鲁教版数学八年级上册第四章《数据的收集与整理》整章水平测试题(A)
- 格式:doc
- 大小:139.50 KB
- 文档页数:3
鲁教版数学八年级上册第四章《数据的收集与整理》 整章水平测试题(A )一、试试你的身手(每小题3分,共24分)1.为了一定的目的而对考察对象进行的 称为普查;其中所要考察对象的全体称为总体,组成总体的每一个考察对象称为 .2.为了解一批电器开关的使用寿命,从中抽取30个做连续实验,样本是 .3.有一组数据,个数为80,分组后落在某一范围内的频数是5,则该组的频率是 . 4.将50个数据分成3组,其中第一组和第三组的频率之和是0.7,则第二组的频数是 . 5.数据9,10,8,10,9,10,7,9的极差是 ,方差是 ,标准差是 . 6.一组数据的方差是222212301[(2)(2)(2)]30s x x x =-+-++-,则这组数据的个数是 ,平均数是 .7.已知一组数据12n x x x ,,,的方差是a ,那么数据12x -,22x -,…,2n x -的方差是 ,数据12x ,22x ,…,2n x 的方差是 . 8.图1是某班50名学生身高的频数分布直方图,从左边起第一、二、三、四个小长方形的高的比是1∶3∶5∶1,那么身高150cm (不含150cm )以下的学生有个,身高160cm 及160cm 以上的学生占全班人数的 %.二、相信你的选择(每小题4分,共32分)1.某超市为考察1000箱梨的等次,从中抽取50箱进行检查,下面说法正确的是( ) A .总体是指1000箱梨 B .总体是指1000箱梨的等次 C .个体是指每箱梨 D .样本是指50箱梨 2.为了解某县20~30岁青年人的文化水平(用学历来反映),采取了抽样调查的方式获得结果,比较合理的是( )A .抽查该县20~30岁的在职干部B .抽查该县城关地区20~30岁的青年C .随机抽查该县所有20~30岁的青年共500名D .抽查该县某镇的所有20~30岁的青年3.为了感受塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果是(单位:个):33,25,28,26,25,31.如果该班有45名学生,根据提供的数据,请你估计全班同学各家本周共丢弃塑料袋的数量为( ) A .900个 B .1080个 C .1800个 D .1260个4.一组数据:18,21,29,23,18,20,22,19,23,24,21,19,24,22,17,22,23,19,21,17,对这些数据进行适当分组,其中20~22这一组的频数与频率是( ) A .5,0.25 B .6,0.3 C .8,0.4 D .7,0.355.已知一组数据1,3,2,5,x 的平均数是3,则数据的标准差是( )AB .2C D .106.某少年军校准备从甲、乙、丙三个同学中选拔一人参加全市射击比赛,他们在选拔赛中射靶10次的平均环数是8.3x x x ===甲乙丙,方差分别是2 1.5s =甲,2 2.8s =乙,2 2.3s =丙,那么根据以上提供的信息,你认为成绩稳定的同学是( )A .甲B .乙C .丙D .不能确定7.一次有41名学生参加的语、数、英三科竞赛,下表表示各学科不及格学生人数:则各学科都及格的人数为( )A .26B .25C .20D .158.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么数据132x -,232x -,332x -,432x -,532x -的平均数和方差分别为( )A .4,3B .4,12C .2,1D .2,13三、挑战你的技能(本大题共30分) 1.(本题10分)某专业户承包荒山种了44棵苹果树,现已进入第三年收获期,收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克):35,35,34,39,37. (1)在这个问题中,总体、个体、样本各指什么?(2)试根据样本平均数去估计总体情况,你认为该专业户大约可收获苹果多少千克?若市场上苹果售价为每千克5元,则该专业户的苹果收入可达多少元? 2.(本题10分)某校八年级(2)班分甲、乙两组各10名学生进行法律知识抢答,共有10道选择题,答对8道题(包含8道题)以上为优秀,各组选手答对题数如下表:(1)请你填上表中乙组选手的相关数据;(2)根据你所学的统计知识,利用上述数据从不同方面评价甲、乙两组选手的成绩.3.(本题10分)某校要从甲、乙两名跳远运动员中选拔一个参加省中学生运动会,在最近的10次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598,612,597,604,600,613,601乙:613,618,580,574,618,593,585,590,598,624(1)他们的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少?(3)这两名运动员的成绩各有什么特点?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选拔谁参加比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破记录,那么你认为为了打破记录应选谁参加比赛?四、拓广探索(本大题共34分)1.(本题17分)某班进行数学测验,将所得成绩(得分取整数)进行整理后分成5组,并绘制成频数分布直方图,请你结合直方图所提供的信息,回答下列问题:(1)该班共有多少名学生?(2)80~90这一分数段的频数、频率是多少?(3)这次数学成绩的中位数落在哪个分数段内?(4)从左到右各小组的频率比是多少?2.(本题17分)为了迎接春运,某车站改进了服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(简称购票用时,单位为分钟).下面是这次调查统计分析得到的频率分布表和频数分布直方图.请你解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填出缺失的数据并补全频数分布直方图.(3)旅客购票用时的平均数可能落在哪一小组?(4)若每增加一个购票窗口可以使平均购票用时降低5分钟,则要使平均购票用时不超过10分钟,请你估计一下最少需增加几个窗口?答案一、1.全面调查,个体2.30个电器开关的使用寿命3.1 164.155.3,1,16.30,27.a,4a8.5,60二、1.B 2.C 3.D 4.D 5.A 6.A 7.A 8.A三、1.(1)44棵树苹果产量、每棵树苹果重量、5棵树苹果重量;(2)1584千克;7920元.2.(1)平均数:8,众数:7,中位数:8,方差:1,优秀率:60%;(2)略.3.(1)甲:601.6cm,乙:599.3cm;(2)65.84,284.21;(3)甲成绩稳定;甲的平均成绩比乙好;乙比较有潜力;(4)为了夺冠应选甲参加比赛,为了打破记录应选乙参加比赛.四、1.(1)50;(2)12,0.24;(3)落在70~80分数段内;(4)从左到右各小组的频率的比为:2∶5∶9∶6∶32.(1)100;(2)50,0.10,略;(3)第三组;(4)2个窗口.。
初中数学鲁教版八年级上册第四章4图形变化的简单应用练习题一、选择题1.如图,在正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中标序号的小正方形中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是A. B. C. D.2.经过平移或旋转不可能将甲图案变成乙图案的是A. B. C. D.3.下列各项中,不是由平移设计的是A. B. C. D.4.如图,在的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形每个白色的小正方形被涂成灰色的可能性相同,使新构成灰色部分的图形是轴对称图形的概率是A. B. C. D.5.以如图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转,所得到的图形是A. B. C. D.6.如图正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形的方法有种.A. 4B. 5C. 6D. 77.如图是5个小正方形纸片拼成的图形,现将其中一个小正方形纸片平移,使它与原图中剩下的小正方形纸片有一条或两条边重合后拼成一个轴对称图形,在拼出的所有不同位置的轴对称图形中,全等的图形共有A. 0对B. 1对C. 2对D. 3对8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A. 3个B. 4个C. 5个D. 无数个9.下列图案中,含有旋转变换的有A. 4个B. 3个C. 2个D. 1个10.在玩俄罗斯方块游戏时,底部己有的图形如图所示,接下去出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形A. B. C. D.二、填空题11.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形图拼出来的图形的总长度是______结果用含a,b代数式表示.12.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中白色六边形地面砖的数量为______代数式需要简化.13.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转______度构成的.14.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转____次,每次旋转____度形成的.15.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是____度.三、解答题16.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:使得6个阴影小等边三角形组成一个轴对称图形.使得6个阴影小等边三角形组成一个中心对称图形.请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形17.已知和都是等腰直角三角形,.如图1:连AM,BN,求证:≌;若将绕点O顺时针旋转,如图2,当点N恰好在AB边上时,求证:;当点A,M,N在同一条直线上时,若,,请直接写出线段BN的长.18.探索发现如图,与为等腰三角形,且两顶角,连接BD与CE,则与的关系是______;操作探究在中,,,D是BC的中点,在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到,随着点P在线段AD 上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你探究,当点E在直线AD上时,如图所示,连接CE,判断直线CE与直线AB 的位置关系,并说明理由.拓展应用在的应用下,请在图中画出,使得点E在直线AD的右侧,连接CE,试求出点P 在线段AD上运动时,AE的最小值.19.已知:如图,等边的边长为4,点C为OA中点.如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为则此时______;此时是______三角形填特殊三角形的名称.如图2,固定等边不动,将中得到的绕点O逆时针旋转,连接AC,BD,设旋转角为.求证:;当旋转角为何值时,,并说明理由;当A、C、D三点共线时,直接写出线段BD的长.答案和解析1.【答案】A【解析】分析根据轴对称图形的定义进行设计即可.此题主要考查了轴对称图形的设计,正确把握轴对称图形的定义是解题关键.详解解:有3个使之成为轴对称图形分别为:,,.故选A.2.【答案】C【解析】解:A、B、D通过旋转或平移,和乙图各点对应,均正确;C、经过平移或旋转变换不可能将甲图案变成乙,故错误.故选:C.根据平移和旋转的性质进行选择,平移不改变图形的大小和形状,旋转改变图形的方向,可以作出选择.本题考查了平移和旋转的性质,属于基础题,关键是掌握几何变换不改变图形的大小.3.【答案】D【解析】解:根据平移的性质可知:A、B、C选项的图案都是由平移设计的,D选项的图案是由旋转设计的.故选:D.根据确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.本题考查了利用平移设计图案,解决本题的关键是掌握平移的性质:平移按一定的方向移动一定的距离.4.【答案】D【解析】解:如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:.故选:D.直接利用轴对称图形的性质分析得出答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.5.【答案】A【解析】【分析】本题主要考查了中心对称图形与轴对称图形,利用中心对称旋转180度后重合得出是解题关键.首先根据轴对称的性质得出翻折后图形,再利用中心对称图形的概念得出即可.【解答】解:以图的右边缘所在的直线为轴将该图形向右翻转后,黑圆在右上角,再按顺时针方向旋转,黑圆在左下角.故选A.6.【答案】B【解析】【分析】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故选B.7.【答案】B【解析】解:如图所示:在拼出的所有不同位置的轴对称图形中,全等的图形共有1对,故选:B.将其中一个小正方形纸片平移,使它与原图中剩下的小正方形纸片有一条或两条边重合后拼成一个轴对称图形,进而得出结论.本题主要考查了利用平移设计图案,确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.8.【答案】C【解析】【分析】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键,直接利用平移的性质结合轴对称图形的性质得出答案.【解答】解:如图所示,正方形ABCD可以向上,向下,向右以及沿射线AC或BD方向平移,平移后的两个正方形组成轴对称图形.故选C.9.【答案】B【解析】解:根据旋转的含义可知:选项中给出的4个图都可以通过旋转得到,其中第3个也可以利用平移得到;故选:B.根据利用旋转设计图案关键是利用旋转中的三个要素旋转中心;旋转方向;旋转角度设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案,进而判断得出即可.本题是考查运用旋转设计图案,根据旋转图形的特点得出是解题关键.10.【答案】D【解析】【分析】此题主要考查了利用旋转设计图案,正确掌握中心对称图形的性质是解题关键.直接利用中心对称图形的定义结合图形的旋转变换得出答案.【解答】解:如图所示:只有选项D可以与已知图形组成中心对称图形.故选:D.11.【答案】【解析】解:由图可得,拼出来的图形的总长度.故答案为:.本题主要考查了利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.12.【答案】【解析】解:第一个图案中,有白色的是6个,后边是依次多4个.第n个图案中,是.故答案为:.观察图形可知,第一个黑色地面砖由六个白色地面砖包围,再每增加一个黑色地面砖就要增加四个白色地面砖.本题考查利用平移设计图形,主要培养学生的观察能力和空间想象能力,解题的关键是发现规律:在第一个图案的基础上,多一个图案,多4块白色地砖.13.【答案】36【解析】解:根据图形可得:这是一个由字母“Y”绕着中心连续旋转9次,每次旋转36度角形成的图案.故答案为:36.如果某一个图形围绕某一点旋转一定的角度小于后能与原图形重合,那么这个图形就叫做旋转对称图形.利用基本图形和旋转次数,即可得到旋转的角度.本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.14.【答案】7;45【解析】【分析】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.利用旋转中的三个要素旋转中心;旋转方向;旋转角度设计图案,进而判断出基本图形和旋转次数与角度.【解答】45度形成的,故答案为:7;45.15.【答案】72【解析】【分析】本题把旋转的性质和一个周角是结合求解.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.注意结合图形解题的思想.根据旋转的性质和周角是求解即可.【解答】解:观察图形可知,中心角是由五个相同的角组成,旋转角度是,这四次旋转中,旋转角度最小是.故答案为72.16.【答案】解:如图1所示:6个阴影小等边三角形组成一个轴对称图形;如图2所示:6个阴影小等边三角形组成一个中心对称图形.【解析】直接利用轴对称图形的性质分析得出答案;直接利用中心对称图形的性质分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.17.【答案】证明:如图1中,≌.证明:如图2中,连接AM.同法可证≌,,,,,,是等腰直角三角形,,.如图中,设OA交BN于J,过点O作于H.≌,,,,,,如图中,同法可证.【解析】根据SAS证明三角形全等即可.连接AM,证明,,利用勾股定理解决问题即可.分两种情形分别画出图形求解即可.本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.18.【答案】相似【解析】解:如图中,与为等腰三角形,且两顶角,,,,∽,,,故答案为:相似.如图2中,结论:.理由:,,,,,,,,垂直平分线段BC,,,,,,,.故答案为50,.如图3中,以P为圆心,PB为半径作.垂直平分线段BC,,,,.如图4中,作于H,点E在射线CE上运动,点P在线段AD上运动,当点P运动到与点A重合时,AE的值最小,此时AE的最小值.结论:相似.先判断出∽,即可得出结论.利用等腰三角形的性质证明,,推出即可.如图3中,以P为圆心,PB为半径作利用圆周角定理证明,推出,因为点E在射线CE 上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值.本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.19.【答案】等边【解析】解:如图1,是等边三角形,,,将OC绕点O顺时针旋转,使点C落到OB边的点D处,,,是等边三角形,故答案为:,等边;是等边三角形,,,,又,≌,;如图2,当点C在点O的上方时,若,,如图,当点C在点O的下方时,若,,,综上所述:或;如图3,当点D在线段AC上时,过点O作于E,等边的边长为4,点C为OA中点,,,,,≌,,,,,,,;如图4,当点C在线段AD上时,过点O作于F,同理可求,,,综上所述:或.由旋转的性质可得,,可证是等边三角形;由“SAS”可证≌,可得;分两种情况讨论,由平行线的性质和旋转的性质可求解;分两种情况讨论,由勾股定理可求解.性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( ) A.B.1 C.D.210.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是__________年.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________;众数是__________.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是__________.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为__________,样本容量为__________.16.已知x1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05正正14 0.281.05~1.55正正正15 0.301.55~2.05正7 __________2.05~2.554 0.082.55~3.05正 5 0.103.05~3.553 __________3.55~4.05 __________0.04合计50 1.00第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.2【考点】算术平均数.【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【解答】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.【点评】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.2.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗【考点】标准差.【专题】图表型.【分析】根据标准差和平均数的意义进行选择.【解答】解:由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D.【点评】本题考查了平均数和标准差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.标准差即方差的算术平方根.3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数【考点】方差.【分析】根据方差的意义可以选出合适的选项.【解答】解:根据方差的概念知,方差反映了一组数据的波动大小.故选B.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.5.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.(1)(2)正确.故选:B.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙【考点】加权平均数.【专题】图表型.【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选C.【点评】本题考查了加权平均数的计算方法.8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定【考点】方差.【专题】应用题.【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【解答】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选B.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( ) A.B.1 C.D.2【考点】算术平均数.【专题】计算题;压轴题.【分析】根据5位同学数学成绩的平均分为M,求得5位同学的总分;再把M当成另一个同学的分数,与原来的5个分数一起,求得总分,再求这6个分数的平均值即为N;这样即可求得M与N的比值.【解答】解:∵5位同学数学成绩的平均分为M,∴5位同学的总分为5M,把M当成另一个同学的分数,与原来的5个分数一起,总分就为5M+M.这6个分数的平均值=(5M+M)=M=N,∴M:N=1.故选B.【点评】本题考查了样本平均数的求法.所有数据的和除以这些数据的个数叫这些数据的平均数.10.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【考点】统计量的选择.【分析】根据平均数、众数、中位数的概念分析各个选项.【解答】解:A、在一组数据的平均数、众数、中位数有可能相同如全部相等的数据,正确;B、中位数是将数据按从大到小,或从小到大顺序排列,最中间的那个数或两个数的平均数,所以只有一个,故错误;C、众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的,符合意义,正确;D、根据众数的概念即数据出现次数最多的数据,可能有多个,正确;故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义,了解各个统计量的意义是解答本题的关键.二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7;众数是8.【考点】中位数;众数.【分析】根据中位数和众数的定义解答.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是2.【考点】方差;算术平均数.【专题】压轴题.【分析】先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为65.75.【考点】加权平均数.【专题】计算题.【分析】运用加权平均数的计算公式求解.【解答】解:这位候选人的招聘得分=(88+72×4+50×3)÷8=65.75(分).故答案为:65.75.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.此题难度不大.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为2,样本容量为4.【考点】方差.【分析】先根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]中所以字母所代表的意义,n是样本容量,是样本中的平均数进行解答即可.【解答】解:∵在公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]中,平均数是,样本容量是n,∴在S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2]中,这个样本的平均数为2,样本容量为4;故答案为:2,4.【点评】此题考查了方差,解题的关键是根据方差的定义以及公式中各个字母所表示的意义进行解答.16.已知x1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为20,方差为12.【考点】方差;算术平均数.【分析】设2x1,2x2,2x3的平均数为,把数据代入平均数计算公式计算即可,再利用方差公式即可计算出新数据的方差.【解答】解:∵=10,∴=10,设2x1,2x2,2x3的方差为,则==2×10=20;∵S2=[(x1﹣10)2+(x2﹣10)2+(x3﹣10)],∴S′2='[(2x1﹣)2+(2x2﹣)+(2x3﹣],=[4(x1﹣10)2+4(x2﹣10)2+4(x2﹣10)],=4×3=12.故答案为:20;12.【点评】本题考查了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).【考点】方差;算术平均数;中位数;极差.【专题】应用题.【分析】(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;(2)根据方差的性质得出即可;(3)根据方差的稳定性得出即可.【解答】解:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,甲的中位数、方差和极差分别为,15cm;;16﹣14=2(cm),乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19﹣10=9(cm)平均数:(15+16+16+14+14+15)=15(cm);∴(11+15+18+17+10+19)=15(cm).∴相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差和极差均不相同.(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数),使得方差为0.【点评】本题考查了样本中的平均数,方差,极差,中位数在生活中的意义和应用.19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~正正14 0.281.051.05~正正正15 0.301.55正7 0.141.55~2.054 0.082.05~2.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00【考点】频数(率)分布表;中位数.【分析】(1)根据频率、频数及样本容量的关系求得表中相关数据即可;(2)根据总人数确定中位数的位置即可;(3)用相关频率乘以100%即可求得百分率.【解答】解:(1)分组频数累计频数频率0.55~正正14 0.281.05正正正15 0.301.05~1.551.55~正7 0.142.054 0.082.05~2.552.55~正 5 0.103.053 0.063.05~3.553.55~2 0.044.05合计50 1.00(2)∵共50人,其中第25和第26人的平均数是中位数,∴中位数落在1.05﹣1.55小组内;(3)每周做家务的时间不超过1.5小时的学生所占的百分比为(0.28+0.30)×100%=58%.【点评】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息,难度不大.。
鲁教版(五四制)八年级数学上册期中达标测试卷一、选择题(每题3分,共36分)1.下列各式可以用完全平方公式进行因式分解的是( )A .a 2+2a +14B .a 2-a +14 C .x 2-2x +4 D .x 2-xy +y 22.若多项式x 2+mx -8因式分解的结果为(x +4)(x -2),则常数m 的值为( )A .-2B .2C .-6D .6 3.已知当x =-2时,分式x -1□无意义,则□中可以是( )A .2-xB .x -2C .2x +4D .x +4 4.若实数x 满足x 2-2x -1=0,则2x 3-7x 2+4x -2 022的值为( )A .2 024B .-2 024C .2 025D .-2 025 5.能使分式x 2-1x 2-2x +1的值为0的x 的值是( )A .x =-1B .x =1C .x =±1D .x =06.国产大飞机C919用数学建模的方法预测的价格(单位:万美元)是:5 098,5 099,5 001,5 002,4 990,4 920,5 080,5 010,4 901,4 902,这组数据的平均数是( )A .5 000.3B .4 999.7C .4 997D .5 003 7.下列计算结果正确的是( )A .(a 3)2=a 5B .(-bc )4÷(-bc )2=-b 2c 2C .a ÷b ·1b =a b 2 D .1+1a =2a8.山西苹果产地主要集中在曲沃、襄汾、新绛、万荣、临猗、平陆等地,其中,以临猗苹果和万荣苹果较为著名.为了解不同品种苹果树的产量及稳定程度,某果园随机从甲、乙、丙、丁四个品种中各采摘了10棵树的苹果,每棵产量的平均数x -(单位:千克)及方差2如下表所示.若计划从这四个品种中选择一种进行种植,根据苹果树的产量及稳定程度,较为合适的品种是( )A .甲B .乙C .丙D .丁9.自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x 元,则列出的方程正确的是( )A.720x =540x -15B.720x =540x +15C.720x -15=540x D.720x =540x +15 10.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是( )A .众数B .中位数C .平均数D .方差11.为迎接中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖了.下列关于成绩的统计量中,与被遮盖的数据无关的是( )A.平均数,方差 B .中位数,方差 C .中位数,众数 D .平均数,众数12.若关于x 的方程m x +1-2x =0的解为负数,则m 的取值范围是( )A .m <2B .m <2且m ≠0C .m >2D .m >2且m ≠4 二、填空题(每题3分,共18分)13.分解因式:3x 2-6x 2y +3xy 2=__________________.14.分式4x -3与1x 的差为0,则x 的值为________.15.化简⎝ ⎛⎭⎪⎫x y -y x ÷x 2-y2x 的结果是________.16.为了践行“首都市民卫生健康公约”,某班级举办“七步洗手法”比赛活动,李明的单项成绩如下表所示:若按书面测试占30%、实际操作占50%、宣传展示占20%计算参赛个人的综合成绩,则李明的综合成绩是________分.17.已知一组数据1,2,4,3,x 的众数是2,则这组数据的中位数是______. 18.若关于y 的方程y y -1-m 2y 2-y =y -1y 有增根,则m 的值为________.三、解答题(19题9分,20题7分,21题8分,25题12分,其余每题10分,共66分) 19.因式分解:(1)4a 3b 2-10ab 3c ; (2)a 4-b 4; (3)a 4b -6a 3b +9a 2b .20.先化简,再求值:⎝ ⎛⎭⎪⎫1+1a 2-1÷a 3(a +1),其中a =4.21.若数a 使关于x 的不等式组⎩⎨⎧3x -12<4(x -2),5x -a ≤3有且仅有三个整数解,且使关于y 的分式方程3y y -2+a +122-y =1有整数解,求满足条件的所有a 的值之和.22.对于二次三项式a 2+6a +9,可以用公式法将它因式分解成(a +3)2的形式,但对于二次三项式a 2+6a +8,就不能直接应用公式法因式分解了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9-9+8=(a+3)2-1=[(a+3)+1][(a+3)-1]=(a+4)(a+2).请仿照上面的做法,将下列各式因式分解:(1)x2-6x-16;(2)x2+2ax-3a2.23.某学校为了了解八年级学生对“八礼四仪”的掌握情况,对该年级的500名学生进行了问卷测试,并随机抽取了10名学生的问卷,成绩统计如下:(1)计算这10名学生这次测试的平均成绩.(2)如果成绩不少于9分的定义为“优秀”,估计这500名学生对“八礼四仪”掌握情况优秀的人数.(3)小明所在班级共有40名学生,他们全部参加了这次测试,平均成绩为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?24.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A品牌足球共花费2 880元,B品牌足球共花费2 400元,且购买的A品牌足球数量是B品牌足球数量的1.5倍,A品牌每个足球的售价比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A,B两种品牌的足球共50个,今年该店对每个足球的售价进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A,B两种品牌足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?25.为庆祝中国共产党建党100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:(1)收集数据.从该校七、八年级中各随机抽取20名学生的分数,其中八年级学生的分数如下:8183848586878788899092929395959599 99100100(2)整理、描述数据.按下表分段整理、描述样本数据:(3)分析数据.两组样本数据的平均数、中位数、众数、方差如下表所示:根据以上提供的信息,解答下列问题:(1)填空:a=________,b=________,c=________;(2)样本数据中,七年级甲学生和八年级乙学生的分数都为90分,________学生的分数在本年级抽取的学生的分数中从高到低排序更靠前;(填“甲”或“乙”)(3)从样本数据分析来看,分数较整齐的是________年级;(填“七”或“八”)(4)如果七年级共有400名学生参赛,估计该年级有多少名学生的分数不低于95.答案一、1.B 2.B 3.C 4.D 5.A 6.A 7.C 8.B 9.A 10.D 11.C 12.B 点拨:m x +1-2x =0, 方程两边同乘x (x +1), 得mx -2(x +1)=0, 去括号,得mx -2x -2=0, 解得x =2m -2. ∵方程的解为负数, ∴2m -2<0, ∴m <2.由题意知x ≠0且x ≠-1, 即2m -2≠0且2m -2≠-1, ∴m ≠0.∴m 的取值范围是m <2且m ≠0. 二、13.3x (x -2xy +y 2) 14.-115.1y 16.97 17.2 18.±1三、19.解:(1)4a 3b 2-10ab 3c =2ab 2(2a 2-5bc ).(2)a 4-b 4=(a 2+b 2)(a 2-b 2)=(a 2+b 2)(a +b )(a -b ). (3)a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)=a 2b (a -3)2. 20.解:⎝ ⎛⎭⎪⎫1+1a 2-1÷a 3(a +1)=a 2-1+1(a +1)(a -1)·3(a +1)a=a 2(a +1)(a -1)·3(a +1)a =3a a -1. 当a =4时,原式=3×44-1=4. 21.解:解关于x 的不等式组⎩⎨⎧3x -12<4(x -2),5x -a ≤3, 得-4<x ≤a +35.∵关于x 的不等式组⎩⎨⎧3x -12<4(x -2),5x -a ≤3有且仅有三个整数解,∴-1≤a +35<0, 解得-8≤a <-3. 解关于y 的分式方程3y y -2+a +122-y=1, 得y =a +102.∵关于y 的分式方程有整数解, ∴y =a +102为整数, ∵-8≤a <-3,∴a =-8或a =-6或a =-4.当a =-6时,y =2,原分式方程无解,故将a =-6舍去. ∴满足条件的所有a 的值之和是-8-4=-12. 22.解:(1)x 2-6x -16=x 2-6x +9-9-16 =(x -3)2-25 =(x -3+5)(x -3-5) =(x +2)(x -8). (2)x 2+2ax -3a 2=x 2+2ax +a 2-a 2-3a 2 =(x +a )2-(2a )2 =(x +a +2a )(x +a -2a ) =(x +3a )(x -a ). 23.解:(1)10×3+9×3+8×2+7×1+6×13+3+2+1+1=8.6(分).答:这10名学生这次测试的平均成绩是8.6分. (2)500×3+33+3+2+1+1=300(名).答:估计这500名学生对“八礼四仪”掌握情况优秀的人数为300名.(3)不同意.因为成绩中等偏上,指小明的成绩超过了班级一半以上学生的成绩,也就是说他的成绩应超过班级成绩的中位数.虽然小明的成绩超过了平均成绩,但未必能超过成绩的中位数.24.解:设去年A 品牌每个足球的售价为x 元,则B 品牌每个足球的售价为(x +12)元.由题意,得2 880x =32·2 400x +12,解得x =48.经检验,x =48是原分式方程的解,且符合题意. ∴x +12=60.∴去年A 品牌每个足球的售价为48元,B 品牌每个足球的售价为60元. 设今年学校购买B 品牌足球a 个,根据题意,得(50-a )×48×(1+5%)+a ×60×(1-10%)≤(2 880+2 400)×12, 解得a ≤1003.∵a 为正整数,∴学校最多可购买33个B 品牌足球. 25.解:(1)6;91;95(2)甲 (3)八(4)400×820=160(名).答:估计该年级有160名学生的分数不低于95.。
一、选择题1、小明把自己一周的支出情况,用如图所示统计图来表示,下面说法正确的是( ).A.从图中可以直接看出具体消费数额B.从图中可以直接看出总消费数额C.从图中可以直接看出各项消费数额占总消费数额的百分比.D.从图中可以直接看出各项消费数额在一周中的具体变化情况 2、根据下面的两个统计图,下列说法正确的是( ) A.一中的学生喜欢运动,三中的学生喜欢学习 B.一中喜欢足球的人数与三中喜欢足球的人数相等 C.三中喜欢自然的人数与一中喜欢排球的人数相等 D.以上都不正确.一中 三中3、我市举办老、中、青三个年龄段五公里竞走活动,其人数比为2:3:5,如图所示的扇形统计图表示上述分布情况,已知老人有160人,则下列说法不正确的是( )A .老年所占区域的圆心角是72°B .参加活动的总人数是800人C .中年人比老年人多80人D .老年人比青年人少160人4、在频数分布直方图中,各小长方形的高等于相应组的( ) A.组距 B.组数 C.频数 D.频率5、如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )A.5~10元B.10~15元C.15~20元D.20~25元6、如图是某班40名学生一分钟跳绳测试成绩(次数为整数)的频数分布直方图,从左起第一、二、三、四个小长方形的高的比为1:4:3:2,那么该班排球 网球 乒乓球篮球足球 劳技 自然英语数学足球一分钟跳绳次数在100次以上的学生有()A.6人B.8人C.16人D.20人7、某班五个课外小组的人数分布如图所示,若绘制成扇形统计图,则第二小组在扇形统计图中对应的圆心角度数是()A.45°B.60°C.72°D.120°二、填空题1、某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图.若该校有1000名学生,则赞成该方案的学生约有人.2、某大学图书馆购买一批图书,其中科技书150本,故事书120本,学习辅导书100本,其他类书130本,制成扇形统计图,表示科技书的圆心角度数为.3、某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为.4、生物学研究表明在8﹣17岁期间,男女生身高增长速度规律呈现如图所示,请你观察此图,回答下列问题:男生身高增长速度的巅峰期是岁,在岁时男生女生的身高增长速度是一样的.三、解答题1、我市某校推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班学生人数是,并补全频数分布直方图;(2)表示“羽毛球”所在扇形的圆心角是;(3)若该校共有学生3500名,请估计有多少人选修足球?2、为弘扬中华传统文化,某校组织八年级800名学生参加汉字听写大赛为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的模数分布表:分数段50.5﹣60.5 60.5﹣70.5 70.5﹣80.5 80.5﹣90.5 90.5﹣100.5 频数16 30 50 m 24所占百分比8% 15% 25% 40% n请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为,表中m=.n= .(2)补全图中所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?3、某校为了解全校学生下学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤310 0.203<x≤6 a 0.246<x≤916 0.329<x≤12m b12<x≤15 4 0.0815<x≤18 2 n根据以上图表信息,解答下列问题:(1)表中a=,b=;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1500名学生,请估计该校在下学期参加社区活动超过6次的学生有多少人?。
第四章数据的收集与处理测试题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. 下列调查中,适宜采用全面调查(普查)方式的是()A.对我市中学生心理健康现状的调查B.调查我市冷饮市场雪糕质量情况C.调查我国网民对某件事的看法D.对我国首架大陆民用飞机各零部件质量的检查2. 下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C.数据1,1,2,2,3的众数是3D.想了解台州市城镇居民的年收入水平,宜采用抽样调查3. 下面是四位同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的是()A. B.C.D.4. 某电脑厂家为了安排台式电脑和手提电脑的生产比例,而进行一次市场调查,调查员在调查表中设计了下面几个问题,你认为哪个提问不合理()A.你明年是否准备购买电脑(1)是(2)否B.如果你明年购买电脑,打算买什么类型的(1)台式(2)手提C.你喜欢哪一类型电脑(1)台式(2)手提D.你认为台式电脑是否应该被淘汰(1)是(2)否5. 为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A.某市八年级学生的肺活量B.从中抽取的500名学生的肺活量C.从中抽取的500名学生D.5006. 某厂生产世博会吉祥物:“海宝”纪念章10万个,质检部门为检测这批纪念章质量的合格情况,从中随机抽查500个,合格499个.下列说法正确的是()A .总体是10万个纪念章的合格情况,样本是500个纪念章的合格情况B .总体是10万个纪念章的合格情况,样本是499个纪念章的合格情况C .总体是500个纪念章的合格情况,样本是499个纪念章的合格情况D .总体是10万个纪念章的合格情况,样本是1个纪念章的合格情况 7. 大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( ) A.0.1 B.0.2 C.0.3 D.0.78. 某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为( ) A .150B .300 C .600D .9009. 学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ) A .0.1B .0.15C .0.25 D .0.310. 数据0,1,2,3,的平均数是2,则这组数据的标准差是( ) A .2B .C .10D .二、填空题(每小题3分,共24分)11. 聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.12. 建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为.13. 专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视.这个结论是通过得到的(填抽样调查或普查).14. 某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调査了10户居民家庭月使用塑料袋的数量,结果如下(単位:只) 65 70 85 74 86 78 74 92 82 94 根据统计情况,估计该小区这100户家庭平均使用塑料袋为只.15. 已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,,5,则等于,第四组的频率为.16. 一组数据:12,13,15,14,16,18,19,14.则这组数据的极差是.17. 为了从甲、乙、丙三位同学中选派一位同学参加环保知识竞赛.老师对他们的五次环保知识测验成绩进行了统计,他们的平均分都为85分,方差分别为s 2甲=18,s 2乙=12, s 2丙=23,根据统计结果,应派去参加竞赛的同学是.(填“甲”、“乙”、“丙”中的一个) 18. 用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为,标准差为.(精确到0.1) 三、解答题(共46分)19.(6分)小李在家门口进行了一项社会调查,对从家门口经过的车辆进行记录,分析出第9题图本地车辆与外地车辆的数据,同时也对汽车牌照的尾号进行了记录. (1)在这过程中他要收集种数据; (2)设计出记录用的表格是怎样的.20.(6分)为了帮助数学成绩差的学生,老师调查了180名这样的学生,设计的问题是“你的数学作业完成情况如何”给出五个选项(独立完成、辅导完成、有时抄袭完成、经常抄袭完成、经常不完成)供学生选择.结果老师发现选择独立完成和辅导完成这两项的学生一共占了52%,明显高于他平时观察到的比例,你能解释这个统计数字失真的原因吗? 21.(6分)调查你们班全体同学每周做家务的时间,填写统计表:4(1)采取哪种调查方式最合适?(2)这个班的同学每周做多长时间家务的人最多?做多长时间家务的人最少? (3)请你根据以上的结果,用一句话谈谈自己的感受.分)下表是光明中学七年级(1)请你重新设计一张统计表,使全班同学在每个月的出生人数情况一目了然; (2)求出10月份出生的学生的频数和频率;(3)现在是1月份,如果你准备为下个月生日的每一位同学送一份小礼物,那你应该准备多少份礼物?根据上面的统计表,制作适当的统计图表示甲、乙两人打靶成绩的变化,并回答下列问题. (1)谁成绩变化的幅度大?(2)甲、乙两人哪一次射击的成绩相差最大?相差多少?24.(8分) 王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和.(2)试通过计算说明,哪个山上的杨梅产量较稳定?25.(8分) 一次期中考试中,A 、B 、C 、D 、E 五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)第24题图70(1)填写表格中的空格;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与英语哪个学科考得更好?第四章数据的收集与处理检测题参考答案1. D 解析:A、对我市中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;B、对我市冷饮市场雪糕质量情况的调查,由于市场上雪糕数量较多,普查破坏性较强,应当采用抽样调查的方式;C、对我国网民对某件事的看法的调查,由于人数多,普查耗时长,故应当采用抽样调查;D、对我国首架大型民用飞机零部件的检查,由于零部件数量有限,而且是首架民用飞机,每一个零部件都关系到飞行安全,故应当采用全面调查.故选D.2. D 解析:A、错误,是随机事件;B、错误,中奖的概率为是指每张奖券的中奖率为是随机事件,所以买100张也不一定中奖;C、错误,数据1,1,2,2,3的众数是1、2;D、正确,台州市城镇居民人口众多,不适合普查,所以采用抽样调查.故选D.3. C 解析:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.4. D 解析:根据设计问卷调查应该注意的问题可知D不合理,问题和调查的目的不符合,故选D.5. B 解析:了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是500名学生的肺活量,故选B.6. A 解析:总体是10万个纪念章的合格情况,样本是500个纪念章的合格情况,故选A.7. B 解析:跳绳次数在90~110之间的数据有91,93,100,102四个,故频率为=0.2.故选B.8. B 解析:根据题意,得该组的人数为1200×0.25=300(人).故选B.9. D 解析:根据频数分布直方图知道绘画兴趣小组的人数为12,∴参加绘画兴趣小组的频率是12÷40=0.3.故选D.10. B 解析:由题意知:=2,解得:=4.方差s2= [(0-2)2+(1-2)2+(2-2)2+(3-2)2+(4-2)2]=2,∴标准差是.故选B.11.解析:根据题意知在数据中,共33个数字,其中11个9,故数字9出现的频率是=.12. 5013. 抽样调查解析:这个调查个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查.14. 80 解析:平均数=(65+70+85+74+86+78+74+92+82+94)=80(只).15. 20 0.4 解析:根据题意,得第四组数据的个数即=50-(2+8+15+5)=20,其频率为=0.4.16. 7 解析:由题意可知,极差为19-12=7.17. 乙解析:由于s2丙>s2甲>s2乙,则成绩较稳定的同学是乙.18. 287.114.419.分析:根据题意可知需要收集2种数据,本地车辆与外地车辆的数据,汽车牌照的尾号的数据,设计表格合理即可.解:(1)2;(2)20. 分析:调查问卷是管理咨询中一个获取信息的常用方法.设计问卷调查应该注意:1、提问不能涉及人的隐私;2、提问不要问他人已经回答的问题;3、提问的选择答案要尽可能简单详细;4、问题要简明扼要;5、问卷调查要简单易懂.解:抄袭和不完成作业是不好的行为,勇于承认错误不是每个人都能做到的,所以,这样的问题设计得不好,容易失真.21.分析:(1)利用普查和抽样调查的特点即可解决问题;(2)根据表格,可知求这个班同学每周做家务的人数最多的时间即是求这组数据的众数,表格中第二行最小的数字所对应的第一行的时间即为做家务的人数最少的时间;(3)根据实际情况,让学生结合自己谈主观感受即可.解:(1)普查;(2)每周做3小时的人最多,做0小时或1小时的人最少.(3)从表中可以看出,这个班的同学每周做家务的时间大部分在2~3个小时,平均每天做一二十分钟,有的甚至一点也不做,我感到我们中学生做家务的时间用得太少,我们不但应该搞好自己的学习,同时也要更多的做些力所能及的家务,一方面减轻父母的负担,另一方面提高我们的自理能力.22.分析:(1)根据题意,按生日的月份重新分组统计可得表格;(2)根据频数与频率的概念可得答案;(3)根据频数的概念,读表可得2月份生日的频数,即可得答案.解:(1)按生日的月份重新分组可得统计表:(2)读表可得:10月份出生的学生的频数是5,频率为=0.125.(3)2月份有4位同学过生日,因此应准备4份礼物.23.分析:(1)谁的成绩变化幅度大实际上是比较极差的大小,因为极差反映了一组数据变化范围的大小.(2)利用极差公式求即可.解:(1)∵甲中找出数据中最大的值为9,最小值为5,故极差是4,乙中找出数据中最大的值为10,最小值为2,极差是8,∴乙成绩变化的幅度大;(2)从数据中找出成绩相差大的是第一次,相差9-2=7环.24.分析:(1)根据平均数的求法求出平均数,再用样本估计总体的方法求出产量总和即可解答.(2)要比较哪个山上的杨梅产量较稳定,只要求出两组数据的方差,再比较即可解答.解:(1)(千克),(千克),总产量为40×100×98%×2=7840(千克).(2),,∴s2甲>s2乙.答:乙山上的杨梅产量较稳定.25.分析:(1)由平均数、标准差的公式计算即可;(2)代入公式:标准分=(个人成绩-平均成绩)÷成绩标准差,再比较即可.解:(1),标准差=6.(2)∵A同学数学标准分==,英语标准分=0.5.∴数学更好.。
第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.210.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是__________年.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________;众数是__________.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是__________.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为__________,样本容量为__________.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05正正14 0.281.05~1.55正正正15 0.301.55~2.05正7 __________2.05~2.554 0.082.55~3.05正 5 0.103.05~3.553 __________3.55~4.05 __________0.04合计50 1.00第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.2【考点】算术平均数.【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【解答】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.【点评】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.2.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗【考点】标准差.【专题】图表型.【分析】根据标准差和平均数的意义进行选择.【解答】解:由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D.【点评】本题考查了平均数和标准差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.标准差即方差的算术平方根.3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数【考点】方差.【分析】根据方差的意义可以选出合适的选项.【解答】解:根据方差的概念知,方差反映了一组数据的波动大小.故选B.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.5.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.(1)(2)正确.故选:B.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙【考点】加权平均数.【专题】图表型.【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选C.【点评】本题考查了加权平均数的计算方法.8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定【考点】方差.【专题】应用题.【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【解答】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选B.【点评】本题考查方差的意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.2【考点】算术平均数.【专题】计算题;压轴题.【分析】根据5位同学数学成绩的平均分为M,求得5位同学的总分;再把M当成另一个同学的分数,与原来的5个分数一起,求得总分,再求这6个分数的平均值即为N;这样即可求得M与N的比值.【解答】解:∵5位同学数学成绩的平均分为M,∴5位同学的总分为5M,把M当成另一个同学的分数,与原来的5个分数一起,总分就为5M+M.这6个分数的平均值=(5M+M)=M=N,∴M:N=1.故选B.【点评】本题考查了样本平均数的求法.所有数据的和除以这些数据的个数叫这些数据的平均数.10.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【考点】统计量的选择.【分析】根据平均数、众数、中位数的概念分析各个选项.【解答】解:A、在一组数据的平均数、众数、中位数有可能相同如全部相等的数据,正确;B、中位数是将数据按从大到小,或从小到大顺序排列,最中间的那个数或两个数的平均数,所以只有一个,故错误;C、众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的,符合意义,正确;D、根据众数的概念即数据出现次数最多的数据,可能有多个,正确;故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义,了解各个统计量的意义是解答本题的关键.二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7;众数是8.【考点】中位数;众数.【分析】根据中位数和众数的定义解答.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是2.【考点】方差;算术平均数.【专题】压轴题.【分析】先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…x n的平均数为,=(x 1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为65.75.【考点】加权平均数.【专题】计算题.【分析】运用加权平均数的计算公式求解.【解答】解:这位候选人的招聘得分=(88+72×4+50×3)÷8=65.75(分).故答案为:65.75.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.此题难度不大.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为2,样本容量为4.【考点】方差.【分析】先根据方差公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中所以字母所代表的意义,n是样本容量,是样本中的平均数进行解答即可.【解答】解:∵在公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中,平均数是,样本容量是n,∴在S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2]中,这个样本的平均数为2,样本容量为4;故答案为:2,4.【点评】此题考查了方差,解题的关键是根据方差的定义以及公式中各个字母所表示的意义进行解答.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为20,方差为12.【考点】方差;算术平均数.【分析】设2x1,2x2,2x3的平均数为,把数据代入平均数计算公式计算即可,再利用方差公式即可计算出新数据的方差.【解答】解:∵=10,∴=10,设2x1,2x2,2x3的方差为,则==2×10=20;∵S2=[(x1﹣10)2+(x2﹣10)2+(x3﹣10)],∴S′2='[(2x1﹣)2+(2x2﹣)+(2x3﹣],=[4(x1﹣10)2+4(x2﹣10)2+4(x2﹣10)],=4×3=12.故答案为:20;12.【点评】本题考查了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).【考点】方差;算术平均数;中位数;极差.【专题】应用题.【分析】(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;(2)根据方差的性质得出即可;(3)根据方差的稳定性得出即可.【解答】解:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,甲的中位数、方差和极差分别为,15cm;;16﹣14=2(cm),乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19﹣10=9(cm)平均数:(15+16+16+14+14+15)=15(cm);∴(11+15+18+17+10+19)=15(cm).∴相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差和极差均不相同.(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数),使得方差为0.【点评】本题考查了样本中的平均数,方差,极差,中位数在生活中的意义和应用.19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率正正14 0.280.55~1.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00【考点】频数(率)分布表;中位数.【分析】(1)根据频率、频数及样本容量的关系求得表中相关数据即可;(2)根据总人数确定中位数的位置即可;(3)用相关频率乘以100%即可求得百分率.【解答】解:(1)分组频数累计频数频率0.55~正正14 0.281.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00(2)∵共50人,其中第25和第26人的平均数是中位数,∴中位数落在1.05﹣1.55小组内;(3)每周做家务的时间不超过1.5小时的学生所占的百分比为(0.28+0.30)×100%=58%.【点评】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息,难度不大.。
八年级综合测试一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍3.已知正多边形的一个内角为144°,则该正多边形的边数为()A.12B.10C.8D.64.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.极差是20B.平均数是90C.众数是98D.中位数是98 5.下列因式分解正确的是()A.3ax2﹣6ax=3 (ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.ax2﹣2ax+a=a(x﹣1)26.为了在甲、乙两名运动员中选拔一人参加全省射击比赛,对他们的射击水平进行考核.在相同的情况下,两人的比赛成绩经统计算后如表:运动员射击次数中位数(环)方差平均数(环)甲157 1.68乙1580.78某同学根据表格分析得出如下结论:①甲、乙两名运动员成绩的平均水平相同;②乙运动员优秀的次数多于甲运动员(环数≥8环为优秀);③甲运动员成绩的波动比乙大.上述结论正确的是()A.①②③B.①②C.①③D.②③7.某商店根据今年6﹣10月份的销售额情况,制作了如下统计图.根据图中信息,可以判断相邻两个月销售额变化最大的是()A.6月到7月B.7月到8月C.8月到9月D.9月到10月8.如图,扇形OAB中,∠AOB=90°,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则的值为()A.B.C.D.9.已知:关于x方程+=有且仅有一个实数根,则k的值为()A.B.或1C.或5或1D.或5或﹣2 10.在▱ABCF中,BC=2AB,CD⊥AB于点D,点E为AF的中点,若∠ADE=50°.则∠B的度数是()A.50°B.60°C.70°D.80°11.分式﹣化简后的结果为()A.B.C.﹣D.﹣12.如图,在四边形ABCD中,AB=CD,对角线AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,若DE=BF,则下列结论不一定正确的是()A.CF=AEB.OE=OFC.△CDE为直角三角形D.四边形ABCD是平行四边形二.填空题(共8小题,满分32分,每小题4分)13.当x=时,分式的值为零.14.分解因式:3x2﹣6x2y+3xy2=.15.若关于x的分式方程﹣=1有增根,则a的值.16.为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.设甲工程队每天整治河道xm,根据题意列方程为.17.如图,在Rt△ABC中,∠C=90°,BC=4,AB=8,点D是BC上一个动点,以AD、DB为邻边的所有平行四边形ADBE中,对角线DE的最小值是.18.如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则第2020个三角形的周长是.19.如图,△ABP是由△ACD按顺时针方向旋转某一角度得到的,若∠BAP=60°,则在这转过程中,旋转中心是,旋转的角度为.20.如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O 按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是.三.解答题(共7小题,满分70分)21.(12分)先化简,再求值:,其中x满足x2﹣x﹣1=0.22.(10分)某校九年级(1)班甲、乙两名同学在5次引体向上测试中的有效次数如下:甲:8,8,7,8,9.乙:5,9,7,10,9.甲、乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c 3.2根据以上信息,回答下列问题:(1)表格中a=,b=,c=.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是.(3)乙同学再做一次引体向上,若乙同学6次引体向上成绩的中位数不变,请写出第6次成绩的最小值.23.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.24.(10分)如图,由边长为1个单位长度的小正方形组成的网格中,已知格点△ABC(顶点是网格线的交点)和格点O.(1)画出△ABC绕点O逆时针方向旋转90°得到的△A1B1C1;(2)画出△A1B1C1向下平移4个单位长度得到的△A2B2C2.25.(10分)如图,在平行四边形ABCD中,AB=8,AD=5,∠A=60°,DE⊥AB,垂足为E,在平行四边形的边上有一点O,且AO=3.将平行四边形折叠,使点C与点O合,折痕所在直线与平行四边形交于点M、N.(1)求DE的长;(2)请补全图形并求折痕MN的长.26.(10分)某乡镇道路改造工程由甲、乙两个工程队合作20天可完成,若单独施工,甲工程队所用天数是乙工程队所用天数的2倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若此工程先由甲工程队单独施工,再由甲、乙两工程队合作施工完成剩下的工程.已知甲工程队施工每天需付施工费1万元,乙程队施工每天需付施工费2.5万元,要使施工总费用不超过64万元,那么甲工程队至少要单独施工多少天?27.(10分)如图,点O是等边△ABC内一点,∠AOB=β,∠BOC=α.将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接OD.(1)当β=110°,α=150°时,试判断△AOD的形状,并说明理由.(2)探究:若β=110°,那么α为多少度,△AOD是等腰三角形?(只要写出探究结果)α=.(3)请写出△AOD是等边三角形时α、β的度数.α=度;β=度.参考答案一.选择题(共12小题,满分48分,每小题4分)1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.3.解:∵正多边形的一个内角是144°,∴该正多边形的一个外角为36°,∵多边形的外角之和为360°,∴边数==10,∴这个正多边形的边数是10.故选:B.4.解:将数据从小到大排列为:78,85,91,98,98,A、极差为98﹣78=20,说法正确,故本选项不符合题意;B、平均数是(78+85+91+98+98)=90,说法正确,故本选项不符合题意;C、众数是98,说法正确,故本选项不符合题意;D、中位数是91,说法错误,故本选项符合题意;故选:D.5.解:A、3ax2﹣6ax=3ax(x﹣2),故原题分解错误;B、x2+y2不能分解,故原题分解错误;C、a2+2ab﹣4b2不能分解,故原题分解错误;D、ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2,故原题分解正确;故选:D.6.解:∵==8,∴甲、乙两名运动员成绩的平均水平相同,故结论①正确;∵乙的中位数为8,甲的中位数为7,∴乙运动员优秀的次数多于甲运动员(环数≥8环为优秀),故结论②正确;∵=1.6,=0.7,∴<,∴甲运动员成绩的波动比乙大,故③正确;故选:A.7.解:6月到7月,营业额增加40﹣25=15万元,7月到8月,营业额增加48﹣40=8万元,8月到9月,营业额减少48﹣32=16万元,9月到10月,营业额增加43﹣32=11万元,因此营业额变化最大的是8月到9月,故选:C.8.解:如图,连OD、AB、BC,延长AD交BC于H点,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,∴BD=BO=OD=CD=OA,∠BDC=90°∴∠OBD=60°,即旋转角为60°,∴∠ABC=60°,又可知AB=BC,∴△ABC是等边三角形,∵AB=AC,BD=CD,∴AH垂直平分BC,∴∠CAH=30°,∴AC=2CH,AH=CH,∵BD=CD,∠BDC=90°,DH⊥BC,∴DH=CH,∴AD=CH﹣CH,∴=.故选:A.9.解:分式方程去分母得:x2+x2+2x+1=4x+k,即2x2﹣2x+1﹣k=0,由分式方程有且仅有一个实数根,可得整式方程中△=4﹣8(1﹣k)=0,解得:k=;若整式方程中△>0,则当增根为x=0时,代入整式方程可得:1﹣k=0,即k=1,此时,方程2x2﹣2x=0的解为x1=1,x2=0(不合题意);当增根为x=﹣1时,代入整式方程可得:5﹣k=0,即k=5,此时,方程2x2﹣2x﹣4=0的解为x1=2,x2=﹣1(不合题意);综上所述,k的值为或5或1,故选:C.10.解:连结CE,并延长CE,交BA的延长线于点N,∵四边形ABCF是平行四边形,∴AB∥CF,AB=CF,∴∠NAE=∠F,∵点E是的AF中点,∴AE=FE,在△NAE和△CFE中,,∴△NAE≌△CFE(ASA),∴NE=CE,NA=CF,∵AB=CF,∴NA=AB,即BN=2AB,∵BC=2AB,∴BC=BN,∠N=∠NCB,∵CD⊥AB于D,即∠NDC=90°且NE=CE,∴DE=NC=NE,∴∠N=∠NDE=50°=∠NCB,∴∠B=80°.故选:D.11.解:﹣===.故选:B.12.解:∵AE⊥BD于点E,CF⊥BD于点F,∴∠DFC=∠BEA=90°,∵DE=BF,∴DE﹣EF=BF﹣EF,即DF=BE,在Rt△DCF和Rt△BAE中,,∴Rt△DCF≌Rt△BAE(HL),∴CF=AE,故选项A不符合题意;∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC,∵CF=AE,∴四边形CF AE是平行四边形,∴OE=OF,故选项B不符合题意;∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE,∴CD∥AB,∵CD=AB,∴四边形ABCD是平行四边形,故选项D不符合题意;无法证明△CDE为直角三角形,故选项C符合题意;故选:C.二.填空题(共8小题,满分32分,每小题4分)13.解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.14.解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)15.解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.16.解:设甲工程队每天整治河道xm,根据题意列方程为:=.故答案为:=.17.解:设AB、DE交于点O,如图:∵在Rt△ABC中,∠C=90°,∴BC⊥AC.∵四边形ABCD是平行四边形,∴OD=OE,OA=OB.∴当OD取得最小值时,对角线DE最小,此时OD⊥BC,∴OD∥AC.又∵点O是AB的中点,∴OD是△ABC的中位线,∴OD=AC.在Rt△ABC中,∠C=90°,BC=4,AB=8,∴由勾股定理得:AC===4.∴OD=×4=2.∴DE=2OD=4.故答案为:4.18.解:∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=7,∴△A1B1C1的周长是16,∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,…,以此类推,则△A4B4C4的周长是×16,∴△A n B n∁n的周长是,则第2020个三角形的周长是=.故答案为:.19.解:旋转中心为点A,旋转角为∠BAC=∠BAP+∠P AC=60°+30°=90°;故答案为A,90°.20.解:∵点P1的坐标为(,),将线段OP1绕点O按逆时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三.解答题(共7小题,满分70分)21.解:===,∵x2﹣x﹣1=0∴x2=x+1,∴原式==1.22.解:(1)甲的成绩中,8出现的次数最多,因此甲的众数是8,即b=8,(5+9+7+10+9)÷5=8,即a=8,将乙的成绩从小到大排列为5,7,9,9,10,处在第3位的数是9,因此中位数是9,即c=9.故答案为8,8,9.(2)甲的方差较小,比较稳定;乙的中位数是9,众数是9,获奖可能性较大.故答案为甲的方差较小,比较稳定;乙的中位数是9,众数是9,获奖可能性较大.(3)由题意,第6次成绩的最小值为923.解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,24.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;25.解:(1)∵AD=5,∠A=60°,DE⊥AB,∴∠ADE=30°.∴AE=.∴DE=.(2)如图1所示,当点O在AB上时,∵AB=8,AO=3,∴BO=AB﹣AO=5.∵四边形ABCD是平行四边形,∴BC=AD=5,AB∥DC,∠A=∠BCD=60°.∴BO=BC=5.∵将平行四边形折叠,使点C与点O重合,∴折痕MN垂直平分OC,即NO=NC,∠OBM=∠CBM.∵折痕MN与平行四边形ABCD的边AB交于点N,∴点B与点N重合.∵AB∥DC,∴∠OBM=∠CMB.∴BC=MC.∵∠BCD=60°,∴△BCM是等边三角形.∴MN=MB=BC=5.如图2所示,当点O在AD上时,过点N、O分别作NK⊥CD,OH⊥CD,垂足分别为K、H,连接OM,CN.∵四边形ABCD是平行四边形,AB=8,∴AB=CD=8,AB∥DC,∠A=60°,∴∠ODH=∠A=60°,∠EDC=∠AED=90°,∵AD=5,AO=3,∴OD=2.∵在Rt△ODH中,∠DOH=30°,∴HD=1.∴OH=,CH=CD+HD=9.∴在Rt△OCH中,OC=,由折叠可知,CM=OM,OG=CG=.∴在Rt△OMH中,OH2=HM2=OM2,即3+(9﹣CM)2=OM2.∴CM=OM=.∴NK⊥CD,∠EDC=90°,∴∠EDC=∠NKD=∠DEN=90°.∴四边形DENK为矩形.∴NK=DE=,∵S△CMN=•MN•CG,∴∴MN=.综上所述,折痕MN的长为5或.26.解:(1)设乙工程队单独完成此项工程需要x天,则甲工程队单独完成此项工程需要2x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲工程队要单独施工m天,则甲、乙两工程队要合作施工=天,依题意,得:m+(1+2.5)×≤64,解得:m≥36.答:甲工程队至少要单独施工36天.27.解:(1)△AOD是直角三角形,理由如下:由旋转性质得:CO=CD,∠ADC=∠BOC=α=150°,∠OCD=60°,∴△COD是等边三角形,∴∠ODC=∠COD=60°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形(2)当α=125°或110°或140°,△AOD是等腰三角形,(3)当α=120°且β=120°,△AOD是等边三角形.故答案为125°或110°或140°,120,120.。
数据的收集同步练习本课导学点击要点抽样调查时要注意样本的______性、______性、_______性.学习策略解决本节习题应了解普查、抽样调查、总体、个体、样本等简单概念;把握抽样调查的优特点;注意样本的代表性、广泛性和真实性;能设计适当的抽样调查方案.中考展望本节知识实用性强,在中考中题型多样,填空题、选择题、解答题均有可能出现.基础巩固一、训练平台(第1~5小题各4分,第5小题8分,共28分)1.下列调查中适合用普查方式来收集数据的是()A.了解某小区各户居民一年内丢弃的塑料袋数目B.了解某电视剧的收视率,向100位观众家中打电话询问C.了解现在中学生眼睛近视的人数D.统计班级全体同学校服的尺寸2.为了了解市内各饭店每天使用一次性筷子的情况,某日抽测了高、中、•低档饭店各10家,统计了使用一次性筷子的情况.这个问题中()A.10家饭店使用一次性筷子的情况是样本B.30家饭店使用一次性筷子的情况是总体的一个样本C.30家饭店每天使用一次性筷子的情况是样本D.全市每个饭店是总体3.为了考察八年级学生期末会考的数学成绩,从中抽样调查了200人,•这个问题中()A.采用了普查方式;B.每个八年级学生期末会考的数学成绩是个体C.每个八年级学生是一个个体; D.调查的200个学生是样本4.下列调查的样本缺乏代表性的是()A.为了了解公园里一年中游人的人数,小明利用国庆节放长假做了5天的进园人数调查B.从养鸡场中随机抽取种鸡10只称得体重,估计这批种鸡体重的平均值C.为了了解某市读者到市图书馆借阅图书的情况,•从全年的借阅人数中抽样调查了20 天中每天到图书馆借阅图书的人数D.调查某电影院单排号的观众,以了解观众们对所观看的影片的评价情况5.某市有8000名学生参加初中毕业会考,要想了解这8000名学生的数学成绩,从中抽取了300•名学生的数学成绩进行统计分析,•这种调查方法属于________,•其中8000名学生的数学成绩是__________,所抽取的300名学生的数学成绩是________,•每个学生的数学成绩是_________.6.某商场要进一批同种样式的衬衣,但无法确定哪种颜色的应该多进一点,请设计一个方案,帮助商场了解顾客对此种样式衬衣颜色的喜好情况.能力升级二、提高训练(每小题9分,共36分)1.指出下列调查中哪些是用普查方式,哪些是用抽样调查方式来收集数据的.(1)为了了解你所在班级的每个学生一周时间内在家做作业的时间,向全班同学做调查.(2)为了了解某校初一学生对“非典”病毒的预防情况,向全年级的同学做调查.(3)为了检查一批产品的质量(合格率情况),从中抽取100只进行检测.(4)在每个年级随机抽取20个学生做调查,了解星期天上网的时间.(5)老师批了一个班的作业,了解学生理解知识的情况.(6)为了了解某商品促销广告中所称中奖率的真实性,某人买了100•件该商品调查中奖率.(7)了解父母与孩子交流的时间量与孩子性格之间否有联系.(8)了解人们对保护海洋的知识.2.某市电视台为了更好地办好《生活百科》栏目,想了解市民最关心的生活问题是什么,他们决定派小李去调查10位市民,•小李来到机关办公大楼依次采访了5位工作人员,然后又去了附近的一所中学,采访了2位老师和3位同学,你认为小李这样选取样本合适吗?3.在你的手边有各种书籍,你随意拿出一本,随手翻到第一页,•数一下这页共有多少行字,每行共有多少个字,再看一下这本书共有多少页,•然后再用每行的字数乘以每页的行数再乘以页数,所得的数字精确到千位,这就是这本书的字数,•你再看一下这本书的版权页上的字数与你所统计的是否一样?如果不一样,想一想,为什么?(1)在这次统计中,你用的是普查还是抽样调查?(2)在这次统计中,总体是什么?样本是什么?4.假如你的一位朋友想知道你所在学校的学生对新教材的喜好情况,•请你帮忙在一天里给他回答,你能完成这个任务吗?你打算怎样做?三、探索发现(每小题9分,共18分)1.假如你想了解“我校女生会骑自行车的比例”,你在通过调查收集数据的过程中,(1)你的调查问题是什么?(2)你的调查对象是什么?(3)你要记录的数据是什么?(4)你将如何开展调查并得出结论?2.某班同学为了了解人们对使用一次性筷子的看法,•不同的数学活动小组采取了以下几种调查方法. 第一组:采访10位同学和10位老师.第二组:采访各自的家长和身边的亲戚朋友们.第三组:到各类用餐场所,选择不同层次的人进行采访.你认为哪个小组的做法比较科学?为什么?四、拓展创新(每小题9分,共18分)1.一家电脑生产厂家在某城市三个经销本厂产品的大商场进行调查,•结果显示该厂产品的销量占这三个大商场同类产品销量的40%,•由此该厂家在广告中宣传,他们的产品在国内同类产品的销量占40%,请你根据所学的统计知识,•判断该宣传中的数据是否可靠,请说明理由.2.小颖与小华想要了解在校学生上网吧的情况,•以便完成自己的研究生学习论文,小颖对自己班的学生进行了调查,情况如下表所示,小华调查了本校学生会、各班委会、团支部共260人,情况如图所示.(1)请你对小颖和小华的调查加以评价;(2)如果让你去调查,有没有更好的办法?不去72%偶尔去23%经常去5%中考演练※走近中考(不计入总分)(2004·成都)下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天器“神舟”五号零部件的检查,采用抽样调查的方式答案:本课导学广泛代表真实随堂测试一、1.D 2.C 3.C 4.A 5.抽样调查总体样本个体6.采用抽样调查的方式,此种问题答案不惟一,关键是设计的方案能够符合实际,并且可操作性较强.二、1.(1)普查.(2)普查.(3)抽样调查.(4)抽样调查.(5)普查.(6)抽样调查.(7)抽样调查.(8)抽样调查.2.不合适.不具有代表性,采访人员应从市内社会各个阶层来选取.3.(1)抽样调查.(2)总体是全书的字数,样本是抽测的那一页的字数.4.答案不惟一,既可以用普查,也可以用抽样调查,只要切合本校实际即可.三、1.(1)我校女生会骑自行车的情况.(2)全校的所有女生.(3)•会骑自行车的人数.(4)有可能的话对全校女生普查,也可以在各年级中抽取20名女生作出记录.2.第三组的方案比较合理,具有一定的代表性和广泛性.四、1.不可靠,因为该厂家选取的样本是某城市三个经销本厂产品的大商场,而没有对其他商场进行调查,样本数量太少,也不具有代表性.2.(1)小颖对本班学生进行调查,数据太少,不具有广泛性,同时也不具有代表性;小华对学生会、各班委会、团支部的学生进行调查,虽然人数较多,•但该类人群大多都是表现较好的同学,调查结果也不具有代表.(2)可以从各班找出学号为4的倍数的同学进行抽样调查.※C。
1. 两台机床同时生产直径为10mm 的零件,为了检验产品的质量,质量检验员从两台机床的产品中各抽出5件进行测量,结果(单位:mm )如下:如果你是质量检验员,在收集到上述数据后,你将利用哪些统计知识来判断这两台机床生产的零件的质量优劣?2. 质检部门为了检验两种灯泡的使用寿命,各抽出8只做试验,结果(单位:h )如下:哪种灯炮的使用寿命长?哪种灯泡的质量比较稳定?(可以借助计算器) 3. 某校八(1)班同学身高最高的是,最低的是,则这个班学生身高的极差是m . 4. 明明记录了自己最近5次的数学小测验和英语小测验的分数,成绩(单位:分)如下: 通过计算,知明明数学成绩的极差为,方差为;英语成绩的极差为,方差为.由此可以看出,明明的的成绩比较稳定.5. 一次科科技知识竞赛,两组学生成绩如下:如果你是这次竞赛的总评委,你准备把优胜奖颁给哪个小组(两个小组中只有一个获奖)?试用你所学的数据统计知识来说明你的理由.6. 有甲、乙两个样本,已知甲样本的方差是1.5,乙样本是21012--,,,,,那么( ) (A)甲的波动比乙的波动大 (B)甲的波动比乙的波动小(C)甲的波动大小与乙的波动大小相同 (D)无法比较两者的波动大小7. 要了解某市初三学生的身高在某一X 围内所占的比例,需要知道相应样本的( ) (A)平均数(B)方差(C)标准差(D)频数分布8. 我要拟派一名运动员参加市中学生运动会的百米赛跑,现对甲、乙两名运动员进行了10次选拔赛,其成绩(单位:s )如下:(1)哪个人的成绩较为稳定? s 的市中学生百米记录,该选谁参赛?9. 在六个点上对甲、乙两个良种水稻进行比较试验,平均亩产如下(单位:kg ): 甲(x ):550,560,550,545,555,560; 乙(y ):545,555,560,550,540,545. 试评论甲、乙两种水稻品质的优劣.10. 从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:(单位:cm ) 甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米的苗长得高? (2)哪种玉米的苗长得齐?11. 甲,乙二人比赛飞镖,二人所得的平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10.那么成绩较为稳定的是谁?12. 甲、乙两人进行射击比赛,在相同条件下各射击10次.他们的平均成绩均为7环,10次射击成绩的方差分别是:23S =甲,21.2S =乙.成绩较为稳定的是.(填“甲”或“乙”).第13题. 小X 和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小X 和小李两人中新手是.14. 有一个测量弹跳力的体育器材,如图所示,竖杆AC 、BD 的长度分别为200厘米、300厘米,300CD =A小X 小李2 4厘米.现有一人站在斜杆AB E 下方的点处,直立、单手上举时中指指尖(点F )到地面的高度为EF ,屈膝尽力跳起时,中指指尖刚好触到斜杆AB G 的点处,此时,就将EG EF y 与的差值(厘米)作为此人此次的弹跳成绩.(1) 设()()CE x EF a ==厘米,厘米,求出由x a y 和算出的计算公式;(2) 现有甲、乙两组同学,每组三人,每人各选择一个适当的位置尽力跳了一次,且均刚好触到斜杆,由所得公式算得两组同学弹跳成绩如下表所示,由于某种原因,甲组C 同学的弹跳成绩辨认不清,但知他弹跳时的位置为150205x a ==厘米,厘米,请你计算C 同学此次的弹跳成绩,并从两组同学弹跳成绩的整齐程度比较甲、乙两组同学的弹跳成绩.15. 已知一组数据为:82,84,85,89,80,94,76.则这组数据的标准差(精确到0.01)为( )16. 某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较22S S 乙甲、的大小( )A .22S S >乙甲B .22S S =乙甲C .22S S <乙甲D .22S S 乙甲≤17.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知 识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3,那么作为人事主管,你应该录用哪一位应聘者?为什么?(3)在(2)的条件下,你对落聘者有何建议?18. 在珠穆朗玛峰周围2千米的X 围内,还有较著名的洛子峰(海拔8516米)、卓穷峰(海拔7589米)、马卡鲁峰(海拔8463米)、章子峰(海拔7543米)、努子峰(海拔7855米)、和普莫里峰(海拔7145米)六座山峰,则这六座山峰海拔高度的极差为米.19. 已知样本12n x x x ,,,的方差是2,则样本12353535n x x x +++,,,的方差是( )A.11B.18C.23D.3620. X 老师为了从平时在班级里数学成绩比较优秀的王军、X 成两位同学中选拔一个参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:测验成绩记录表利用上表中提供的数据,解答下列问题:(1)填写完成下表(2)X 老师从测验成绩记录表中,求得王军10次测验成绩的方差233.2S =王,请你帮助X 老师计算X 成10次测验成绩的方差2S 张; 解:(3)请你根据上面的信息,运用所学的统计知识,帮助X 老师做出选择,并简要说明理由. 答: 答案:1.解:(1)先计算平均数.其平均数为:10x =甲mm ,10x =乙mm .由于x x =乙甲,因为平均直径反映不出两台机床生产出的零件的质量优劣.(2)再计算方差.其方差为222 3.6s s ==乙甲,. 由于22s s <乙甲,说明甲机床生产出的零件直径波动小.因此,从产品质量稳定性的角度考虑,甲机床生产的零件质量符合要求.(3)从众数来看,甲机床只有一个零件的直径是10mm ,而乙机床有3个零件的直径是10mm ,因此,从众数角度看,乙机床符合要求.2. 60W 灯泡的使用寿命长,40W 灯泡的质量比较稳定.4. 21,45.84,10;13.04,英语 5.解:甲组.因为甲、乙两组平均分一样,但甲的方差小于乙的方差,甲比较稳定,所以把优胜奖颁给甲组. 6. B 7. D 8.(1)乙(2)乙,甲9.解:每数减550得 甲(x ):0,10,0,5-,5,10; 乙(y ):5-,5,10,0,10-,5-.计算平均数1120120550533kg 663x x ==+=×,,1151(5)550549kg 666y y =-=-=×,.计算方差与标准差2s =30.56≈5.5kg x s =≈235.146.7kgy y s s ≈=≈∴甲种优质.10.解:(1)11(25414037221419392142)30030(cm)1010x =+++++++++==甲×,11(27164427441640401640)31031(cm)1010x =+++++++++==乙×, (2)22222221[(2530)(4130)(4030)(3730)(2230)(1430)10s =-+-+-+-+-+-+甲2222(1930)(3930)(2130)(4230)]-+-+-+-211(2512110049642561218181144)1042104.2(cm )1010=+++++++++==×, 222221[2(2731)3(1631)3(4031)2(4413)]10s =-+-+-+-乙××××211288128.8(cm )10==× ,22s s ∴<乙甲.答:乙种玉米的苗长得高,甲种玉米的苗长得整齐. 11.解:2212s s <,∴成绩稳定的是甲.12.乙14.解:(1)过A 作AM BD ⊥于点M ,交GE N ,AC CD GE CD ∵⊥,⊥,∴四边形ACEN 为矩形..200NE AC AC EF a FG y ====∴又∵,,,200GN GE NE a y =-=+-∴.200DM AC ==∵,300200100BM BD DM =-=-=∴.又GN BM ∵∥,∴△ANG ∽△AMB .∴200300100AN GN x a y AM BM +-==,即. ∴12003y x a =-+.(2)当115020515020520045()3x a y ===⨯-+=cm ,cm 时,cm .即甲组C 同学的弹跳成绩为45cm .1(363945)403x =++=甲∵,1(424434)403x =++=乙,7分22221[(3640)(3940)(4540)]143S =-+-+-=甲∴,2222156[(4240)(4440)(3440)]33S =-+-+-=乙. 22S S <乙甲∴,即甲组同学的弹跳成绩更整齐.15. A 16. A17.解:(1)专业知识方面3人得分极差是18-14=4 工作经验方面3人得分的众数是15 在仪表形象方面丙最有优势(2)甲得分:14×1020+17×720+12×320=29520 乙得分:18×1020+15×720+11×320=31820丙得分:16×1020+15×720+14×320=30720∴应录用乙(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在专业知识,和工作经验(对甲、丙而言只要从三方面讲都适当给分) 18. 1371 19. B20.(1)王军的众数为78X 成的中位数为80EM(2)解:22221(8680)(8080)(7580)10S ⎡⎤=-+-++-⎣⎦张11301310=⨯= (3)答:①王军、X 成两位同学平均成绩相同,但22S S <王张,说明X 成的成绩较稳定,所以选择X 成.或②王军、X 成两位同学的平均成绩相同,但在后三次测验中王军的成绩有较大的提高,所以选择王军.(说明:只要学生能够应用统计知识,叙述理由合理,均给满分,未从统计知识方面叙述可酌情给分.)。
第四章测试卷一、选择题(每题3分,共30分)1.下面的每组图形中,平移左图可以得到右图的一组是()2.下面的图形是天气预报使用的图标,从左到右分别代表“霾”“浮尘”“扬沙”和“阴”,其中是中心对称图形的是()3.下列图形中,既是轴对称图形又是中心对称图形的是()4.将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是() A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A′B′C′,则其旋转中心的坐标是()A.(1.5,1.5) B.(1,0) C.(1,-1) D.(1.5,-0.5)6.如图,在Rt△ABO中,∠ABO=90°,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A′B′O,那么点A′的坐标为()A.(-3,1) B.(-2,3) C.(-1,3) D.(-3,2)7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连接对称点的线段都被对称中心平分C.在平面直角坐标系中,一个点向右平移a个单位长度,则该点的纵坐标加aD.在平移和旋转图形中,对应角相等,对应线段相等且平行8.如图,在正方形ABCD中,点E为DC边上的点,连接BE,若△BCE绕C 点按顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD 的度数为()A.10°B.15°C.20°D.25°9.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC平移的距离为()A.4 B.5 C.6 D.810.如图所示的四个图形都可以看成是由一个“基本图案”经过旋转所形成的,则旋转角相同的图形为()A.①②B.①④C.②④D.③④二、填空题(每题3分,共24分)11.如图,已知△ABD沿BD方向平移到了△FCE的位置,若BE=12,CD=5,则平移的距离是________.12.在平面直角坐标系中,将点P(-2,1)先向右平移3个单位长度,再向上平移4个单位长度,得到点P′,则点P′的坐标是________.13.在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a +b的值为________.14.等边三角形至少绕中心旋转________才能与自身重合.15.如图,△ABC的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC绕点B 顺时针旋转90°,得到△A′BC′,则点A的对应点A′的坐标为________.16.如图,把边长为3 cm的正方形ABCD先向右平移1 cm,再向上平移1 cm,得到正方形EFGH,则阴影部分的面积为________.17.如图,在△AOB中,AO=AB,点A的坐标是(4,4),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′,B′在x轴上,则点O′的坐标是________.18.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后得到△AFB,连接EF,则有下列结论:①△AED≌△AEF;②BE+DC=DE;③S△ABE+S△ACD>S△AED;④BE2+DC2=DE2.其中正确的有________(填入所有正确结论的序号).三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,在正方形网格中,△ABC为格点三角形(即三角形的各顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B2C2,在网格中画出旋转后的△A1B2C2.20.如图,在Rt△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm,△ABC沿AB 方向平移至△DEF,若AE=8 cm,BD=2 cm.求:(1)△ABC沿AB方向平移的距离;(2)四边形AEFC的周长.21.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF =CE.求证:FD=EB.22.实践与操作:现有如图①所示的两种瓷砖,请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,且拼铺的图案是轴对称图形或中心对称图形(如图②所示).(1)分别在图③、图④中各设计一种与图②不同的拼法,使其中的一个是轴对称图形而不是中心对称图形,另一个是中心对称图形而不是轴对称图形;(2)分别在图⑤、图⑥中各设计一个拼铺图案,使这两个图案都既是轴对称图形又是中心对称图形,且互不相同(两个图案之间若能通过轴对称、平移、旋转变换相互得到,则视为相同图案).23.如图①,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF,BE.(1)线段AF和BE有怎样的数量关系?请说明理由;(2)将图①中的△CEF绕点C旋转一定的角度,得到图②,(1)中的结论还成立吗?作出判断并说明理由.24.如图,在平面直角坐标系xOy中,已知Rt△DOE中,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠B=∠OED,BC=DE.(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN(不写作法,保留作图痕迹);(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM的重合,画出△A′B′C′(不写作法,保留作图痕迹);(3)求OE的长.答案一、1.D 2.A 3.B 4.D 5.C6.C:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,所以OB′=OB=3,A′B′=AB=1.因为点A′在第二象限,所以点A′的坐标为(-1,3).故选C.7.B8.B9.A:∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.又∵∠CAB=90°,BC=5,∴AC=4.当点C落在直线y=2x-6上时,令2x-6=4,解得x=5,故线段BC平移的距离为5-1=4.10.D二、11.3.512.(1,5)13.-714.120°15.(4,1)16.4 cm217.(-4,0)18.①③④:由旋转的性质知:AF=AD,BF=CD,∠FBA=∠DCA,∠F AD =∠BAC=90°,∴∠F AE=∠EAD=45°.又AE=AE,∴△AED≌△AEF.∴DE=EF.∵∠EBF=∠FBA+∠ABE=∠ACD+∠ABE=90°,∴BE2+BF2=BE2+DC2=EF2=DE2.S△ABE+S△ACD=S△ABE+S△AFB>S△AED,BE +DC=BE+FB>EF=ED,∴正确的结论有①③④.三、19.解:(1)如图.(2)如图.20.解:(1)∵△ABC沿AB方向平移至△DEF,∴AD=BE.∵AE=8 cm,BD=2 cm,∴AD=8-22=3(cm),即△ABC沿AB方向平移的距离是3 cm.(2)由平移的特征及(1)得,CF=AD=3 cm,EF=BC=3 cm.又∵AE=8 cm,AC=4 cm,∴四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18(cm).21.证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.在△DOF和△BOE中,OD=OB,∠DOF=∠BOE,OF=OE,∴△DOF≌△BOE(SAS).∴FD=EB.22.解:(1)如图①是轴对称图形而不是中心对称图形.如图②是中心对称图形而不是轴对称图形.(2)如图③、图④、图⑤既是轴对称图形又是中心对称图形(画出其中的两个即可).:本题答案不唯一. 23.解:(1)AF =BE . 理由如下:∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE , ∠ACF =∠BCE =60°. 在△AFC 与△BEC 中,⎩⎨⎧AC =BC ,∠ACF =∠BCE ,CF =CE ,∴△AFC ≌△BEC (SAS). ∴AF =BE . (2)成立.理由:∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE , ∠ACB =∠FCE =60°. ∴∠ACB -∠FCB = ∠FCE -∠FCB , 即∠ACF =∠BCE . 在△AFC 与△BEC 中,⎩⎨⎧AC =BC ,∠ACF =∠BCE ,CF =CE ,∴△AFC ≌△BEC (SAS).精品文档用心整理∴AF=BE.24.解:(1)△OMN如图所示.(2)△A′B′C′如图所示.(3)设OE=x,则ON=x,过点M作MF⊥A′B′于点F,如图所示.由作图可知,∠ONC′=∠OED,∠A′B′C′=∠B,∵∠B=∠OED,∴∠ONC′=∠A′B′C′.∴B′C′平分∠A′B′O.∵C′O⊥OB′,易得△FB′C′≌△OB′C′.∴B′F=B′O=OE=x,FC′=OC′=OD=3.∵A′C′=AC=5,∴A′F=A′C′2-C′F2=52-32=4,∴A′B′=x+4,易知A′O=5+3=8.在Rt△A′B′O中,A′O2+B′O2=A′B′2,即82+x2=(4+x)2,解得x=6.∴OE=6.资料来源于收集整理仅供免费交流使用。
鲁教版数学八年级上册第四章《数据的收集与整理》整章水平测试题(C)一、试试你的身手(每小题3分, 共30分)1. 天泉村对村内所有1638个家庭的教育支出情况做了抽样调查, 调查的总体为, 个体为.2. 从某市不同职业的居民中抽取500户, 调查各自的年消费户额, 在这个问题中, 样本是.3. 一个样本由50个数据组成, 这50个数据分别落在五个小组内, 五个小组内数据的个数为2, 8, 15, 20, 5, 则第四个小组的频数为, 频率为.4. 从总体中取个, 个, 个组成一个样本, 则样本容量为, 样本平均数为.5. 在对100个数据进行整理的频数、频率分布表中, 各组的频数之和为, 各组的频率之和为.6. 小莹为了了解同学们对“随地乱扔废纸”的看法, 在校园中对随地乱扔纸屑的20名同学进行调查, 你认为她的调查方式是否合理?答: , 你认为可以采取的调查方式是. 抽样调查时应注意样本是有和.7. 在0.001, 0.011, 1.011, 1.010, 1.000, 0.101六个近似数中, 有效数字的个数是4的数有个, 它出现的频率是.8. 在100个数据组成的样本中, 极差为23厘米, 如果分成8个组, 那么每个组内的数据为厘米.9. 已知一个样本的方差, 那么这个样本的平均数是, 样本中数据的个数是.10. 一个射击运动员连续射靶5次, 所得的环数分别为8, 6, 10, 7, 9, 则这个运动员所得环数的极差为, 标准差为.二、相信你的选择(每小题3分, 共30分)1.为了了解一组数据在各个范围内所占比例的大小, 把这组数据恰当分组, 则落在各个小组里的数据的个数就是()A. 样本容量B. 众数C. 颁数D. 频率2.要了解一个城市八年级学生中, 身高在某一范围内的学生所占比例的大小, 需要求出样本的()A. 平均数B. 众数C. 方差D. 频率3. 利用一个具有统计功能的计算器可求直接求出()A. 平均数B. 众数C. 方差D. 频率4. 频数分布直方图中小长方形的高等于()A. 频率与组距的比值B. 相应各组的频数C. 相应各组的频率D. 频数与数据总数的比值5.样本101, 98, 102, 100, 99的标准差为()A. 0B. 1C. 2D.6. 针对甲、乙两组数据:甲组: 20, 21, 23, 25, 26,乙组:100, 101, 103, 104, 106.你认为下列说法正确()A. 乙组比甲组稳定B. 甲组比乙组稳定C. 甲乙两徂的稳定程度相同D. 无法比较两组数据的稳定程度7.为了了解某市6000名学生的初中毕业考试数学成绩的情况, 从中抽取了200名考生的成绩进行统计, 对于这个问题有以下四种说法()(1)这6000名学生的数学成绩是总体(2)200名考生是总体的一个样本(3)样本容量为200(4)每个考生是个体A. 1个B. 2个C. 3个D. 4个8.在学校对学生进行晨检体温测量中, 晶晶连续10天的体温与36℃的上下波动数据为0.2, 0.3, 0.1,0.1, 0, 0.2, 0.1, 0.1, 0, 0.1则在这10天中, 该生的体温波动数据中不正确的是()A. 平均数为0.12B. 众数为0.1C. 中位数为0.1D. 方差为0.029.为了调查一个学校学生参加课外体育活动的情况, 调查了其中40名学生每天参加课外体育活动的时间, 其中的40是这个问题的()A. 样本容量B. 一个样本C. 总体D. 个体10.某次数学测验, 抽取部分同学的成绩(得分为整数)整理制成统计图如图根据图示信息描述不正确的是()A. 抽样的学生共有50人B. 估计这次测试的及格率(60分为及格)是92%C. 估计优秀率(80分以上为优秀)是36%D. 60.5~70.5这一分数段的频率为10三、挑战你的技能(本大题共30分)1. (8分)为了了解全校学生的视力情况, 小颖、小丽、和小霞三个同学分别设计了一个方案:小颖: 检测出全班同学的视力, 以此推算出全校学生的视力.小丽: 在校医务室发现了10年前全校各班的视力检查表, 以此推算出全校学生的视力.小霞:在全校每个年级的一班中, 抽取学号为5的倍数的学生, 纪录他们的视力情况, 从而估计出全校学生的视力情况.这三种做法哪一种比较好?为什么?从这个事例中, 你要想得到比较准确的估计结果, 在收集数据时要注意些什么?2.148 151 154 155 157 158 160 161 162 164(10171.5~175.5 4 0.08175.5~179.5 2 0.04合计50 1.00请回答下列问题:(1)样本数据中, 身高的众数、中位数各是多少?(2)填写频率分布表中末完成的部分;(3)若该校八年级有840名学生, 请你估计该年级学生身高在172cm及其以上的人数.3. (6分)分别计算下列三组数据的方差, 并研究三组数据方差的关系.(1)1, 2, 3, 4, 5;(2)11, 12, 13, 14, 15;(3)10, 20, 30, 40, 50.4. (6分)为了试验某种建筑材料的抗压能力, 抽取10件进行试验, 测得数据如下(单位: kg/cm2): 407, 511, 427, 496, 508, 473, 449, 461, 483, 485如果规定此种建筑材料的抗压能力的标准差不能超过35kg/cm2, 问所试验的建筑材料是否符合要求?四、拓广探索(本题10分)在某旅游景区上山的一条小路上, 有一些断断续续的台阶, 图2是其中的甲、乙两段台阶路的示意图. 请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走, 需要重新整修上山的小路, 对于这两段台阶, 在台阶数不变的情况下, 请你提出合理的整修建议.参考答案一、1. 天泉村村内1638个家庭的教育支出情况, 天泉村村内每个家庭的教育支出情况2. 500户居民的年消费额3.20, 0.44. ,5. 100, 16. 不合理, 抽样调查, 代表性, 广泛性7.3, 0.58.39. 8, 1310.4环,二、1. C 2. D 3. A 4. B 5. D 6. A7. B8. D9. A10. D三、1. 小颖的方法不具有代表性, 不合适;小丽的方法是已经过时的信息, 不具有真实性, 也不合适;小霞的方法是具有代表性、随机性、合适. 在收集数据时, 要注意数据的随机性, 代表性、可靠性等.2. (1)167cm, 164cm;(2)16, 0.32;7, 0.14;(3)大约101人.3. (1);(2);(3).一组数据每个数据都加上同一个数, 方差不变, 一组数据, 每个数据都乘以同一个数, 方差变为原来的方差乘以这个数的平方.4. 建筑材料符合要求.四、(1)相同点: 两段台阶路段高度的平均数都是15;不同点: 两段台阶路高度的中位数、方差和极差均不相同;(2)甲路段走起来更舒服一些, 因为它的台阶高度的方差小;(3)每个台阶高度均为15cm(原平均数), 使得方差为0.。
鲁教版(五四制)八年级数学上册第四章综合测试卷一、选择题(每题3分,共36分)1.在下面四个选项的图形中,不能由如图所示的图形经过旋转或平移得到的是()2.【2022·郴州】下列图形既是轴对称图形又是中心对称图形的是()3.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,6),B(-3,-3).将线段AB平移后A点的对应点是A′(10,10),则点B的对应点B′的坐标为()A.(10,10)B.(-3,-3)C.(-3,3)D.(7,1)4.【2022·遵义】在平面直角坐标系中,点A(a,1)与点B(-2,b)关于原点成中心对称,则a+b的值为()A.-3 B.-1 C.1 D.35.如图,将△ABC绕点A逆时针旋转90°得到△ADE,点B,C的对应点分别为D,E,若AB=1,则BD的长为()A.1 B. 2 C.2 D.2 26.如图,在平面直角坐标系xOy中,△ABC与△A1B1C1是中心对称图形.则对称中心的坐标是()A.(1,1) B.(1,0) C.(1,-1) D.(1,-2)7.【2023·泰安新泰市月考】如图,△ADE与△CDB关于点D成中心对称,连接AB,以下结论错误的是()A.AD=CDB.∠C=∠EC.AE=CBD.S△ADE=S△ADB8.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是()A.(0,1) B.(0,-1) C.(1,0) D.(-1,0)9. 如图是一块长方形ABCD的场地,长AB=99 m,宽AD=41 m,从A,B两处入口的路宽都为1米,两小路汇合处路口宽为2 m,其余部分种植草坪,草坪的面积为()A.3 783 m 2B.3 880 m 2C.3 920 m 2D.4 000 m 210.如图,边长为3的等边三角形ABC沿BC所在直线向右平移,若平移的距离为1,则公共部分△OB′C的面积为()A. 3B.32 3 C.2 3 D.3 311.如图,△ABC是等边三角形,点P在△ABC内,P A=2,将△P AB绕点A 逆时针旋转得到△P1AC,则P1P的长等于()A.2 B. 3 C.32D.112.【2023·济宁任城区月考】如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.∠ADC=60°B.∠BCE=60°C.AE平分∠BACD.AE⊥BC二、填空题(每题3分,共18分)13.【母题:教材P98随堂练习T1】如图所示的图案,可以看作是一个四边形(阴影部分)按顺时针方向通过3次旋转得到的,每次旋转的角度是________.14.【2023·德州禹城市期中】如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转180°得到点P′,则点P′的坐标是________.15.如图,射线AC,BD分别与直线l交于点A,B.现将射线AC沿直线l向右平移过点B,若∠1=46°,∠2=72°,则∠3的度数为________.16.如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O逆时针旋转得到线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=________.17.如图,在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),AO=AB,将△AOB平移得到△A′O′B′,使得点A′在y轴上.点O′,B′在x 轴上.则点B′的坐标是________.18.一副三角板按如图所示叠放在一起,∠C=60°,∠OAB=45°,其中点B,D重合,若固定三角板AOB,将三角板ACD绕着公共顶点A顺时针旋转一周后停止,当旋转角为________时,CD∥AO.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(-1,4),B(-3,1).(1)画出线段AB向右平移4个单位长度后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.20.【母题:教材P112习题T2】如图,在6×6的网格中已经涂色了三个小正方形,请按下列要求画图.(1)在图①中涂色一个小正方形,使涂色的四个小正方形组成一个轴对称图形.(2)在图②中涂色一个小正方形,使涂色的四个小正方形组成一个中心对称图形.21.如图,△ABC平移后得到△DEF.(1)若∠A=80°,∠E=60°,求∠C的度数;(2)若AC=BC,BC与DF相交于点O,则OD与OB相等吗?说明理由.22.如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.23.△ABC在平面直角坐标系中如图所示,每个顶点都在格点上.(1)求△ABC的面积;(2)若△ABC中任意一点P(x0,y0)经平移后的对应点为P1(x0+3,y0+4),请画出△ABC平移后得到的△A1B1C1,并写出点A1,B1,C1的坐标;(3)在x轴上是否存在点Q,使以A1,B,Q三点为顶点的三角形的面积为3?若存在,请直接写出点Q的坐标;若不存在,请说明理由.24.已知△ABC是等腰直角三角形,∠ACB=90°,点D是平面内任意一点,CD绕着点C逆时针旋转90°到CE.(1)如图①,若D为△ABC内一点,求证:AD=BE;(2)如图②,若D为AB边上一点,AD=5,BD=12,求DE的长.答案一、1.A 2.B3.D 【点拨】由点A (0,6),A ′(10,10)可知平移方式是向右平移10个单位长度,向上平移4个单位长度,∴点B (-3,-3)向右平移10个单位长度,向上平移4个单位长度得到B ′(-3+10,-3+4),即(7,1). 4.C5.B 【点拨】∵将△ABC 绕点A 逆时针旋转90°得到△ADE ,∴AD =AB ,∠BAD =90°, ∴△ABD 是等腰直角三角形. 由勾股定理,得BD =2AB . ∵AB =1,∴BD = 2.6.C 【点拨】连接AA 1,CC 1,两线交点即为对称中心. 7.B 【点拨】∵△ADE 与△CDB 关于点D 成中心对称,∴AD =CD ,BD =ED ,AE =CB ,∠E =∠CBD , ∵BD =ED ,∴S △ABD =S △ADE .8.C 【点拨】如图,可知B ′的坐标为(1,0).9.B 【点拨】(99-2)×(41-1)=97×40=3 880(平方米),∴种植草坪面积为3 880平方米.10.A 【点拨】如图,过点O 作OH ⊥BC 于点H ,∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,由平移的性质可知BB′=1,∠A′B′C′=∠ABC=60°,∴B′C=3-1=2,△OB′C为等边三角形,∴OC=2,∴OH=3,∴S△OB′C =12×2×3= 3.11.A【点拨】∵△ABC是等边三角形,∴AC=AB,∠CAB=60°.∵将△P AB绕点A逆时针旋转得到△P1AC,∴AP1=AP,∠CAP1=∠BAP,∴∠CAB=∠CAP+∠BAP=∠CAP+∠CAP1=60°,即∠P AP1=60°,∴△APP1是等边三角形,∴P1P=P A=2.12.D【点拨】由旋转的性质可知∠EDC=∠BAC=120°,∴当点A,D,E在同一条直线上时,∠ADC=180°-∠EDC=60°,A正确;由旋转的性质可知△BAC≌△EDC,∴∠BCA=∠ECD,CA=CD.又∵∠ADC=60°,∴△ACD为等边三角形,∴∠ACD=60°.∵∠BCA=∠ECD,∴∠BCE=∠BCD+∠ECD=∠BCD+∠BCA=∠ACD=60°,B正确;∵△ACD为等边三角形,∴∠DAC=60°.∵∠BAC=120°,∴∠BAE=∠BAC-∠DAC=60°,∴∠BAE=∠DAC,∴AE平分∠BAC,故C正确.二、13.120°【点拨】每次旋转了360°÷3=120°.14.(-2,-3) 15.62°16.245【点拨】如图,连接OB,过点A作AC⊥OB交OB的延长线于点C.∵l为OA的垂直平分线,∴AD=12OA=4,∠ADB=90°.在Rt△ABD中,BD=AB2-AD2=52-42=3.由旋转可知,点A′到射线ON的距离d=AC,∵12OB·AC=12OA·BD,∴AC=OA·BDOB=245.17.(2,0)【点拨】∵AO=AB,点A的横坐标为2,∴OB=4,点B的坐标为(4,0),要想让点O′,B′还在x轴上,只能左右平移.∵点A的坐标是(2,2),移动到y轴上时,坐标变为(0,2),说明点A向左平移了2个单位长度,即横坐标减2,∴点B也遵循点A的移动规律,则点B′的坐标是(2,0).18.75°或255°【点拨】如图①,当CD在OA的左侧,CD∥AO时,旋转角为45°+30°=75°;如图②,当CD在OA的右侧,CD∥OA时,旋转角为45°+180°+30°=255°.三、19.解:(1)如图,线段A1B1即为所求.(2)如图,线段A2B2即为所求.20.解:(1)如图①所示.(答案不唯一)(2)如图②所示.(答案不唯一)21.解:(1)∵△ABC平移后得到△DEF,∴∠ABC=∠E=60°.在△ABC中,∠C=180°-∠A-∠ABC=180°-80°-60°=40°.(2)OD=OB.理由如下:∵AC=BC,∴∠A=∠ABC.由平移的性质得∠A=∠EDF,∴∠ABC=∠EDF,∴OD=OB.22.(1)解:∵将△ABC绕点A顺时针旋转一定角度得到△ADE,∴AD=AB.∵∠B=50°,∴∠ADF=∠B=50°.∵AF⊥BC,∴在Rt△ADF中,∠DAF=90°-50°=40°.(2)证明:∵将△ABC绕点A顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.∴∠C=∠E.又∵∠E=∠CAD,∴∠C=∠CAD.∴AD=CD.23.解:(1)△ABC 的面积=3×4-12×3×1-12×3×2-12×4×1=5.5.(2)如图,△A 1B 1C 1即为所作.A 1(2,3),B 1(5,5),C 1(1,6).(3)存在.Q 的坐标为(-1,0)或(5,0).24.(1)证明:∵△ABC 是等腰直角三角形,∴∠ACB =90°,AC =BC ,∵CD 绕着点C 逆时针旋转90°到CE ,∴∠DCE =90°,CD =CE ,∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE ,在△ACD 和△BCE 中,⎩⎨⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS),∴AD =BE .(2)解:∵△ABC 是等腰直角三角形,∴∠A =∠ABC =45°,∵△ACD ≌△BCE ,∴∠CBE =∠A =45°,AD =BE ,∴∠ABE =∠ABC +∠CBE =90°,在Rt △BDE 中,由勾股定理得BD 2+BE 2=DE 2, ∴DE 2=BD 2+BE 2=BD 2+AD 2=122+52=169, ∴DE =13.。
期末复习综合检测试题学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是( )A. 360x =480140−xB. 360140−x=480xC. 360x +480x=140 D. 360x−140=480x2.若实数a、b满足a+b=5,a2b+ab2=−10,则ab的值是( )A. −2B. 2C. −50D. 503.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是( )A. 4−6小时B. 6−8小时C. 8−10小时D. 不能确定4.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是( )A. AD=BCB. CD=BFC. ∠A=∠CD. ∠F=∠CDF5.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )A. 15B. 18C. 21D. 246.某组数据的方差s2=15[(x1−4)2+(x2−4)2+⋯+(x5−4)2],则该组数据的总和是( )A. 20B. 5C. 4D. 27.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )A. 甲、乙两班的平均水平相同B. 甲、乙两班竞赛成绩的众数相同C. 甲班的成绩比乙班的成绩稳定D. 甲班成绩优异的人数比乙班多8.如图,在▱ABCD中,AE平分∠BAD,交CD边于E,AD=3,EC=2,则AB的长为( )A. 1B. 2C. 3D. 59.如图,已知在▱ABCD中,E,F是对角线BD上的两点,则以下条件不能判定四边形AECF为平行四边形的是( )A. BE=DFB. AF⊥BD,CE⊥BDC. ∠BAE=∠DCFD. AF=CE10.已知,平行四边形ABCD在直角坐标系内的位置如图所示,且AB=2,BC=3,∠ABC=60°,点C在原点,把平行四边形ABCD沿x轴正半轴作无滑动的连续翻转,经过505次翻转后,点A的坐标是( )A. (25252,√3) B. (25212,32√3) C. (1008,√3) D. (1008,32√3)二、填空题(本大题共8小题,共24分)11.分解因式:5x2−5y2=______ .12.若一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的方差为______.13.已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为.14.若关于x的方程x+1x−1+2=ax−1无解,则a的值是.15.已知关于x的分式方程2x−2+mxx2−4=0有增根,且m≠0,则m=.16.如果一组数据a1,a2,⋯,a n的平均数是7,方差是2,那么一组新数据2a1,2a2,⋯,2a n的平均数是,方差是.17.如图,直角三角形ABC,AC=3,BC=4,AB=5,点C、A在直线l上,将△ABC绕着点A顺时针转到位置①,得到点P1,点P1在直线l上,将位置①的三角形绕点P1顺时针旋转到位置②,得到点P2,点P2在直线l上,…,按照此规律继续旋转,直到得到点P2022,则AP2022=.18.如图,在△ABC中,∠BAC=90∘,AB=4,AC=6,点D,E分别是BC,AD的中点,AF//BC交CE的延长线于点F,则四边形AFBD的面积为.三、计算题(本大题共2小题,共14分)19.解方程:(1)1x−2+1=2x2x+1;(2)7x2+x+3x2−x=4x2−1.20.把下列各式分解因式:(1)8a3b2−12ab3c+6a3b2c;(2)5x(x−y)2+10(y−x)3;(3)(a+b)2−9(a−b)2;(4)−4ax2+8axy−4ay2;(5)(x2+2)2−22(x2+2)+121.四、解答题(本大题共7小题,共52分。
数据的收集与整理单元检测试题
一、试试你的身手(每小题3分,共24分)
1.为了一定的目的而对考察对象进行的 称为普查;其中所要考察对象的全体称为总体,组成总体的每一个考察对象称为 .
2.为了解一批电器开关的使用寿命,从中抽取30个做实验,样本是 . 3.有一组数据,个数为80,分组后落在某一范围内的频数是5,则该组的频率是 .
4.将50个数据分成3组,其中第一组和第三组的频率之和是0.7,则第二组的频数是 .
5.数据7,8,9,10,11的极差是 ,方差是 ,标准差是 . 6.一组数据的方差是222212301
[(2)(2)(2)]30
s x x x =
-+-++-,则这组数据的个数
是 ,平均数是 .
7.已知一组数据12n x x x ,,,的方差是a ,那么数据12x -,22x -,…,2n x -的方差是 。
8.图1是某班50名学生身高的频数分布直方图,从左边起第一、二、三、四个小长方形的高的比是1∶3∶5∶1,那么身高150cm (不含150cm )以下的学生有 个. 二、相信你的选择(每小题4分,共32分)
1.某超市为考察1000箱梨的等次,从中抽取50箱进行检查,下面说法正确的是( ) A .总体是指1000箱梨 B .总体是指1000箱梨的等次 C .个体是指每箱梨 D .样本是指50箱梨 2.为了解某县20~30岁青年人的文化水平(用学历来反映),采取了抽样调查的方式获得结果,比较合理的是( )
A .抽查该县20~30岁的在职干部
B .抽查该县城关地区20~30岁的青年
C .随机抽查该县所有20~30岁的青年共500名
D .抽查该县某镇的所有20~30岁的青年
3.为了感受塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果是(单位:个):33,25,28,26,25,31.如果该班有45名学生,根据提供的数据,请你估计全班同学各家本周共丢弃塑料袋的数量为( ) A .900个
B .1080个
C .1800个
D .1260个
4.一组数据:18,21,29,23,18,20,22,19,23,24,21,19,24,22,17,22,23,19,21,17,对这些数据进行适当分组,其中20~22这一组的频数与频率是( ) A .5,0.25 B .6,0.3 C .8,0.4 D .7,0.35
5.已知一组数据1,3,2,5,x 的平均数是3,则数据的标准差是( ) A
B .2 C
D .10
6.某少年军校准备从甲、乙、丙三个同学中选拔一人参加全市射击比赛,他们在选拔
赛中射靶10次的平均环数是8.3x x x ===甲乙丙,方差分别是2 1.5s =甲
,2 2.8s =乙,2
2.3s =丙,那么根据以上提供的信息,你认为成绩稳定的同学是( )
A .甲
B .乙
C .丙
D .不能确定
7.一次有41名学生参加的语、数、英三科竞赛,下表表示各学科不及格学生人数:
则各学科都及格的人数为( )
A .26
B .25
C .20
D .15
8.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是3,方差是1,那么数据132x -,2
32x -,
332x -,432x -,532x -的平均数和方差分别为( )
A .4,3
B .4,
1
2
C .7,1
D .7,9
三、挑战你的技能(本大题共44分) 1.(本题10分)某专业户承包荒山种了44棵苹果树,现已进入第三年收获期,收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克):35,35,34,39,37.
(1)在这个问题中,总体、个体、样本各指什么?
(2)试根据样本平均数去估计总体情况,你认为该专业户大约可收获苹果多少千克?若市场上苹果售价为每千克5元,则该专业户的苹果收入可达多少元?
2.(本题10分)某校八年级(2)班分甲、乙两组各10名学生进行法律知识抢答,共有10道选择题,答对8道题(包含8道题)以上为优秀,各组选手答对题数如下表:
(1)请你填上表中乙组选手的相关数据;
(2)根据你所学的统计知识,利用上述数据从不同方面评价甲、乙两组选手的成绩.
3、(12分)某班进行数学测验,将所得成绩(得分取整数)进行整理后分成5组,并绘制成频数分布直方图,请你结合直方图所提供的信息,回答下列问题: (1)该班共有多少名学生?
(2)80~90这一分数段的频数、频率是多少? (3)这次数学成绩的中位数落在哪个分数段内? (4)从左到右各小组的频率比是多少?
4(12分)为了迎接春运,某车站改进了服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t (简称购票用时,单位为分钟).下面是这次调查
统计分析得到的频率分布表和频数分布直方图.请你解答下列问题:
(1)这次抽样的样本容量是多少?
(2
)在表中填出缺失的数据并补全频数分布直方图. (3)旅客购票用时的平均数可能落在哪一小组?
(4)若每增加一个购票窗口可以使平均购票用时降低5分钟,则要使平均购票用时不超过10分钟,请你估计一下最少需增加几个窗口?
答案一、1.全面调查,个体
2.30个电器开关的使用寿命
3.
1 16
4.15
5.3,1,1
6.30,2
7.a,4a
8.5,60
二、1.B 2.C 3.D 4.D 5.A 6.A 7.A 8.A
三、1.(1)44棵树苹果产量、每棵树苹果重量、5棵树苹果重量;(2)1584千克;7920元.
2.(1)平均数:8,众数:7,中位数:8,方差:1,优秀率:60%;(2)略.
3.(1)甲:601.6cm,乙:599.3cm;
(2)65.84,284.21;
(3)甲成绩稳定;甲的平均成绩比乙好;乙比较有潜力;
(4)为了夺冠应选甲参加比赛,为了打破记录应选乙参加比赛.
四、1.(1)50;(2)12,0.24;(3)落在70~80分数段内;(4)从左到右各小组的频率的比为:2∶5∶9∶6∶3
2.(1)100;(2)50,0.10,略;(3)第三组;(4)2个窗口.。