盘式永磁电机齿槽转矩的分析与抑制
- 格式:pdf
- 大小:463.05 KB
- 文档页数:3
齿槽转矩形成的原因、对电机性能的影响和不同削弱方法的对比分析一、齿槽转矩形成的原因及影响齿槽转矩Cogging torque,是永磁电机的固有现象,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向产生的转矩。
它的产生来自于永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩[1]。
无刷直流电动机电枢铁心为了安放定子绕组必定存在齿和槽,由于齿槽的存在,引起气隙的不均匀,一个齿距内的磁通相对集中于齿部,使得气隙磁导不是常数。
当转子旋转时,气隙磁场的贮能就发生变化,产生齿槽转矩,这个转矩是不变的,它与转子位置有关,因而随着转子位置发生变化,就引起转矩脉动[2]。
它与转子的结构尺寸、定子齿槽的结构、气隙的大小、磁极的形状和磁场分布等有关,而与绕组如何放置在槽中和各相绕组中馈入多少电流等因素无关。
齿槽转矩会使电机转矩波动,产生振动和噪声,出现转速波动,使电机不能平稳运行,影响电机的性能。
同时使电机产生不希望的振动和噪声。
在变速驱动中,当转矩脉动频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。
齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。
二、不同削弱方法及对比分析(1)斜槽或斜极:定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机[3]。
实践证明,斜槽使电机电磁转矩各次谐波的幅值均有所减小。
而斜槽或斜极引起的绕组反电动势的币弦化将会增大电磁转矩纹波。
斜极由于加工复杂、材料成本高而在工程上很少采用。
(2)磁极分块移位:由于转子斜极会使成本大大增加,并且加工工艺也会变得复杂,因而应用中往往采用磁极分块移位法,由通过计算得到磁极极弧系数,然后再把它优化,最后把几段分块磁钢沿周向错开一定角度安放来近似等效成一个连续的磁极[4],通常有两种移位方法:连续移位和交差移位,前者消除的是磁钢分块数目整数倍以外的所有齿槽转矩谐波成分,后者只能消除齿槽转矩的奇数次谐波,对偶数次谐波没有影响。
0 引言电机是由机械能与动能转换的媒介,其实现了能量的转换,而能量转换过程中会有损耗,因此,高效能的电机成为人们研究的重点,永磁电机相对于其他电机的效率高使其备受青睐,但齿槽转矩是永磁同步电机研究的重点和难点。
为了抑制永磁同步电机齿槽转矩波动,采用对电机结构进行改进成为人们研究的热点。
而通过对永磁同步电机的结构进行改进降低齿槽转矩,目前结构的改变主要有:定子齿上设置槽口的设置槽口来降低齿槽转矩(JP特开平3-161325A),转子的极槽的配合及辅助槽来降低齿槽转矩(GB2288919B),在转子上设置柱状磁极,且磁极为斜磁极与定子辅助槽同时来降低齿槽转矩(JP 特开平8-298735A)等。
1 专利状况分析为充分掌握永磁同步电机齿槽转矩的削弱技术的整体情况,下文将鱼鱼全球专利状况和中国壮丽状况两个层面对永磁同步电动机降低齿槽转矩技术的专利申请整体状况进行分析,截止2015年11月,针对永磁同步电机齿槽转矩相关技术,在德温特世界专利索引数据库和永磁同步电机齿槽转矩抑制方法专利分析李娟娟 武树杰 国家知识产权局专利局专利审查协作江苏中心 江苏苏州 215000世界专利文摘库数据库及中文摘要数据库中检索并分析。
1.1 全球专利状况分析20世纪60年代和80年代,稀土钴永磁材料和钕铁硼永磁材料的问世,永磁同步电机得到了发展,同时其齿槽转矩问题也逐渐成为热点问题,其中日本占据了总申请量65%的份额,远远超出了其他国家和地区原创申请量的总和,这充分反映了日本在永磁同步电机降低齿槽转矩技术领域已占有绝对的技术领先优势,这跟日本对能源的重视以及资金投入、政策扶植有很大关系,全球申请量排名第二、三的国家或地区分别是德国,占总申请量的12%,以及美国,占总申请量的9%,排名第二、三的国家或地区的申请量所占份额与排名第一的日本相比存在巨大差距,这表明永磁同步电机降低齿槽转矩技术作为一项技术难度较高的技术,除日德美这样技术与经济实力较强的国家外,其他国家还未敢轻易染指。
永磁同步电机齿槽转矩抑制方法专利分析摘要:永磁同步电机的齿槽转矩是其工作过程中的一个难点,在传统控制方法下难以有效地抑制。
本文提出一种永磁同步电机齿槽转矩抑制方法的专利分析,该方法通过优化电机的控制策略和设计齿槽形状,有效地减小了转矩脉动,提高了电机的工作效率和稳定性。
关键词:永磁同步电机,齿槽转矩,抑制方法,控制策略,齿槽形状正文:永磁同步电机是一种新型的高效、高功率密度电机,其具有体积小、重量轻、噪音低、效率高等优点,因此在各种工业应用场景中得到广泛应用。
然而,在永磁同步电机工作过程中,由于齿轮轮廓的不规则性、电磁力作用等因素,往往会产生齿槽转矩,导致电机的性能和运行稳定性受到威胁。
传统的齿槽转矩抑制方法通常采用PI或者PD控制器,或者采用机械去振式的方法,但是这些方法在效果上都有一定的局限性。
近年来,随着控制理论和仿真技术的不断发展,研究者们提出了一些新的方法来解决永磁同步电机齿槽转矩的问题。
本文提出的永磁同步电机齿槽转矩抑制方法,主要基于两个方面的内容:控制策略和齿槽形状的优化设计。
在控制策略方面,本文采用了一种新的算法,即基于模型预测控制的方法。
该方法能够通过对电机动态模型进行精确建模和预测,自适应地调整电机的电流和功率,以减小齿槽转矩的影响。
通过仿真实验和实际测试,证明了该方法较传统方法具有更好的抑制效果和稳定性。
在齿槽形状方面,本文采用了一种新的设计方法,即采用非整数齿比的齿轮装置。
该方法能够通过优化齿轮齿槽形状和齿比,调节齿轮的传动比例,降低齿槽转矩的能量密度。
通过对不同齿比、不同齿轮齿槽形状的仿真实验,证明了该方法具有更好的抑制效果和可操作性。
综合以上两个方面的内容,本文提出的基于模型预测控制和非整数齿比齿轮装置的永磁同步电机齿槽转矩抑制方法,较传统方法具有更好的抑制效果、控制精度和工作稳定性。
本方法可以应用到不同电机控制系统及实际应用工况当中,具有广泛的推广应用价值。
同时,该方法的专利性质也保障了创新经济的利益。
一种优化齿槽转矩抑制永磁同步电机振动和噪声的方法
振动和噪音是永磁同步电机应用过程中的普遍问题,是损害电机性能的主要因素。
高质量齿槽转矩是降低永磁同步电机振动和噪音的关键,因此有必要开发出一种能够有效优化永磁同步电机齿槽转矩的方法。
本文提出了一种用于优化齿槽转矩抑制永磁同步电机振动和噪声的新方法,可有效改善传动系统性能。
该方法的核心是针对齿槽结构设计一种新型柔性体,用以改变永磁同步电机输出转矩的分布和相关参数,有效地减少振动和噪声。
该柔性体的结构是一种螺旋弹性变形体,其齿槽外径与普通齿槽相似,与齿轮的齿距一致,但中部基本上是一个弧形结构,形状类似于高速转子的轴承座。
这种弹性体的介电性能介于空气和金属之间,使齿槽转矩均匀分布。
它的介电性能能有效改善传动系统的阻尼特性,使转矩中间值大大降低,从而减少电机的振动和噪声。
此外,该方法还改进了电机结构设计,使新型电机具有更高的功率密度和更低的电力损耗。
首先,采用了更大尺寸的有效容积,增加了电机的性能系数;其次,采用了新型的材料集成技术,减少了电机部件的重量;最后,使用了高效率的电机控制系统,使电机输出能量更高。
综上,该方法主要是结合传统齿槽结构和电机结构设计,提出了一种新型柔性体结构,基于该结构,可有效优化永磁同步电机齿槽转矩,抑制振动和噪声,提高电机效率,改善传动系统性能。
该方法为电机设计提供了一种新的思路,可以为电机的发展提供重要指导。
永磁同步电机齿槽转矩分析及削弱措施永磁同步電机由于槽定子铁芯和永磁体之间相互作用会出现齿槽转矩,会产生非常大的噪音和振动,而且会对系统的控制精度造成影响,需要对永磁同步电机齿槽转矩进行分析。
文章首先对永磁同步电机齿槽转矩的原因进行了分析,然后对辅助齿高度和辅助齿宽度对齿槽转矩造成的影响进行了分析,并进行了验证。
标签:永磁同步;齿槽转矩;削弱措施永磁电机的齿槽矩是转子永久磁体和铁芯齿槽相互作用下产生的磁阻转矩。
主要是因为定子齿槽和永磁转子磁极处于不同位置时,主磁路磁导会产生变化,即便是在电动绕组不通电的情况下,受齿槽转矩的影响,电机转子依然有停在圆周若干位置的趋势。
当电动机发生旋转时,齿槽转矩会表现为附加的脉动转矩虽然不会减少或者增加电动机的平均转矩,但是会引起噪音、电机振动、速度波动等,对电机定位的伺服性能和精度造成了比较大的影响,特别是在低速时产生的影响更大,为了提高电机运行的稳定性,需要解决齿槽转矩问题。
1 齿槽转矩出现的原理齿槽转矩主要是因为自身的物力结构产生的,永磁电机在实际运行过程中,齿槽矩会导致电机输出转矩产生脉动,并引起噪音和振动。
在实际运行过程中,当永磁磁极中心线和定子槽的中心线相互重叠,那么磁通在定子齿两侧产生的引力会互相抵消,这时齿槽转矩值为0。
而当永磁体逆时针旋转时,切向分力无法完全抵消掉,会产生一个齿槽转矩值。
定子齿和永磁磁极之间四种相对位置如图2所示。
在处于图1(a)的位置时,永磁体会和定子齿中心对齐,在转子齿侧面会产生相同的磁感应强度,并且受到的引起切向分量也一致,方向相反,会相互抵消掉。
将转子逆时针转动时如(b)所示,此时转子齿中心线会超前于磁极中心线,转子齿右半部分的磁场强度会高于转子齿左半部分的磁場强度,受到的引力切向量也不为零,受力方向和转子转动方向相反,表现为负值。
当定子磁极中心线和转子齿中心线之间的夹角变大时,会使和该齿临近齿的左半部分的磁感应强度变大,如(c)所示。
永磁同步电机齿槽转矩分析与控制总结齿槽转矩是永磁电机固有的特性,它会使电机产生转矩脉动,引起速度波动、振动和噪声,当转矩脉动的频率与电机定、转子或端盖的固有频率相等时,电机产生共振,振动和噪声会明显增大。
齿槽转矩也会影响电机的低速性能和控制精度。
1.齿槽转矩定义:转子在旋转过程中,定子槽口引起磁路磁阻变化, 转子磁通与定子开槽引起的气隙磁导(磁阻的倒数)交互作用在圆周方向产生的转矩为齿槽转矩。
齿槽转矩也称定位转矩,它的产生来自永磁体与电枢齿间的切向力,使转子有一种沿着某一特定方向与定子对齐的趋势.2.齿槽转矩影响因素:齿槽形状、磁极极弧系数、永磁体形状、极槽配合、气隙、磁场强度等.3.齿槽转矩每机械周期齿槽转矩周期数:N co=LCM(Z,2p),Z为槽数,2p为极数,LCM表示最小公倍数.4.齿槽转矩一个周期机械角度为:θsk=360°/N co5.齿槽转矩基波频率为: f c=N co n s=N co fpn s=fp(r/s)为同步转速,p为极对数,f为电源频率.6.齿槽转矩的通用表达式:T co=∑T n∞n=1sin(nN coθ+ϕn)n=1时对应的齿槽转矩的基波幅值为T1, θ为转子机械角位置.7.齿槽转矩的计算:齿槽转矩可以通过计算响应区域的磁能积得到,T ec=dW cdθ,式中,磁共能:W c=∫Bθ22μ0d(υr)(J)对气间隙区域应用麦克斯韦张力张量法计算齿槽转矩,有:T ec=LL gμ0∫rB nS gB t ds,L为有效转子长度;L g为气隙长度;μ0为自由空间磁导率;r为虚拟半径;B n和B t为气间隙磁通的径向和切向分量;S g为气隙表面积.8.降低齿槽转矩措施:1)无槽绕组:采用无槽绕组可以完全消除齿槽转矩,但气隙磁通密度会降低,需要增加永磁体的材料(高度).2)定子斜槽:通常定子斜槽等于一个槽距,可将齿槽转矩降为零,但定子斜槽减小电动势,电机性能会下降,转子偏心情况,斜槽有效性降低。
永磁电机齿槽转矩的研究分析永磁电机是一种应用广泛的电机类型,具有结构简单、效率高等优点,因此在各个领域得到了广泛的应用。
而齿槽转矩是永磁电机中的一个重要参数,对于电机的性能影响较大。
因此,研究和分析永磁电机齿槽转矩具有重要的理论和实践意义。
首先,齿槽转矩的定义是电机在运行中由于磁场的变化引起的力矩。
齿槽转矩的产生原因主要包括磁场的不对称性、磁场的泄漏和磁化饱和等因素。
对于永磁电机来说,由于永磁体的存在,磁场分布比较均匀,因此齿槽转矩相对较小。
但是,由于永磁体的存在,永磁电机的特性也有一定的不稳定性。
其次,齿槽转矩研究的方法主要包括实验研究和仿真模拟两种方法。
实验研究主要是通过在永磁电机上安装力/力矩传感器,测量电机在不同工况下的输出转矩,并进行分析和比较。
仿真模拟则是通过建立电机的数学模型,进行电磁场分析和转矩计算。
目前,仿真模拟方法越来越受到研究者的关注,因为它可以更加方便地对电机的结构和工况进行模拟和分析。
齿槽转矩的研究分析可以从以下几个方面展开:1.结构优化:通过优化永磁电机的结构参数,如磁圈的形状、尺寸和分布等,可以减小电机中的齿槽转矩。
例如,采用斜磁槽和插入矩形磁块等方法可以改善磁场分布,减小齿槽转矩的影响。
2.磁场分析:建立电机的电磁场分析模型,通过有限元分析等方法计算电机的磁场分布情况,并进一步分析齿槽转矩的产生原因和影响因素。
通过研究磁场的不均匀性和泄漏磁场的分布情况,可以更好地理解齿槽转矩的产生机制。
3.控制策略:齿槽转矩可以通过电机的控制策略进行抑制。
例如,通过改变电机的电流波形、调节电机的电流大小等方法可以减小齿槽转矩的影响。
因此,研究电机的控制策略对于抑制齿槽转矩具有重要意义。
4.结构材料:电机的结构材料也会对齿槽转矩产生影响。
例如,改变电机的铁芯材料、磁性材料的选择等可以改变电机的磁滞特性和磁场分布,从而减小齿槽转矩的影响。
总之,永磁电机齿槽转矩的研究分析对于电机的性能提升具有重要意义。
关于永磁直流力矩电机减小齿槽转矩的实际应用摘要在高精度位置稳定平台系统中,如何降低永磁直流力矩电机齿槽转矩是一个重点和难点问题。
针对该问题,文中采用一种综合应用方法,对齿槽转矩进行抑制,并利用ANSOFT MAXWELL进行仿真分析与样品实验来校验该方法的有效性,仿真与实验结果表明,通过该综合应用方法可对电机齿槽转矩进行有效抑制,改善了电机的运转状态。
关键词伺服系统;齿槽转矩;仿真分析在高精度位置稳定平台系统中,永磁直流力矩电机的转矩波动及由转矩波动引起的静摩擦力过大,都会对平台系统的隔离度和定位精度产生较大影响。
因此,如何有效降低电机的转矩波动是一个重点和难点问题。
1 齿槽转矩产生机理齿槽转矩是电机不通电时,永磁体和电枢铁芯开齿,磁能有变化所引起的那部分转矩。
齿槽转矩也可以定义为磁场能量W相对于位置角α的负导数,即。
转子磁极中心位置相对坐标原点的角度为θ,永磁直流力矩电机磁动势傅立叶级数:;式中:是磁动势的谐波次数,。
气隙磁导分布可由磁导方程表示,用傅立叶级数表达:式中:常数,为n次谐波的幅值。
则电机磁场能量:即:是场函数和磁动势函数相互作用结果。
在降低齿槽转矩研究方面提出了:定子开辅助齿、电枢斜槽、转子斜极、磁极偏移、极弧系数优化、磁钢形状优化、槽口宽优化等多种方式。
本文提出采用适合多品种、小批量、高精度、同时工艺简单、成本低的永磁体形状优化、最佳极弧系数、斜极的综合应用方式。
2 设计方案优化措施2.1 磁钢形状优化根据上述分析,减小气隙磁场及调整气隙磁场波形接近正弦波,使达到齿槽转矩减小的目的。
传统瓦形磁体气隙磁场径向分布:式中:------永磁体剩磁;--------永磁磁钢充磁方向长度;-------气隙径向长度。
等厚磁体气隙磁场径向分布:式中:-----与磁体瓦形中心夹角为处磁体充磁方向长度。
永磁体一般形状是瓦形磁极,通过永磁体偏心去尖角实现不等气隙,进而达到消弱齿槽转矩。
本次采用了“磁极偏心”变形结构,新永磁体形状简单、简化了加工工艺,同样实现了“磁钢削尖角”目的,图1磁钢削角新结构所示(A图消角前、B消角后),将永磁体瓦形两圆弧角通过尺寸L直接加工掉,其消弱齿槽转矩效果更明显。
永磁电机齿槽转矩的研究分析作者:邓秋玲,黄守道,刘婷,谢芳来源:《湖南大学学报·自然科学版》2011年第03期摘要:研究了永磁电机齿槽转矩产生的机理和降低齿槽转矩的一些措施.以4极、48槽表面式稀土永磁同步电动机为例,利用二维有限元法分析了极弧系数、磁极偏移和开辅助槽对永磁电机齿槽转矩的影响.将理论分析得到的齿槽转矩结果与样机的齿槽转矩测试结果进行了比较,两者基本吻合.研究表明:通过选择合理的方法能够有效地降低齿槽转矩.关键词:永磁电机;齿槽转矩;磁场分析;有限元分析中图分类号:TM351 文献标识码:AStudy of Cogging Torque in Permanentmagnet MachinesDENG Qiuling1,2,HUANG Shoudao1, LIU Ting1, XIE Fang1(1.College of Electrical and Information Engineering, Hunan Univ, Changsha, Hunan 410082, China;2.College of Electric and Information Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411101,China)Abstract:The mechanism of the cogging torque generated in permanent magnet machines and some measures to reduce cogging torque were studied. Taking a rare earth type, permanent magnet synchronous motor with four poles, fortyeight slots, surfacemounted as an example, this paper analyzed the influence of pole arc coefficient, magnet pole displacement and adding supplementary slot on cogging torque in a twodimensional finite element analysis method. The computed cogging torque values were compared with the experiment values of the sample machine, both of which agree with each other well. The research results have indicated that, with the appropriate choice of these methods, the cogging torque can be reduced effectively.Key words:permanentmagnet machine;cogging torque;magnetic field analysis;finiteelement analysis随着高性能永磁材料的发展和永磁电机设计制造技术的不断提高,永磁电机广泛应用于速度和位置控制系统中.在开槽永磁电机中,由永磁体和开槽电枢铁心之间相互作用产生的齿槽转矩会影响速度与位置控制系统的性能[1],尤其是在低速的时候,因此在对永磁电机进行设计时考虑如何有效地减小齿槽转矩就显得非常重要.关于抑制齿槽转矩,国内外学者进行了大量的研究,从电机本身的结构参数出发总结出了许多降低齿槽转矩的方法[2-6],如斜槽/斜极、改变极弧宽度、减小定子槽开口宽度、移动转子磁极、定子槽不均匀分布、定子齿开槽(辅助槽)、增大气隙长度、双定子电机错齿结构、适当的极数/槽数配合、设计厚的定子齿以防饱和、改变定子齿槽比率等都能引起齿槽转矩的减小.应该注意,许多措施在降低齿槽转矩的同时,电磁转矩也跟着降低,电磁转矩脉动相应增加.另外,考虑到经济性,许多技术很少采用.例如很少采用定子槽不均匀分布和增大气隙长度等措施.还有,不同结构和不同参数的永磁电机采用同一种方法也有不同的效果.因此,应该针对具体的电机结构参数采用合适的方法以有效地降低齿槽转矩.本文以4极、48槽表面式稀土永磁同步电动机为例来分析极弧系数、磁极偏移和开辅助槽对永磁电机齿槽转矩的影响.1 齿槽转矩的计算齿槽转矩是永磁电机绕组不通电时永磁体和电枢齿槽之间相互作用产生的转矩,无槽电机不存在齿槽转矩的问题.齿槽转矩定义为电机不通电时磁场能量W相对转子位置角α的导数[1],即:T cog=-W α(1)式中α为定子齿中心线和磁极中心线之间的夹角,即定转子之间的相对位置角.假设电枢铁心的磁导率为无穷大,电机内的存储能量可以近似表示为W≈W gap+W pm= 1 2μ ∫VB2d V(2)气隙磁密沿永磁电机电枢表面的分布可近似表示为:B θ,α =B rθh m h m+g θ,α (3)把式(3)代入式(2)可得:W= 1 2μ0 ∫VB2rθh m h m+g θ,α2d V (4)式中B r为永磁体剩磁磁密;h m为永磁体磁化方向长度;g为气隙长度将B2rθ和h m h m+g θ,α2分别进行傅立叶展开,就可以得到电机内的磁场能量,进而得到齿槽转矩的表达式.B2rθ的傅立叶展开式为:B2rθ =B r0+∑n=1 B r n cos2npθ (5)式中B r0=αp B2r(6)B rn= 2p π∫ παp 2p -παp 2p B2rθ cos2pnθ dθ=2 nπ B2r sin nαpπ(7)h m h m+g θ,α2的傅立叶展开式为:h m h m+g θ,α2=G0+∑n=1 G n cos nzθ(8)式中G0=h m h m+δ2(9)G n= 2z π∫ π z - a 2 0h m h m+δ2cos nzθdθ=2 nπh m h m+δ2sin nzθs0 2(10)将式(5)和(8)代入式(4),再由式(1)可得到:T cog(α)= πzL Fe4μ0 (R22-R21)∑n=1 nG nB r nz 2p sin(nzα) (11)式中L Fe,R2,R1,z,p和n分别为电枢铁心的轴向长度、电枢内半径、转子轭外半径、槽数、极对数和能够使nz/2p为整数的整数.可以看出,B2rθ和h mh m+g θ,α2都对齿槽转矩有影响,但并不是所有的傅立叶分解系数都对齿槽转矩有影响.对B2rθ而言,只有nz/2p次傅立叶分解系数对齿槽转矩产生作用,对h mh m+g θ,α2而言,只有n次傅立叶分解系数对齿槽转矩产生作用.所以若能减小B r(nz/2p)和G n就能有效地减小齿槽转矩.对一个永磁体形状尺寸相同、性能相同、均匀分布的永磁电机,在一个齿距内齿槽转矩的周期数N p的表达式为N p= 2p HCF z,2p.(12)式中HCF z,2p 表示槽数z与极对数2p的最大公约数,每个周期的机械角度为αT c=2π/ N p z .2 减小齿槽转矩的方法本文以一个4极、48槽的表面式永磁同步电动机为例,电机的相关参数见表1,采用各种方法进行分析和实验,如优化极弧系数、磁极偏移、开辅助槽等.电机的截面如图1所示,采用二维有限元方法对电机进行模拟仿真.所得气隙磁密波形如图2所示2.1 选择合理的极弧系数从式(11)可知r2(θ)只有nz/2p次傅立叶分解系数对齿槽转矩有影响,只要电机极对数和槽数确定,则对齿槽转矩有影响的r2(θ)的傅立叶分解次数也是确定的,由分析可知r2(θ)的傅立叶分解系数与极弧系数αp有关,某些次项系数B r k(k随αp变化而变化)非常接近于零[6].如果条件k=nz/(2p)满足,就可以大大削弱齿槽转矩.因此通过合理选取极弧系数,就可以使得这些值很小的B r k对齿槽转矩起作用、值大的B r k对齿槽转矩不起作用,从而削弱齿槽转矩.对于一个4极、48槽电机来说r2(θ)的傅立叶系数只有12k次系数对齿槽转矩有影响.图3所示为r2(θ)傅立叶分解式的12 k(k=1,2,3,4)次谐波系数随极弧系数变化示意图,可以看出当极弧系数接近0.76或者0.80的时候B r12k接近于零,此时的齿槽转矩也应较小.因此对于一个4极、48槽电机,若极弧系数接近0.76或者0.80,齿槽转矩将大大减小,综合理论分析最佳极弧系数范围为0.756±0.002.2.2磁极偏移将其中一对永磁磁极逆时针方向移动一个合适的角度时,它与逆时针方向的永磁磁极间的气隙间隔减小,相应的漏磁增大,定转子间的耦合磁场减小,齿槽转矩因而减小[6],如图5所示.对于一个4极电机,移动角度为β= 2π z × 1 2p = 360° 48 × 1 4 =1.875°(13)2.3 辅助槽开辅助槽主要是通过影响G n来影响齿槽转矩,最关键的是要确定辅助槽的个数.通过分析可知当采用N个辅助槽时,只有系数G m(N+1)≠0,且幅值变为原来的(N+1)倍,其他系数为0因此要减小齿槽转矩,就应消除G m(N+1)对齿槽转矩的影响[7-8].1)当N p≠1时,应满足N+1≠mN p.以6极、27槽电机为例,N p=2,所以应消除G2m对齿槽转矩的影响.若选择N=1或者N=3,则G2和G4不为零且被放大,所以不能选择N=1或者N=3;若N=2,则G3≠0,但是G3对齿槽转矩并没有作用.2)当N p=1时,则不论N为多少,G N+1总是影响齿槽转矩,所以不能用此方法来减小齿槽转矩,而应该考虑其他方法,如选择合理的极弧系数等.对于本文中所列举的4极、48槽电机,N p=1,所以用开辅助槽的方法来减小齿槽转矩效果并不明显.2.4 斜极或斜槽斜极或斜槽也可以降低齿槽转矩,斜极和斜槽的作用原理是相同的,两者适用场合不同,由于斜极工艺复杂,通常采用斜槽.但在工程实际中,即使定子槽精确斜一个齿距,也不能完全消除齿槽转矩,因为:1)在实际生产中,同一台电机中的永磁体材料存在分散性,电机制造工艺可能造成转子偏心;2) 斜极和斜槽并不能削弱永磁体端部和铁心端部之间的磁场产生的齿槽转矩.此外,当电机铁心较短或槽数较少时, 斜磁极和斜槽实现起来都较为困难,往往需要采取其他措施削弱齿槽转矩[1].3 试验结果及结论本文研究分析了永磁电机齿槽转矩产生的原理及理论表达式,并以一个4极、48槽永磁同步电机为例,利用二维有限元方法分析了极弧系数变化、磁极移动和开辅助槽对永磁电机齿槽转矩的影响,并已经做出了样机,试验样机的齿槽转矩测试波形如图6所示,齿槽转矩的测试和分析结果基本吻合.结果表明:根据电机具体的参数选择合适的方法可以有效地减小齿槽转矩.参考文献[1]王秀和. 永磁电机[M]. 北京:中国电力出版社,2007:80-81.WANG Xiuhe. Permanent magnet electric machine[M]. Beijing: China Power Press,2007:80-81.(In Chinese)[2] KANG G H, HUR J. Analytical prediction and reduction of the cogging torque in interior permanent magnet motor[C]//Proceedings of 2005 IEEE International Conference on Electric Machines and Drives. New York: IEEE,2005: 1620-1624.[3] ZHU Z Q, HOWE D. Influence of design parameters on cogging torque in permanent magnet machines[J]. IEEE Transaction on Energy Conversion, 2000,15(4): 407-412.[4] BIANCHI N,BOLOGNANI S. Design techniques for reducing the cogging torque in surfacemounted PM motors[J].IEEE Transaction Industry Applications, 2002,38(5):1259-1265.[5]邓秋玲,黄守道,刘婷.永磁同步风力发电机设计参数对齿槽转矩的影响[J].微电机,2010(7):9-12.DENG Qiuling, HUANG Shoudao, LIU Ting. Influence of design parameters on cogging torque in permanent magnet synchronous wind power generator [J].Micromotors,2010(7):9-12. (In Chinese)[6] STUDER C, KEYHANI A, SEBASTIAN T, et al. Study of cogging torque in permanent magnet machines[C]//Conference Record of the 1997 IEEE on Thirtysecond IAS Annual Meeting. New York: IEEE,1997:42-49.[7] YANG Yubo, WANG Xiuhe, ZHANG Rong. The optimization of pole arc coefficient to reduce cogging torque in surfacemounted permanent magnet motors[J].IEEE Transactions on Magnetic,2006,42(4):1135-1138.[8] YANG Yubo, WANG Xiuhe, LENG Xuemei,et al. Reducing cogging torque in surfacemounted permanent magnet motors by teeth notching[C]//Proceedings of 2nd IEEE Conference on Industrial Electronics and Applications. New York: IEEE, 2007: 265-268.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
永磁同步电机齿槽转矩分析及削弱措施作者:贺建忠来源:《科技创新与应用》2017年第03期摘要:永磁同步电机由于槽定子铁芯和永磁体之间相互作用会出现齿槽转矩,会产生非常大的噪音和振动,而且会对系统的控制精度造成影响,需要对永磁同步电机齿槽转矩进行分析。
文章首先对永磁同步电机齿槽转矩的原因进行了分析,然后对辅助齿高度和辅助齿宽度对齿槽转矩造成的影响进行了分析,并进行了验证。
关键词:永磁同步;齿槽转矩;削弱措施永磁电机的齿槽矩是转子永久磁体和铁芯齿槽相互作用下产生的磁阻转矩。
主要是因为定子齿槽和永磁转子磁极处于不同位置时,主磁路磁导会产生变化,即便是在电动绕组不通电的情况下,受齿槽转矩的影响,电机转子依然有停在圆周若干位置的趋势。
当电动机发生旋转时,齿槽转矩会表现为附加的脉动转矩虽然不会减少或者增加电动机的平均转矩,但是会引起噪音、电机振动、速度波动等,对电机定位的伺服性能和精度造成了比较大的影响,特别是在低速时产生的影响更大,为了提高电机运行的稳定性,需要解决齿槽转矩问题。
1 齿槽转矩出现的原理齿槽转矩主要是因为自身的物力结构产生的,永磁电机在实际运行过程中,齿槽矩会导致电机输出转矩产生脉动,并引起噪音和振动。
在实际运行过程中,当永磁磁极中心线和定子槽的中心线相互重叠,那么磁通在定子齿两侧产生的引力会互相抵消,这时齿槽转矩值为0。
而当永磁体逆时针旋转时,切向分力无法完全抵消掉,会产生一个齿槽转矩值。
定子齿和永磁磁极之间四种相对位置如图2所示。
在处于图1(a)的位置时,永磁体会和定子齿中心对齐,在转子齿侧面会产生相同的磁感应强度,并且受到的引起切向分量也一致,方向相反,会相互抵消掉。
将转子逆时针转动时如(b)所示,此时转子齿中心线会超前于磁极中心线,转子齿右半部分的磁场强度会高于转子齿左半部分的磁场强度,受到的引力切向量也不为零,受力方向和转子转动方向相反,表现为负值。
当定子磁极中心线和转子齿中心线之间的夹角变大时,会使和该齿临近齿的左半部分的磁感应强度变大,如(c)所示。