2013年浙江师范大学考研高等代数真题
- 格式:pdf
- 大小:835.45 KB
- 文档页数:2
浙江师范大学《线性代数》考试试卷(样卷)考试类别 闭卷 考试时间 120分钟注意:并非摸拟卷一、单项选择题。
(四个选项中只有一个正确答案。
5题共10分)1、向量组α1、α2、α3,线性无关的充要条件为( )A 、α1、α2、α3均不是零向量B 、α1、α2、α3中任意两个向量的分量不成比例C 、α1、α2、α3中任意一个向量均不能由其余两个向量线性表出D 、α1、α2、α3中一部分向量线性无关2、设A 为n 阶矩阵|A|=0,则( )A 、 A 中有两行(列)的元素对应成比例B 、 A 中任意一行(列)向量是其余各行(列)的线性组合C 、 A 中至少有一行元素全为0D 、 A 中必有一行(列)向量是其余各行(列)的线性组合3、若α1、α2、α3、ß1、ß2都为四维向量且四阶行列式|α1、α2、α3、ß1|=m,|α1、α2、α3、ß2|=n 。
则四阶行列式|α1、α2、α3、(ß1+ß2)|=( )A 、m-nB 、-(m+n)C 、m+nD 、m-n4、设A 为n 阶方矩阵,且|A|=a ≠0,而A *为A 的伴随矩阵,则|A *|=( )A 、aB 、a n-1C 、1/aD 、a n5、A 为m ×n 矩阵,C 为n 阶可逆矩阵,r(A)=r,矩阵B=AC 的秩为r 1,则( )A 、r>r 1B 、r<r 2C 、r 与r 1关系依赖与矩阵CD 、r=r 16、已知3阶矩阵A 的特征值为1、-1、2,则矩阵3A 2+2I 的特征值为( )A 、1、-1、2B 、5、1、14C 、1、1、2D 、1、1、12二、填空题。
(10题共20分)1、4阶范德蒙行列式的值为2、已知线性方程组AX=b 无解,r(A)=2则r(A )=3、3阶矩阵A 的特征值为2、4、6,则|A-3I|=4、在R n 中,向量α可由α1、α2、…、αn 线性表出,满足 条件,其表示法是唯一的。
浙江师范大学《初等数论》考试卷(B1卷)浙江师范大学《初等数论》考试卷(B1卷)(2004——2005学年第一学期)考试类别使用学生数学专业**本科考试时间120分钟表出卷时间*年*月*日说明:考生应有将全部答案写在答题纸上,否则作无效处理。
一、填空(30分)1、d (37)= 。
σ(37)= 。
2、φ(1)+φ(P )+…φ(n P )= 。
3、不能表示成5X+3Y (X 、Y 非负)的最大整数为。
4、7在2004!中的最高幂指数是。
5、(1501 ,300)= 。
6、)(mod m b ax ≡有解的充要条件是。
7、威尔逊定理是。
8、写出6的一个绝对值最小的简化系。
9、50506666688888?被7除后的余数为。
答案:1、2,382、 np3、74、3315、16、 b |),(m a7、P 为素数,)(mod 01)!1(p p ≡+- 8、1,59、5二、解同余方程组(12分)≡≡≡)7(mod 1)8(mod 3)5(mod 2x x x答案:解:因为5,7,8两两互素,所以可以利用孙子定理.280,40,35,56321====m M M M .解同余式)5(mod 156,1≡M , )8(mod 135,2≡M , )7(mod 140,3≡M , 得到 3,3,13,2,,1===M M M .于是所求的解为)280(mod 267 )140(mod 134033352156≡??+??+??≡x所以).280(mod 267≡x三、证明当n 是奇数时,有)12(3+n.(10分)答案:证明:因为 )3(mod 12-≡,所以)3(mod 1)1(12+-≡+nn . 于是,当 n 是奇数时,我们可以令 12+=k n .从而有 )3(mod 01)1(1212≡+-≡++k n , 即)12(3+n .四、如果整系数的二次三项式1,0)(2=++=x c bx x x p 当时的值都是奇数,证明0)(=x p 没有整数根(8分)答案:证:由条件可得c 为奇数,b 为偶数如果p (x )=0有根q ,若q 为偶数,则有 c bq q ++2为奇数,而p (q )=0为偶数,不可能,若q 为奇数,则有 c bq q ++2为奇数,而p (q )=0为偶数,也不可能,所以 0)(=x p 没有整数根五、解方程)132(mod 2145≡x .(10分)答案:解因为(45,132)=3|21,所以同余式有3个解.将同余式化简为等价的同余方程)44(mod 715≡x . 我们再解不定方程74415=-y x , 得到一解(21,7). 因此同余式的3个解为)132(mod 21≡x ,)132(mo d 65)132(mod 313221≡+≡x ,)132(mod 109)132(mod 3132221≡?+≡x六、证明:用算术基本定理证明3是无理数。
浙江师范大学《高等数学》考试卷(2004—2005学年第2学期)考试类别 考试 使用学生 初阳 学院 文科04级 考试时间 150 分钟 出卷时间 2005 年 5 月 28 日 说明:考生应将全部答案都写在答题纸上,否则作无效处理。
一(20分)选择题1.直线122215x y z -++==-与平面430x y z +-=的关系是( ) A .直线与平面垂直B .直线在平面上C .直线与平面无公共点D .直线与平面相交于一点2.22{(,)|1}D x y xy=+≤是2R 中的( )A. 闭集B. 开集C. 既是开集又是闭集D. 既不是开集也不是闭集 3.设yx y x y x f +-=),(,则=)2,0(df( )A. dyB. dxC. dy dx -D.2dxdy -4.级数2(1)nn +∞=-∑( )A.绝对收敛B.条件收敛C.发散D.敛散性不能确定5.)ln(y x x z +=,则='')2,1(xxf ( ) A. 0 B.97 C.95 D. 313ln +6.函数)]([)(πππ≤≤-=x xx f 的傅立叶级数在点0=x 和2π=x 分别收敛于( )A .0和2/1 B. 0和0 C.2/1-和2/1 D.2/1-和0 7.若广义积分21pxd x +∞-⎰发散,则积分130pxd x -⎰( )A .收敛B .发散C .可能收敛,可能发散D .以上均不对 8.若),(y x f 在点),(000y x P 不可微,则下列命题中一定错误的是( )A. f 在0P 不连续B. f 在0P 沿任意方向的方向导数不存在C. f 在0P 的两个偏导数都存在且连续D. f 在0P 的两个偏导数都存在且至少有一个不连续9.设区域(σ)为24π≤22xy +≤2π,则()σσ⎰⎰=( )A .0B .2πC .-2πD .3π10.已知2)()(y x ydydx ay x +++是某个二元函数的全微分,则=a ( )A. 1-B. 0C. 1D. 2 二.(18分)填空题1.二元函数(,)f x y xy =在)1,1(处的全微分(1,1)|d f = ①2.若42y x z +=,则(1,1)(,)|z zx y-∂∂∂∂= ② 3. 二重极限=++-+∞+∞→)(),(),()(limy x y x ey x ③4. 三向量,,a b c 的混合积[,,a b c]的几何意义是 ④5.设一平面经过原点及点(6,3,2)-,且与平面428x y z -+=垂直,则此平面的方程为 ⑤6.=⎰+∞-dx xex1⑥三. (10分)求y x y x z 161222+-+=在闭圆盘}25|),{(22≤+y x y x 上的最值。
二〇〇七年攻读硕士学位研究生入学考试试题考试科目: 高等代数 编号: 741一、(17分)设整系数的线性方程组为,证明该方程组对任意整数都有整数解的充分必要条件是该方程组的系数行列式等于. ),..2,1(,1n i b x a i j nj ij ==∑=n b b b ,..,,211±二、(17分)计算阶行列式, 其中.(1n n >)2−1211232341112...........................n n n n nn n ns s s s s s s s s s s s s s s −+−+⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠kn k k k x x x s +++=...21三、(17分)设矩阵,,A B C 满足有意义.求证: ABC ()()()AB BC B ABC +≤+秩秩秩秩.四、(17分)设s ξξξ,...,,21是某个齐次线性方程组的基础解系,而k ηηη,...,,21是该齐次线性方程组的个线性无关的解,并且k k s <s k −s ξξξ,...,,21.求证中必可取出个解,使得它们个k ηηη,...,,21一起构成原方程组的一个基础解系.五、(17分)设阶方阵(1n n >)A 满足其中,0652=+−E A A E 是阶单位矩阵.证明:n A 相似于对角矩阵;如果A 行列式等于是正整数).求与m n m m n m ,0(32<<−A 相似的对角矩阵. )(2R M V =六、(17分)假设22×是由实数域上所有矩阵构成的实数域上向量空间.1112,11A B λ−⎛⎞⎛==⎜⎟⎜−−⎝⎠⎝1⎞⎟⎠λ,其中是参数. 是V 上的线性变换. (1)证明 AXB X =)(ϕ1−≠λ(2)当ϕ时,证明是可逆线性变换. 1−=λ(3)当ϕ时,求线性变换的核和值域.(4)在值域中取一组基,并把它扩充成V 的基,求线性变换ϕ在这组基下的矩阵.222211λλλλλλλλλ⎛⎞−⎜⎟−⎜⎜⎟+−⎝⎠λ七、(16分)求-矩阵⎟的初等因子和不变因子. 8111181111811118A −⎛⎞⎜⎟−⎜⎟=⎜⎟−⎜⎟−⎝⎠八、(16分)已知矩阵 123412341234(,,,)(,,,)(,,,)T f x x x x x x x x A x x x x =(1)求二次型; (2)用正交线性替换化二次型为标准型;),,,(4321x x x x f (3)证明定义了βαβαA T =),(α4R 4R 上的内积,其中βα,是的列向量,是T α的转置,并求在该内积下4R 的一组标准正交基;(4)求实对称矩阵B 使得A B k =,其中为正整数(只要写出k B 的表达式,不必计算其中的矩阵乘积). 九、(16分)设, 其中是互不相同的整数.证明n a a a ,...,,211)()()()(22221+−⋅⋅⋅−−=n a x a x a x x f ()f x 是有理数域上的不可约多项式.。