数列求和及求通项方法总结
- 格式:doc
- 大小:184.33 KB
- 文档页数:14
数列求和与求通项公式方法总结数列是数学中的一种重要概念,它是由一列按照一定规律排列的数字所组成的序列。
在数列中,求和与求通项公式是两个重要的问题,本文将对这两个问题的方法进行总结。
首先,我们来讨论数列的求和问题。
数列的求和是指对一个给定的数列中的所有元素进行求和的操作。
数列求和的方法主要有以下几种。
1.等差数列求和公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等差数列求和的公式为Sn=[(a1+an)n]/2,其中an为末项。
这个公式适用于等差数列的求和问题,可以更快地求得数列的和。
2.等差数列求和差法:对于一个等差数列,当项数为n时,可以通过求和的差法Sn=(a1+an)(n/2)来求得数列的和。
这个方法适用于项数较多且公差较小的等差数列。
3.等比数列求和公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
等比数列求和的公式为Sn=a1*(1-r^n)/(1-r),其中r不等于1、这个公式适用于等比数列的求和问题,可以轻松地求得数列的和。
4.等比数列求和减法:对于一个等比数列,当公比r满足,r,<1时,可以通过求和的减法Sn=a1/(1-r)来求得数列的和。
这个方法适用于公比绝对值小于1的等比数列。
其次,我们来讨论数列的求通项公式问题。
数列的通项公式是指能够根据数列的位置n来快速计算出数列中相应位置上的数值的公式。
数列求通项公式的方法主要有以下几种。
1.等差数列通项公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
2.等比数列通项公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。
数列求和公式七个方法数列求和是数学中常见的问题之一、下面将介绍七种常用的数列求和方法,包括等差数列求和、等比数列求和、等差数列二次项求和、递归数列求和、斐波那契数列求和、等差数列部分项求和、正弦数列求和。
一、等差数列求和:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
从首项到第n项的和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)其中,n为项数,a1为首项,an为末项,Sn为和。
二、等比数列求和:等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
从首项到第n项的和Sn可以通过以下公式计算:Sn=a1(q^n-1)/(q-1)其中,n为项数,a1为首项,q为公比,Sn为和。
三、等差数列二次项求和:对于等差数列的二次项和,可以通过对等差数列求和公式进行二次求和得到。
Sn=(n/6)*(2a1+(n-1)d)(a1+(n-1)d+d)其中,n为项数,a1为首项,d为公差,Sn为和。
四、递归数列求和:递归数列是一种特殊的数列,其中每一项都是前一项的函数。
递归数列的求和可以通过编写一个递归函数来实现。
例如,对于斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1可以编写一个递归函数,将前两个项相加,并递归调用函数来求和。
五、斐波那契数列求和:斐波那契数列是一种特殊的递归数列,其中前两个项为1,从第三项开始每一项都是前两项的和。
斐波那契数列求和可以通过编写一个循环来实现,累加每一项的值。
六、等差数列部分项求和:对于等差数列的部分项求和,可以通过求解两个和的差来实现。
设Sn为从第m项到第n项的和,Sm为从第1项到第m-1项的和,Sn 可以通过以下公式计算:Sn = Sn - Sm = (n-m+1)(a1 + an) / 2其中,m和n为项数,a1为首项,an为末项。
七、正弦数列求和:正弦数列是一种特殊的数列,其中每一项的值由正弦函数确定。
数列的通项公式与求和公式总结数列是由一系列按照特定规律排列的数字组成的序列,通常用公式表示。
数列的通项公式是指能够根据数列的位置得出该位置上的数值的公式,而求和公式则是指能够计算数列中所有数值的和的公式。
以下是一些常见数列的通项公式与求和公式的总结。
等差数列:等差数列是一个公差为d的数列,其中每一项与前一项之间的差值相等。
其通项公式和求和公式如下:通项公式:an = a1 + (n-1)d其中an表示数列的第n项,a1表示数列的第一项,d表示公差。
求和公式:Sn = (n/2)(a1 + an)其中Sn表示数列前n项的和。
等比数列:等比数列是一个公比为q的数列,其中每一项与前一项之间的比值相等。
其通项公式和求和公式如下:通项公式:an = a1 * q^(n-1)其中an表示数列的第n项,a1表示数列的第一项,q表示公比。
求和公式:Sn = (a1 * (q^n - 1))/(q - 1)其中Sn表示数列前n项的和。
斐波那契数列:斐波那契数列是一个特殊的数列,其前两项为1,后续每一项是前两项之和。
其通项公式和求和公式如下:通项公式:an = (1/sqrt(5)) * (((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n)其中an表示数列的第n项。
求和公式:Sn = a1 * (1 - ((1 + sqrt(5))/2)^n)/(1 - ((1 + sqrt(5))/2))其中Sn表示数列前n项的和。
这些是常见数列的通项公式与求和公式的总结,通过这些公式,我们可以通过给定的位置计算出数列中的数值,或者计算数列中所有数值的和。
在数学中,数列的通项公式与求和公式是非常重要的工具,能够帮助我们理解数列的规律和特性。
数列的通项与求和计算方法总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列的通项与求和计算方法总结第一章 数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列的通项与求和数列是数学中一个重要的概念,广泛应用于各个领域中。
在数列中,通项与求和是两个重要的概念。
本文将详细介绍数列的通项与求和的概念、性质和计算方法。
一、数列的通项数列的通项是指数列中第n个数的一般表示式。
在数列中,通项通常使用公式或递推关系给出。
1.1 公式求通项对于一些特殊的数列,可以通过观察数列中数的规律来得到通项的公式。
常见的数列包括等差数列和等比数列。
1.1.1 等差数列如果数列中的相邻两项之差固定为常数d,则该数列为等差数列。
等差数列的通项公式可以通过以下公式计算得到:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示项数。
1.1.2 等比数列如果数列中的相邻两项的比固定为常数q,则该数列为等比数列。
等比数列的通项公式可以通过以下公式计算得到:an = a1 * q^(n - 1)其中,an表示等比数列的第n项,a1表示等比数列的首项,q表示等比数列的公比,n表示项数。
1.2 递推关系求通项对于一些数列,无法通过观察数列中数的规律找到通项的公式,可以通过递推关系来得到通项。
递推关系是指数列中的每一项与前面一项之间的关系。
递推关系通过以下公式表示:an = f(an-1)其中,an表示数列的第n项,an-1表示数列的第n-1项,f表示递推关系。
二、数列的求和数列的求和是指将数列中的一定项数的数相加的运算。
数列的求和可以使用两种方法进行计算,即通项法和递推法。
2.1 通项法求和通项法是指根据数列的通项公式,将数列的每一项相加来计算数列的求和。
使用通项法计算数列的求和需要明确求和的起始项和结束项。
例如,对于等差数列an = 2n + 1,求前10项的和,可以使用通项法:Sn = (a1 + an) * n / 2其中,Sn表示数列的前n项和,a1表示数列的首项,an表示数列的第n项,n表示项数。
2.2 递推法求和递推法是指通过数列的递推关系,将数列的前一项和当前项相加来计算数列的求和。
求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。
数列的通项公式是指能够表示数列中任意一项的公式。
数列的求和是指将数列中所有项相加的过程。
在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。
下面将介绍一些常见的方法。
一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。
通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。
1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。
设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。
通过该递推关系,可以求解等差数列的通项公式和求和。
1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。
设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。
通过该递推关系,可以求解等比数列的通项公式和求和。
1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。
设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。
二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。
例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。
2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。
通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。
2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。
该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。
三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。
对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。
一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
数列求和及数列通项公式的基本方法和技巧导语:数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和及数列的通项公式是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学来谈谈数列求和及数列通项公式的基本方法和技巧.(一)数列求和一、利用常用求和公式求和.利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、)1(211+==∑=n n k S nk n4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S n k n【例1】求和:)0(1422242≠++⋯+++++x x x x x n n 【解】∵x≠0∴该数列是首项为1,公比为x 2的等比数列,而且有n+3项 当x 2=1,即x =±1时,和为n+3.当12≠x ,即1±≠x 时,和为262232111)(1x x x x n n --=--++.评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 二、错位相减法求和.错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.【例2】求和:)1()12(7531132≠-+⋅⋅⋅++++=-x x n x x x S n n ………………………① 【解】由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积.设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设置错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+ 评注:(1)要考虑当公比x 为值1时为特殊情况; (2)错位相减时要注意末项;(3)此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘.三、反序相加法求和.这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.【例3】求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 【证明】设n n n n n n C n C C C S )12(53210++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得n nn n n n nn n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加) ∴n n n S 2)1(⋅+=四、分组法求和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法.【例4】求数列Λ1614813412211,,,的前n 项和;分析:数列的通项公式为n n n a 21+=,而数列{}⎭⎬⎫⎩⎨⎧n n 21,分别是等差数列、等比数列,求和时一般用分组结合法;【解】因为nn n a 21+=,所以 )21()813()412()211(n n n s ++++++++=Λ)21814121()321(n n +++++++++=ΛΛ(分组)前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此1212211)211(212)1(2+-+=--++=n n n n n n五、裂项法求和.这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=;(2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+;(3)111)1(1+-=+=n n n n a n ;(4))121121(211)12)(12()2(2+--+=+-=n n n n n a n ; (5)])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n .【例5】求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.【解】设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:余下的项具有如下的特点 1余下的项前后的位置前后是对称的. 2余下的项前后的正负性是相反的.六、合并法求和.针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .【例6】在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 【解】设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项) 和对数的运算性质N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10(二)求数列通项公式一、构造等差或等比数列法【例7】已知数列{}n a 满足:1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式. 【解】1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+ 则113222n n n n a a ++-= 故数列{}2n na 是以122211==a 为首项,以23为公差的等差数列. 由等差数列的通项公式,得31(1)22n n a n =+-. 所以数列{}n a 的通项公式为31()222n n a n =-.评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式.二、累加法.【例8】已知数列{}n a 满足:11211n n a a n a +=++=,,求数列{}n a 的通项公式. 【解】由121n n a a n +=++得121n n a a n +-=+ 则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以,数列{}n a 的通项公式为2n a n =. 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式.【例9】已知数列{}n a 满足:112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+.则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.n n a n =+- 评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231n n n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式.【例10】已知数列{}n a 满足:1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+, 故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++L L L因此,11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:本题解题的关键是把递推关系式13231n n n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232*********()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+L ,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式.三、累乘法.【例11】已知数列{}n a 满足:112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 【解】因为112(1)53n n n a n a a +=+⨯=,. 所以,0n a ≠. 则12(1)5n n na n a +=+, 故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯L L L L 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅L ,即得数列{}n a 的通项公式. 【例12】已知数列{}n a 满足:11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式.【解】因为123123(1)(2)n n a a a a n a n -=++++-≥L ①所以1123123(1)n n n a a a a n a na +-=++++-+L ②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=L L ③由123123(1)(2)n n a a a a n a n -=++++-≥L ,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=L . 所以,{}n a 的通项公式为!.2n n a = 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式. 四、待定系数法.【例13】已知数列{}n a 满足:112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式. 【解】设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n n n n a x a x ++⨯+⨯=+⨯, 等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅, 两边除以5n ,得352,1,x x x +==-则 代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50n n a -≠.则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列. 则152n n n a --=. 故125n n n a -=+. 评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列{}n a 的通项公式.【例14】已知数列{}n a 满足:1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】设1123(2)n n n n a x y a x y +++⨯+=+⨯+ ⑥将13524n n n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323n n x y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-.评注:本题解题的关键是把递推关系式13524n n n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}n n a +⨯+的通项公式,最后再求数列{}n a 的通项公式.【例15】已知数列{}n a 满足:21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式. 【解】设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.评注:本题解题的关键是把递推关系式212345n n a a n n +=+++转化为2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列2{31018}n a n n +++是等比数列,进而求出数列2{31018}n a n n +++的通项公式,最后再求出数列{}n a 的通项公式.五、对数变换法.【例16】已知数列{}n a 满足:5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式. 【解】因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++ ○11 将⑩式代入○11式,得5lg lg 3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg 34lg 3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入○11式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++○12 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及○12式, 得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++, 因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式.六、迭代法.【例17】已知数列{}n a 满足:3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.【解】因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 2(2)(1)32(2)(1)3(3)(2)(1)112(3)(2)(1)(1)123(1)223(2)23(1)233(2)(1)23323(2)(1)213!21[]n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n aa a a a -+---+--+-+--+++-+-+----⋅⋅--⋅-⋅⋅---⋅-⋅⋅-⋅-⋅⋅⋅⋅======L L L L L又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n na --⋅⋅=.评注:本题还可综合利用累乘法和对数变换法求数列的通项公式.即先将等式3(1)21nn n n a a ++=两边取常用对数得1lg 3(1)2lg n n n a n a +=+⨯⨯,即1lg 3(1)2lg n n na n a +=+,再由累乘法可推知(1)123!213211221lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --⋅⋅---=⋅⋅⋅⋅⋅=L ,从而1(1)3!225n n n n n a --⋅⋅=.七、数学归纳法.【例18】已知数列{}n a 满足:11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.【解】由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯ 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论.(1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时,1228(1)(21)(23)k k k a a k k ++=+++222222222222222222222(21)18(1)(21)(21)(23)[(21)1](23)8(1)(21)(23)(21)(23)(23)8(1)(21)(23)(21)(23)(21)(21)(23)(23)1(23)[2(1)1]1[2(1)1]k k k k k k k k k k k k k k k k k k k k k k k k k +-+=+++++-+++=++++-+++=++++-+=+++-=+++-=++2由此可知,当1n k =+时等式也成立.根据(1),(2)可知,等式对任何*n N ∈都成立. 评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.八、换元法.【例19】已知数列{}n a满足:111(14116n n a a a +=+=,,求数列{}n a 的通项公式.【解】令n b =21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=++得 221111(1)[14(1)]241624n n n b b b +-=+-+ 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -==为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+21()32n -=+,得2111()()3423n n n a =++.评注:本题解题的关键是通过将n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式.九、不动点法.【例20】已知数列{}n a 满足:112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.【解】令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+. 所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是以112422343a a --==--为首项,以913为公比的等比数列, 故12132()39n n n a a --=-,则113132()19n n a -=+-.评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程212441x x x -=+的两个根1223x x ==,,进而可推出112213393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭为等比数列,再求出数列23n n a a ⎧⎫-⎨⎬-⎩⎭的通项公式,最后求出数列{}n a 的通项公式.【例21】已知数列{}n a 满足:1172223n n n a a a a +-==+,,求数列{}n a 的通项公式. 【解】令7223x x x -=+,得22420x x -+=, 则1x =是函数31()47x f x x -=+的不动点. 因为17255112323n n n n n a a a a a +---=-=++,所以2111()()3423n n n a =++.。
数列求通项公式及求和的方法数列专题-数列求通项公式及求和的方法考点1:求通项公式1、公式法:已知数列{an}为等差或等比数列,可根据通项公式an=a1+(n-1)d或an=a1qn-1进行求解。
例1:已知{an}是一个等差数列,且a2=1,a5=-5,求{an}的通项公式。
变式:已知等差数列{an}中,a10=28,S6=51,求{an}的通项公式。
2、前n项和法:已知数列{an}的前n项和Sn的解析式,可求出an。
例2:已知数列{an}的前n项和Sn=2n-1,求通项an。
变式:已知下列数列{an}的前n项和Sn的公式为Sn=3n2-2n(n∈N*),求{an}的通项公式。
3、Sn与an的关系式法:已知数列{an}的前n项和Sn与通项an的关系式,可求出an。
例3:已知数列{an}的前n项和Sn满足an+1=Sn,其中a1=1,求an。
变式:已知{an}中,an+1=nan,且a1=2,求{an}的通项公式。
4、累加法:当数列{an}中有an-an-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,可用这种方法。
例4:a1=0,an+1=an+2(n-1),求通项an。
变式:已知数列{an}的首项a1=1,且an=an-1+3(n≥2),求通项an。
5、累乘法:当数列{an}中有an/an-1=f(n),即第n项与第n-1项的商是个有“规律”的数时,可用这种方法。
例5:a1=1,an=an-1(n),求通项an。
6、构造法:1)配常数法:在数列{an}中有an=kan-1+b(k、b均为常数且k≠),从表面形式上来看an是关于an-1的“一次函数”的形式,可用下面的方法:一般化方法:设an+m=k(an-1+m),则{an+m}成等比数列。
例6:已知a1=1,an=2an-1+1(n2),求通项an。
2)配一次函数法:在数列{an}中有an=kan-1+bn+c(k、b、c均为常数且k≠),可用下面的方法:一般化方法:设an+tn+u=k(an-1+t(n-1)+u),则{an+tn+u}成等比数列。
数列求通项、求和的方法总结一、定义法 —— 直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型(等差or 等比)的题目.例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=二、公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
特征:已知数列的前n 项和n S 与n a 的关系例.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-三、由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。
例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
数列通项公式与求和的常见解法数列通项公式是指一个数列中,每一项与它的序号之间的关系表达式。
常见的数列通项公式包括等差数列、等比数列、斐波那契数列等。
求和则是指将数列中的所有项相加的过程,常见的求和方法有逐项相加法、数列求和公式法以及数列分组求和法等。
下面将详细介绍这些数列通项公式和求和的常见解法。
一、等差数列的通项公式与求和等差数列是指数列中的任意两个相邻项之间的差值保持不变。
等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
以等差数列1,4,7,10,13...为例,首项a1 = 1,公差d = 4 -1 = 3,第n项可以表示为an = 1 + (n - 1)3等差数列的求和可以使用数列求和公式Sn = n(a1 + an) / 2,其中Sn表示前n项和。
二、等比数列的通项公式与求和等比数列是指数列中的任意两个相邻项之间的比值保持不变。
等比数列的通项公式为:an = a1 * r^(n - 1),其中an表示第n项,a1表示首项,r表示公比。
以等比数列2,6,18,54,162...为例,首项a1 = 2,公比r = 6/ 2 = 3,第n项可以表示为an = 2 * 3^(n - 1)。
等比数列的求和可以使用数列求和公式Sn=a1*(1-r^n)/(1-r),其中Sn表示前n项和。
三、斐波那契数列的通项公式与求和斐波那契数列是指数列中的每一项都是前两项的和,通常以F(n)表示第n项,a1=1,a2=1、斐波那契数列的通项公式可以使用递归形式表示:Fn=Fn-1+Fn-2斐波那契数列的求和可以使用迭代方式进行计算,将每一项逐个相加即可得到和。
四、逐项相加求和法逐项相加法是最基本的求和方法,对于数列中的每一项逐个相加得到和。
即S = a1 + a2 + a3 + ... + an,其中S表示和。
逐项相加法的计算量较大,对于项数较多的数列效率较低。
数列求和通项分式法 错位相减法 反序相加法 分组法 分组法 合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a an S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn自然数方幂和公式:3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。
二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
数列求和及求通项
一、数列求和的常用方法
1、公式法:利用等差、等比数列的求和公式进行求和
2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1
3
1
2--=n n n a ,求前n 项和n S
3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项 ①形如)(1
k n n a n +=
,可裂项成)11(1k
n n k a n +-
=,列出前n 项求和消去一些项 ②形如k
n n a n ++=
1,可裂项成)(1
n k n k
a n -+=
,列出前n 项求和消去一些项 例:已知数列1)2()
1)(1(1
1=≥+-=
a n n n a n ,,求前n 项和n S
4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a n
n ,求前n 项和n S
5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)
一、数列求通项公式的常见方法有:
1、关系法
2、累加法
3、累乘法
4、待定系数法
5、逐差法
6、对数变换法
7、倒数变换法
8、换元法 9、数学归纳法
累加法和累乘法最基本求通项公式的方法
求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析
1、关系法:适用于)(n f s n =型 求解过程:⎩⎨
⎧≥-===-)
2()
1(111n s s n s a a n n n
例:已知数列{}n a 的前n 项和为12
++=n n S n ,求数列{}n a 的通项公式
2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列 求解过程:若)(1n f a a n n +=+ 则)1(12f a a =- )2(23f a a =-
)1(1-=--n f a a n n 所有等式两边分别相加得:∑-==
-1
1
1)(n k n k f a a 则∑-=+=1
1
1)(n k n
k f a a
......
累加
例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}
的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列 求解过程:若n n a n f a )(1=+,则
)(1
n f a a n
n =+ 则
)1()......2()1(1
2312
-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:
∏-==1
11)(n k n k f a a 则∏-==1
1
1)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n n
n ,其中{}
的通项公式,求n a a 31=
4、待定系数法:适用于)(1n f pa a n n +=+
①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)
求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=
p b k ,所以有:)1
(11-+=-+
+p b
a p p
b a n n ,这样就构造出了一个以11-+
p b a 为首项,公比为p 的等比数列⎭⎬⎫
⎩
⎨⎧-+1p b a n 。
从而求得{}n a 的通项公式为
1
)1(11---+
=-p b p p b a a n n 例:已知数列{}n a 满足递推式)2(121≥+=-n a a n n ,其中{}
的通项公式求n a a ,21=
②形如)1,0,;,,(1≠≠++=+p b p c b p c bn pa a n n 为常数型
③形如)1,0,;,,,(2
1≠≠+++=+p b p d c b p d cn bn pa a n n 为常数型
④形如)1,;0,,;,,,(1≠≠+⋅+=+q p q p m d q p m d q m pa a n n n 为常数型
⑤形如)1,;0,;,(12≠≠+=++q p q p q p qa pa a n n n 为常数型
5、逐差法:
形如)1,0,,,(1≠≠+=+p b p b p b pa a n n 为常数,可以把n 换成1-n 有b pa a n n +=-1,两式相减得)(11-+-=-n n n n a a p a a ,这样就构造出了一个以12a a -为首项,公比为p 的等比数列{}n n a a -+1,再运用累加法求出{}n a 的通项公式
例:已知数列{}n a 满足递推式)2(121≥+=-n a a n n ,其中{}
的通项公式求n a a ,21=
6、对数变换法:适用于)1(1≠=+q pa a q
n n 型
求解过程:①当1=p 时,)1(1≠=+q a a q n n ,等式两边取对数有:)ln()ln(1q
n n a a =+,根据对数的运算法则有:)ln()ln(1n n a q a =+,这样就构造了一个以)ln(1a 为首项,公比为q 的等比数列{})ln(n a 。
从而求得{}n a 的通项公式为1
1
-=n q n a a
例:已知数列{}n a 满足递推式2
1n n a a =+,21=a ,求数列{}n a 的通项公式
②当1≠p 时,)1(1≠=+q pa a q n n ,等式两边取对数有:)ln()ln(1q
n n pa a =+,根据对数的运算法则有:)ln(ln )ln(1n n a q p a +=+,再运用待定系数法求出通项。
例:已知数列{}n a 满足递推式3
12n n a a =+,21=a ,求数列{}n a 的通项公式
7、倒数变换法:适用于分式关系的递推公式,分子只有一项
例:已知数列{}n a 满足递推式4
21+=
+n n
n a a a ,21=a ,求数列{}n a 的通项公式
8、换元法:适用于含根式的递推公式
例:已知数列{}n a 满足递推式n n n a a a ++=+12
1
1,21=a ,求数列{}n a 的通项公式
9、数学归纳法:通过首项和递推关系求出数列的前n 项,猜出数列的通项公式,并用数学归纳法加以证明
例:已知数列{}n a 满足递推式9
8
)32()12()1(81
21=++++
=+a n n n a a n n ,,求数列{}n a 的通项公式
综合练习:
1、已知数列{}n a 满足递推式)2(121≥+=-n a a n n ,其中154=a (1)求1a ,2a ,3a ; (2)求数列{}n a 的通项公式; (3)求数列{}n a 的前n 项和n S ;
变式:①若)2(21≥+=-n n a a n n ? ②若)2(22
1≥+=-n n a a n n ?
③若)2(23221≥+⋅+=-n a a n n n ?思考:若)2(231≥+=-n n a a n n ?
2、设在数列{}n a 中,21=a ,n
n n a a a 22
2
1+=+,求数列{}n a 的通项公式;
3、数列{}n a 的前n 项和为n S ,1a =1,)(21*
+∈=N n S a n n
(1)求数列{}n a 的通项公式;
(2)求数列{}n na 的前n 项和n T ;
4、已知n S 是数列{}n a 的前n 项和,2
3
1=a ,22=a ,
),2(012311*-+∈≥=++-N n n S S S n n n 。
(1)求证{}1-n a 时等比数列;
(2)求数列{}n a 的前n 项和n S ;
5、已知11=a ,)2(1
11≥+=--n na a a n n n ,求{}n a 的通项公式及前n 项和n S
6、已知数列{}n a 满足31=a ,()21211≥-=--n a a a n n n
(1)求2a ,3a ,4a ;
(2)求数列{}n a 的通项公式;
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
(3)
(4)。