟周期完成一次加法运算。
量化器(Quantizer )完成很简单的功能。
将较高精度,较大位宽的输入,丢弃低比特位,得到较低精度,较小位宽的输出,直接用作后面查找表的地址。
正余弦查找表(Sine/Cosine Lookup Table)存放正余弦数值。
DDS的工作原理:DDS的基本原理是利用采样定理,通过查表法产生波形[2]。
由于,(2-1)其中Δθ为一个采样间隔ΔT之间的相位增量,采样周期,即:(2-2)控制Δθ就可以控制不同的频率输出。
Δθ是由频率控制字M控制的,即:(2-3)所以改变M就可以得到不同的输出频率。
直接数字频率合成器(DDS)实验报告课程名称电类综合实验实验名称直接数字频率合成器设计实验日期2015.6.1—2013.6.4学生专业测试计量技术及仪器学生学号114101002268学生姓名陈静实验室名称基础实验楼237教师姓名花汉兵成绩摘要直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。
本篇报告主要介绍设计完成直接数字频率合成器DDS的过程。
其输出频率及相位均可控制,且能输出正弦波、余弦波、方波、锯齿波等五种波形,经过转换后在示波器上显示。
经控制能够实现保持、清零功能。
除此之外,还能同时显示出频率控制字、相位控制字和输出频率的值。
实验要求分析整个电路的工作原理,并分别说明了各子模块的设计原理,依据各模块之间的逻辑关系,将各电路整合到一块,形成一个总体电路。
本实验在Quartus Ⅱ环境下进行设计,并下载到SmartSOPC实验系统中进行硬件测试。
最终对实验结果进行分析并总结出在实验过程中出现的问题以及提出解决方案。
关键词:Quartus Ⅱ直接数字频率合成器波形频率相位调节AbstractThe Direct Digital Frequency Synthesizer is a technology based on fully digital technique, a frequency combination technique syntheses a required waveform from concept of phase. This report introduces the design to the completion of the process of direct digital frequency synthesizer DDS. The output frequency and phase can be controlled, and can output sine, cosine, triangle wave, square wave, sawtooth wave, which are displayed on the oscilloscope after conversation. Can be achieved by the control to maintain clear function. Further can simultaneously display the value of the frequency, the phase control word and the output frequency. The experimental design in the Quartus Ⅱenvironment, the last hardware test download to SmartSOPC experimental system. The final results will be analyzed, the matter will be put forward and the settling plan can be given at last.Key words:Quartus ⅡDirect Digital Frequency Synthesizer waveform Frequency and phase adjustment目录一、设计内容 (4)二、设计原理 (4)2.1 DDS概念 (4)2.2 DDS的组成及工作原理 (4)三、设计要求 (6)3.1 基本要求 (6)3.2 提高要求 (6)四、设计内容 (6)4.1 分频电路 (6)4.2 频率预置与调节电路 (10)4.3 累加器 (12)4.4 波形存储器(ROM) (13)4.5 测频电路 (19)4.6 译码显示电路 (21)4.7 消颤电路 (22)4.8 总电路 (23)五、电路调试仿真与程序下载 (24)六、示波器波形图 (25)七、实验中遇到的问题及解决方法 (25)八、电路改进 (26)九、实验感想 (28)十、参考文献 (28)一、设计内容设计一个频率及相位均可控制的具有正弦和余弦输出的直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)。
目录摘要 (2)1、引言 (2)2、设计任务及要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)3、频率合成的基本原理框图 (2)4、硬件系统的设计 (3)4.1 原理图 (3)4.2 74HC4046 (3)4.2.1 74HC4046引脚功能介绍 (3)4.2.2 74HC4046内部电路原理图 (4)4.2.3 74HC4046典型应用 (5)4.3 CD4522引脚功能介绍 (5)4.4 CD4518引脚功能介绍 (6)4.5 1602LCD的基本参数及引脚功能 (7)5、软件系统的设计 (8)5.1 流程图 (8)5.2 程序代码 (10)6、实训小结 (16)参考文献 (17)基于单片机控制的频率合成器摘要给出一种以单片集成PLL 芯片74HC4046为核心, 并通过AT89C51 单片机对74HC4046进行控制来实现锁相频率合成器的设计方法。
文中在介绍了74HC4046芯片的内部功能结构的基础上, 探讨了锁相频率合成器的基本原理和工作特性; 给出了基于74HC4046的锁相频率合成器的硬件电路结构和软件程序设计方法。
该设计经仿真测试证明, 锁相效果良好, 结构精简, 性能可靠。
关键词: 74HC4046; AT89C51; 频率合成器1、引言在现代电子技术的设计与开发过程中,特别是在通信、雷达、航空、航天以及仪器仪表等领域, 都需要进一步提高一系列高精度、高稳定度的频率源的频率精度。
这样,一般的振荡器已经无法满足各种应用的发展要求,而晶体振荡器的性能虽然比较好, 但其频率单一, 或只能在极小的范围内进行微调。
因此, 本文提出了一种基于单片机AT89C51控制的利用锁相技术以频率合成器芯片74HC4046为核心,来实现锁相频率合成器的设计方案。
2、设计任务及要求2.1 设计任务设计一个基于单片机控制的频率合成器 2.2 设计要求1.输入信号为1KHz 的方波信号。
2.合成的频率范围为1KHz~999KHz 。
DDS数字频率合成器实验报告摘要直接数字频率合成器是一种基于全数字技术,从相位出发直接合成所需波形的一种频率合成技术,具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,本次实验中,利用QuartusII软件设计一个可控制频率,相位的可输出正弦和余弦的直接数字频率合成器,要求分析整个电路的工作原理,并分别说明各子模块的设计原理,整合各电路,形成总体电路。
完成调试、仿真、编程下载后,分析最终结果,总结问题并寻求解决方法关键词:直接数字频率合成器累加控制频率相位波形AbstractDirect digital frequency synthesizer is a full digital technology based on afrequency synthesis technology, the required waveform from the phase of thedirectsynthesis, has the advantages of low cost, low power consumption, high resolution and fast switching time and other advantages, is widely used in thefieldof electrical and electronic equipment,In this experiment, a design can control the frequency by using QuartusIIsoftware, the direct digital frequency synthesizer phase can output sine andcosine, the working principle of the whole circuit requirements analysis, andexplains the design principle of each module, integration of the circuit, the formationof the overall circuit. Finisheddebugging, simulation, programming,analysis result, summarizes the problems and seek solutionsKey word: Direct Digital Frequency Synthesizer accumulation control frequent phase position waveform一、实验目的:设计一个频率及相位均可控制的可输出正弦及余弦波形直接数字频率合成器二、实验原理与过程:直接数字频率合成器是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。
直接数字频率合成器(DDS)原理分析直接数字频率合成器DDS(Direct Digital Frequncy Synthesizer)是从相位概念出发直接合成所需波形的一种频率合成技术。
其组成包括相位累加器、加法器、波形存储ROM、D/A转换器和低通滤波器(LPF),原理框图如图1所示。
以正弦波形合成为例,DDS合成频率的具体流程描述如下。
相位累加器由N位加法器与N位寄存器级联组成。
在时钟脉冲fc控制下,加法器将频率控制字K与寄存器输出的累加相位数据相加,再把相加后的结果送至寄存器的数据输入端。
寄存器将加法器在上一个时钟作用后所产生的相位数据反馈到加法器的输入端;使加法器在下一时钟作用下继续与频率控制字进行相加。
这样相位累加器在时钟的作用下,进行相位的累加。
当相位累加器累加满时就会产生溢出,完成一个周期的动作。
通过改变相位控制字P可以控制输出信号的相位参数。
令相位加法器的字长为N,当相位控制字由0跃变到不为零的P时,波形存储器(ROM)的输入为相位累加器的输出与相位控制字P之和,所以输出的幅度编码相位增加。
波形的改变是通过改变W波形控制字实现的。
由于ROM中不同波形分块存储,所以当W改变时,ROM输入端为相移后的地址与W之和。
经过K、P、W设置后的相位累加器输出的数据作为ROM的取样地址,进行波形的相位—幅值转换,即可在给定时间上确定输出波形的抽样幅值。
N位的寻址ROM相当于把0o~360o的正弦波信号离散成具有2N个样值的序列,若波形ROM有D位数据位,则2N个取样点的幅值以D位二进制数值固化于ROM 中,按照地址的不同可以输出相应相位的正弦信号幅值。
幅度控制字能够控制ROM输出的正弦信号幅值的变化,乘法器(除法器)在DDS电路中相单于将每一个幅值量化值增大(缩小)了A倍。
由上面分析可以看出,DDS输出方程可表示为,f0为输出频率,fc为时钟频率。
当K=1时,DDS输出最低频率(即频率分辨率)为,而DDS的最大输出频率由Nyquist采样定理决定,即fc/2,也就是说K的理论最大值为2N-1。
/dzdgdq/jsqy/40028.shtml/view/229432.htm?fr=ala0_1/view/38405.htm?fr=ala0_1_1直接数字式频率合成器DDS2010-04-25 18:06直接数字频率合成技术(Direct DigitalFrequencySynthesis,即DDFS,一般简称DDS)是从相位概念出发直接合成所需波形的一种新的频率合成技术。
DDS的工作原理是以数控振荡器的方式,产生频率、相位可控制的正弦波(SineWave)。
电路一般包括基准时钟、频率累加器、相位累加器、幅度/相位转换电路、D/A转换器和低通滤波器(LPF)。
其中,频率累加器对输入信号进行累加运算,产生频率控制数据(Frequency Data或相位步进量Phase Increment)。
相位累加器由N位全加器和N位累加寄存器级联而成,对代表频率的二进制码进行累加运算,是典型的反馈电路,产生累加结果Y。
幅度/相位转换电路实质是一个波形存储器(WaveformMemory),以供查表使用。
读出的数据送入D/A转换器和低通滤波器。
具体工作过程如下:每来一个时钟脉冲Fclk,N位加法器将频率控制数据X与累加寄存器输出的累加相位数据相加,把相加后的结果Y送至累加寄存器的输入端。
累加寄存器一方面将在上一时钟周期作用后所产生的新的相位数据反馈到加法器的输入端,以使加法器在下一时钟的作用下继续与频率控制数据X相加;另一方面,将这个值作为取样地址值送入幅度/相位转换电路(即波形存储器),幅度/相位转换电路根据这个地址值输出相应的波形数据。
最后,经数/模转换(D/AConverter)和低通滤波器(LowPass Filter)将波形数据转换成所需要的模拟波形。
相位累加器在基准时钟的作用下,进行线性相位累加,当相位累加器累加满量时就会产生一次溢出,这样就完成了一个周期,这个周期也就是DDS合成信号的一个频率周期。
直接数字频率合成(DDS)的软件及硬件实现的开题报告一、研究背景直接数字频率合成(DDS)是一种广泛应用于信号处理和通信系统的技术。
它可以根据预设的数码频率生成高准确度、高稳定度的正弦波信号。
DDS可以通过数学运算来控制输出频率,并利用数字信号处理技术产生相位控制信号。
拥有数字化、可编程化等优势,能实现大范围的频率合成,并具有较高抗噪性,是应用广泛的数字信号生成技术之一。
DDS技术在信号发生器、直接数字频率合成器、调频发射机等设备中得到应用,其高准确度、高稳定度、多频段、频率精度调节、高速调制等特点,大大提高了设备的性能和精度。
因此,研究DDS技术的软硬件实现具有重要的实际意义和应用价值。
二、研究内容和目标本文主要研究DDS技术的软件及硬件实现,包括DDS基本原理、DDS的数学模型、DDS的程序实现等方面内容。
通过对DDS技术的深入研究,实现一个基于FPGA 的DDS信号发生器。
具体的研究内容包括:1. DDS技术的基本原理和数学模型。
2. DDS的程序实现,包括频率控制、相位控制、幅值控制等功能。
3. 设计基于FPGA的DDS信号发生器,实现频率、相位的控制。
4. 实验验证DDS生成信号的准确性和稳定性。
通过本文的研究和实现,旨在深入掌握DDS技术的原理、实现和应用,为DDS 技术在信号发生器、直接数字频率合成器、调频发射机等设备中的应用提供技术支撑和参考。
三、研究方法和步骤1. 研究DDS基本原理和数学模型,理解DDS工作原理、相位控制技术和幅值控制技术以及DDS频率合成的原理。
2. 研究DDS的程序实现方法,并掌握Freqduino V1.5软件的使用,利用C语言编写DDS的程序,实现DDS中的频率、相位、幅值的控制。
3. 设计DDS信号发生器的硬件模块,利用FPGA开发板,实现DDS的硬件电路设计。
4. 设计DDS信号发生器的软件模块,实现DDS的频率、相位和幅值的控制,并完成FPGA开发板与PC端的通信。
设计要求说明一.设计内容本实验的内容是使用DDS的方法设计一个任意频率的正弦信号发生器,利用Quartus II编辑、编译、综合、适配、仿真测试等工作,并绑定管脚进行硬件测试,最后通过嵌入式逻辑分析仪观察输出信号波形,并验证波形正确以后,再接入DA进行最终模拟输出。
二.设计目的1、进一步熟悉QuartusⅡ的软件使用方法;2、熟悉利用VHDL设计数字系统并学习LPM ROM的使用方法;3、学习FPGA硬件资源的使用和控制方法;4、掌握DDS基本原理,学习利用此原理进行信号发生器的设计。
三.设计要求基本要求:1、完成8位输出数据宽度的频率可调的移相正弦信号发生器。
提高部分:2、完成8位输出数据宽度的移相三角波、方波信号发生器。
3、波形发生器实现幅度可调。
基本原理直接数字频率合成器(DDS)是通信系统中常用到的部件,利用DDS可以制成很有用的信号源。
与模拟式的频率锁相环PLL相比,它有许多优点,突出为(1)频率的切换迅速;(2)频率稳定度高。
一个直接数字频率合成器由相位累加器、波形ROM、D/A转换器和低通滤波器构成。
DDS的原理框图如下所示:图1 直接数字频率合成器原理图其中K为频率控制字,f c为时钟频率,N为相位累加器的字长,D为ROM 数据位及D/A转换器的字长。
相位累加器在时钟f c的控制下以步长K作为累加,输出N位二进制码作为波形ROM的地址,对波形ROM进行寻址,波形ROM 输出的幅码S(n)经D/A转换器变成梯形波S(t),再经低通滤波器平滑后就可以得到合成的信号波形了。
合成的信号波形形状取决于波形ROM中存放的幅码,因此用DDS可以产生任意波形。
本设计中直接利用D/A转换器得到输出波形,省略了低通滤波器这一环节。
1、频率预置与调节电路不变量K被称为相位增量,也叫频率控制字。
DDS方程为:f0= f c K/2n,f0为输出频率,f c为时钟频率。
当K=1时,DDS输出最低频率(也既频率分辩率)为f c /2nDDS的最大输出频率由Nyguist 采样定理决定,即f c /2,也就是说K的最大值为2n-1.因此,只要N足够大,DDS可以得到很细的频率间隔。
一、实验目的1. 了解频率合成的基本原理和结构。
2. 掌握频率合成器的使用方法和调试技巧。
3. 通过实验验证频率合成器的性能指标。
二、实验原理频率合成器是一种能够产生多个稳定频率信号的设备,广泛应用于通信、雷达、无线电等领域。
频率合成的基本原理是利用直接数字频率合成(DDS)技术,通过数字信号处理方法实现频率的生成和转换。
三、实验仪器1. 频率合成器2. 数字多用表(DMM)3. 示波器4. 信号发生器5. 连接线四、实验内容1. 频率合成器基本功能测试(1)观察频率合成器的面板,了解各个功能键和旋钮的作用。
(2)将频率合成器的输出端连接到数字多用表,测量输出频率。
(3)调整频率合成器的频率值,观察数字多用表的读数,验证频率合成器的输出频率。
2. 频率转换功能测试(1)将频率合成器的输出端连接到示波器,观察输出波形。
(2)调整频率合成器的频率值,观察示波器上的波形变化,验证频率转换功能。
3. 调制功能测试(1)将频率合成器的输出端连接到信号发生器,观察信号发生器的输出波形。
(2)调整频率合成器的频率值,观察信号发生器的输出波形变化,验证调制功能。
4. 调制解调功能测试(1)将频率合成器的输出端连接到信号发生器,观察信号发生器的输出波形。
(2)调整频率合成器的频率值,观察信号发生器的输出波形变化,验证调制解调功能。
五、实验结果与分析1. 频率合成器基本功能测试实验结果表明,频率合成器能够产生稳定的频率信号,输出频率与设置值一致。
2. 频率转换功能测试实验结果表明,频率合成器能够实现频率的转换,输出波形与输入波形一致。
3. 调制功能测试实验结果表明,频率合成器能够实现信号的调制,输出波形符合调制要求。
4. 调制解调功能测试实验结果表明,频率合成器能够实现信号的调制解调,输出波形符合调制解调要求。
六、实验结论通过本次实验,我们掌握了频率合成器的基本原理和使用方法,验证了频率合成器的性能指标。
频率合成器在实际应用中具有广泛的前景,为通信、雷达、无线电等领域提供了重要的技术支持。
跳频电台中直接数字频率合成器(DDS)的研究软件电台是软件无线电技术在通信电台中的应用。
跳频通信是扩频通信的一种,具有抗干扰、抗截获的能力,并能作到频谱资源共享。
所以,在当前现代化的电子战中,跳频通信已显示出巨大的优越性。
另外,跳频通信也应用到民用通信中以抗衰落、抗多径、抗网间干扰和提高频谱利用率。
在跳频系统中,频率合成器是核心部件。
其跳频数和跳频速率是决定整个跳频通信系统性能的主要参数。
跳频系统对频率合成器的要求是:(1)输出频谱要纯;(2)频率切换速率快;(3)频率
达到稳定的时间短。
直接数字合成技术DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,是实现快速跳频的一个关键技术。
本文在研究了美国AD公司采用先进的DDS技术生产的高集成度频率合成器AD9954的基础上,提出了AD9954在跳频系统中的应用方案。
跳频方案采用软件无线电技术,采用DSP作为伪码发生器,控制DDS输出频率,得到相应的跳频图案。
由实物实验表明该设计合理可行。
直接数字频率合成器(Direct Digital Frequency Synthesizer )是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。
是一种新型的频率合成技术.具有相对带宽大,频率转换时间短,分辨力高,相位连续性好等优点,很容易实现频率,相位和幅度的数控调制,广泛应用于通讯领域.实验要求利用QuartusII 软件和SmartSOPC 实验箱设计一个频率及相位均可控制的具有正弦和余弦输出的直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS )。
DDS 主要由频率预置与调节电路、累加器、波形存储器、D/A 转换器、低通滤波器构成。
其组成原理如下图所示:图 DDS 基本结构图(1)频率预置与调节电路作用:实现频率控制量的输入;不变量K 被称为相位增量,也叫频率控制字。
频率控制字的值可以由EDA 实验系统提供的若干个开关直接输入,也可以由一个外部开关控制计数器产生相应的频率控制字。
(2)累加器图 累加器原理图累加器原理图如图所示,它由N 位加法器N 位寄存器构成。
每来一个时钟,加法器就将频率控制字K 与累加相位数据相加,相加的结果有反馈送至寄存器的数据输出端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。
这样,相位相加器在每一个时脉冲输入时,把频率控制字累加一次,相位累加器的溢出频率就是DDS 输出的信号频率。
由于相位累加器为N 位,相当于把正弦信号在相位上的精度定为N 位(N 的取值范围一般为24-32),所以分辨率为1/ 2N ,若系统基准时钟频率为c f ,频率控制字K 为1,则DDS 输出最小频率为o f =c f /2N ;DDS 输出的最高频率由 Nyquist 采样定理决定,即c f /2(K 的最大值为2N-1);若K 为B ,则输出频率为:o f =B ×c f / 2N 。
正交直接数字频率合成器的研究与设计的开题报告一、研究背景和意义频率合成器是现代电子技术中应用最广泛的器件之一,可用于信号发生、调制、解调、滤波等各种应用,是实现数字化电子系统的重要部件之一。
传统的频率合成器采用锁相环等技术,虽然具有较高的稳定性和精度,但同时也存在着制造成本高、调节困难等问题。
近年来,直接数字频率合成器(Direct Digital Frequency Synthesizer,DDFS)由于其具有可编程性强、频率范围广、精度高等优点,成为研究热点之一。
然而,采用传统的数字信号处理方法设计的DDFS仅能在频域上实现频率可编程,而在时域上存在着相位间断、波形畸变等问题。
为了解决这一问题,正交直接数字频率合成器(Orthogonal Direct Digital Synthesizer,ODDFS)应运而生。
ODDFS在设计上引入了正交调制技术,可在频域和时域上全面实现频率和相位的可编程控制,是实现数字化信号发生和处理的最佳选择之一。
本研究旨在深入研究ODDFS的原理、设计方法和实现技术,探索一种高效、稳定的ODDFS设计方案,为数字化信号处理技术的发展做出一定的贡献。
二、研究内容和方法1. 研究ODDFS的原理、特点和应用2. 设计ODDFS的硬件系统,包括数字信号处理器、时钟源、正交调制器等3. 研究ODDFS的数字信号处理算法,包括正交调制和插值滤波4. 编写ODDFS的软件程序,实现数字信号控制和处理5. 实验验证ODDFS的性能和稳定性,并与传统频率合成器进行比较分析三、研究计划和进度1. 第一阶段(一个月):研究ODDFS的原理和设计要点2. 第二阶段(两个月):设计ODDFS的硬件系统,并进行测试验证3. 第三阶段(一个月):分析ODDFS的数字信号处理算法,并实现软件程序4. 第四阶段(两个月):完善ODDFS的设计和算法,并进行综合测试和分析四、研究难点和创新点1. 硬件设计方案的优化和提升,提高ODDFS的性能和稳定性2. 优化ODDFS的算法实现,降低插值滤波的计算复杂度3. 探索ODDFS的应用和扩展,比如在通信、雷达等领域的应用研究五、预期成果1. 设计出一种高效、稳定的ODDFS2. 探索ODDFS的应用和扩展,为数字化信号处理技术的发展做出一定的贡献3. 发表一篇相关的学术论文或专利参考文献:[1] 徐蕾. 正交直接数字频率合成器技术研究[D]. 云南大学, 2017.[2] 张振宇. 基于FPGA的正交直接数字频率合成器研究[D]. 暨南大学, 2018.[3] Xu M, Liu Z, Huang Q, et al. Design and implementation of an orthogonal direct digital synthesizer [J]. Chinese Journal of Electronics, 2016, 25(5): 905-909.[4] Zhao Y, Li Z, Li S, et al. An efficient frequency and phase modification algorithm for orthogonal digital frequencysynthesis[C]//2015 IEEE International Conference on Mechatronics and Automation. IEEE, 2015: 801-806.。
南京理工大学直接数字频率合成器实验报告作者: 学号:学院(系):专业:指导老师:实验日期:2013年11月直接数字频率合成器(DDS)摘要本次课程设计的主要目的是学习使用FPGA设计直接数字频率合成器(DDS)。
实验的主要容是使用DDS的方法设计一个具有清零、使能频率相位控制、输出多种波形等功能任意频率的信号发生器,在设计之余,还完成了ROM空间的节省、提高等设计,并设计了一个基于DDS的AM调制电路。
利用Quartus II完成设计、仿真等工作,并下载至smart SOPC实验平台进行硬件测试,通过示波器观察输出信号波形。
实验结果与理论值相符,证明了DDS技术是一项非常实用的技术,它可以广泛应用于数字通信系统。
关键词:DDS ROM 正弦波AM调制AbstractThe main purpose of this curriculum design is encouraging us to learn to design a direct digital frequency synthesizer by using FPGA. The report mainly talks about how to design a direct digital frequency synthesizer with the function of resetting, frequency and phase controlling , multiple waves output . In addition, I also complete the design of ROM space saving ,and I design an AM modeling circuit based on DDS . The design and simulation work is completed with the help of QuartusII. The final system circuit is downloaded to the smart SOPC platform to undergo hardware test. And the output wave can be seen through oscilloscope. The experiment result is close to the theoretical result. DDS is proved to be a quite useful technology which can be widely applied in digital communication system.Keywords:Direct digital synthesizer ROM Sine wave AM module目录一、实验目的 (1)二、实验容和设计要求 (1)2.1实验容 (1)2.2设计要求 (1)三、直接频率合成器(DDS) (2)3.1实验原理 (2)3.2脉冲发生电路 (3)3.3消颤电路 (4)3.4频率和相位调节电路 (5)3.5累加器 (6)3.6波形存储器(ROM表)设计 (8)3.7测频电路 (11)3.8显示电路 (13)3.9总电路图(1) (14)四、节省ROM空间 (17)4.1设计思路 (17)4.2正弦波的计算 (18)4.3三角波计算 (20)4.4锯齿波计算 (20)4.5方波计算 (22)4.6四种计算波形合并 (22)4.7总电路图(2) (23)五、基于DDS的AM调制器的设计 (24)5.1AM调制原理 (24)5.2调制信号与载波信号的产生 (25)5.3波形存储器(ROM表)设计 (29)5.4调制度的确立 (30)5.5加法器与乘法器 (30)5.6显示电路 (30)5.7AM调制电路总图 (31)六、节省电路的改进 (32)七、实验中遇到的问题及解决办法 (33)八、实验收获和感受 (33)九、致 (34)十、参考文献 (34)十一、附录 (35)一、实验目的1.学习使用QuartusII软件做复杂逻辑电路的设计。
DDS 主要由频率预置与调节电路、累加器、波形存储器、D/A 转换器、低通滤波器构成。
其组成原理如下图所示:
图 DDS 基本结构图
(1)频率预置与调节电路
作用:实现频率控制量的输入;
不变量K 被称为相位增量,也叫频率控制字。
频率控制字的值可以由EDA 实验系统提供的若干个开关直接输入,也可以由一个外部开关控制计数器产生相应的频率控制字。
(2)累加器
图 累加器原理图
累加器原理图如图所示,它由N 位加法器N 位寄存器构成。
每来一个时钟,加法器就将频率控制字K 与累加相位数据相加,相加的结果有反馈送至寄存器的数据输出端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。
这样,相位相加器在每一个时脉冲输入时,把频率控制字累加一次,相位累加器的溢出频率就是DDS 输出的信号频率。
由于相位累加器为N 位,相当于把正弦信号在相位上的精度定为N 位(N 的取值范围一般为24-32),所以分辨率为1/ 2N ,若系统基准时钟频率为c f ,频率控制字K 为1,则DDS 输出最小频率为o f =c f /
2N ;
DDS 输出的最高频率由 Nyquist 采样定理决定,即c f /2(K 的最大值为2N-1);若K 为B ,则输出频率为:o f =B ×c f / 2N 。
(3)波形存储器
图 波形存储器
用相位累加器输出的数据作为波形存储器(ROM )相位取样地址,这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。
N 位的寻址ROM 相当于把00~0360的正弦信号离散成具有2N 个样值的序
列,若波形ROM有D位数据位,则2N个样值的幅值以D位二进制数值固化在ROM 中,按照地址的不同可以输出相应的正弦信号的幅值。
选取ROM的地址(即相位累加器的输出数据)时,可以间隔选项,相位寄存器输出的位数N一般取10-16位,这种载取方法称为截断式用法,以减少ROM 的容量。
N太大导致ROM容量的成倍上升,而输出精度受D/A位数的限制未有很大改善。
(4)D/A转换器
D/A转换器的作用:把已经合成的正弦波的数字量转换成模拟量。
正弦幅度量化序列经D/A转换后变换成了包络为正弦波的阶梯波。
波形存储器的输出送到D/A转换器,由D/A转换器将数字信号转换成模拟信号输出。
图 D/A转换器的输出信号波形
(5) 低通滤波器
滤除生成的阶梯形正弦波中的高频成分,将其变成光滑的正弦波。
Sin(t)
频率和相位均可控制的具有正弦和余弦输出的DDS核心单元电路示意图如下图所示:
其中,最后的10位D触发器起到稳定输出的作用,可以防止电路出现冒险现象.
实验设计要求:
1、基本设计要求:
⑴利用QuartusII软件和SmartSOPC实验箱实现DDS的设计;
⑵DDS中的波形存储器模块用Altera公司的Cyclone系列FPGA芯片中的RAM实现,RAM结构配置成212×10类型;
⑶具体参数要求:频率控制字K取4位;基准频率fc=1MHz,由实验板上的系统时钟分频得到;
⑷系统具有清零和使能的功能;
⑸利用实验箱上的D/A转换器件将ROM输出的数字信号转换为模拟信号,能够通过示波器观察到正弦波形;
⑹通过开关(实验箱上的Ki)输入DDS的频率和相位控制字,并能用示波器观察加以验证;
2、提高设计要求:
⑴通过按键(实验箱上的Si)输入DDS的频率和相位控制字,以扩大频率控制和相位控制的范围;(注意:按键后有消颤电路)
⑵能够同时输出正余弦两路正交信号;
⑶在数码管上显示生成的波形频率;
⑷充分考虑ROM结构及正弦函数的特点,进行合理的配置,提高计算精度;
⑸设计能输出多种波形(三角波、锯齿波、方波等)的多功能波形发生器;
⑹自己添加其他功能。