叶的形态及其解剖结构
- 格式:ppt
- 大小:4.01 MB
- 文档页数:46
叶的总结归纳叶是植物体上重要的器官之一,其结构和功能对于植物的生长、光合作用和适应环境具有重要意义。
通过观察和研究叶的形态、结构和生理特性,我们可以更好地理解植物的生理机制和适应策略。
本文将对叶的特点、功能以及适应环境的能力进行总结归纳。
一、叶的特点和结构叶是植物进行光合作用的重要器官,它们通常具有以下的特点和结构:1. 叶片形态多样:叶片的形态包括长形、圆形、心形等各种形状,这些形态与植物的物种和环境条件有关。
2. 叶脉系统:叶脉系统包括主脉、次脉和网状脉三个层次,它们相互连接,将水分和养分输送到整个叶片。
3. 叶绿素:叶绿素是叶片中光合作用的关键色素,它能够吸收和转化光能,并参与光合作用反应。
4. 气孔:叶片表面通常有众多的气孔,它们是叶片进行气体交换的通道,通过气孔,叶片可以吸收二氧化碳并释放氧气。
5. 叶毛和叶柄:某些植物的叶片表面具有绒毛状的结构,这些叶毛可以减少蒸腾作用,保持水分;叶柄则将叶片与茎连接在一起。
二、叶的功能叶是植物进行光合作用和气体交换的场所,其功能主要包括:1. 光合作用:叶片中的叶绿素能够吸收太阳光能,将其转化为化学能,并参与光合作用的反应过程。
光合作用产生的有机物质为植物提供能量和营养。
2. 气体交换:叶片上的气孔可以调节二氧化碳和氧气的进出,通过气孔,植物吸收二氧化碳并释放氧气。
3. 蒸腾作用:叶片表面的气孔在蒸腾作用中起着重要作用。
植物通过蒸腾作用,将根部吸收到的水分从叶孔释放出去,有助于植物体内水分的循环和输送。
4. 能量和物质的储存:一些植物的叶片中积累着大量的淀粉和其他有机物质,这些物质在光合作用过剩或光照不足时可以提供能量和营养。
三、叶的适应环境的能力叶的结构和生理特性对于植物适应不同的环境条件具有重要意义,下面我们来看几个例子:1. 厚叶和薄叶:某些植物生长在干燥和寒冷的环境中,它们的叶片通常比较厚,以减少水分的散失和抵御寒冷的侵害。
而生长在湿润环境中的植物通常叶片较薄,以增加光照的透过率。
叶叶的外部形态叶形:根据叶片长度和宽度的比值,叶形可以分为针形、线形、披针形、长圆形、卵形、倒卵形、心形、肾形、椭圆形、圆形、菱形、扇形等叶缘:叶片的边缘叫做叶缘。
常见的叶缘有全缘、锯齿缘、重锯齿缘、牙齿缘、波缘等叶缘凹凸程度大,可形成裂片,根据裂片程度分为浅裂、深裂、全裂、三出裂、羽状裂、掌状裂叶尖:叶片的先端叫叶尖。
常见的有急尖、渐尖、钝行、凹形、截行、倒心形等叶基:即叶片的基部。
常见的有圆形、楔形、心形、箭形、截形等叶脉:贯穿于叶肉内的维管组织及其外围的机械组织叫叶脉叶脉在叶片中的分布样式叫脉序分为三种:叉状脉序、网状脉序、平行脉序叶序:植物的叶在茎上的排列方式,有互生、轮生、对生等叶镶嵌:同一枝上的叶,以镶嵌状态的排列方式而不重叠的现象单叶:一张叶柄上只生一张叶片复叶:一个叶柄上生有3片或3片以上的叶片,从单叶演化而来,分为三出复叶、羽状复叶、掌状复叶。
区别全裂叶和复叶:全裂叶的裂片无柄、歌裂片形状不同、裂片基部互相连接复叶的小叶片一般有柄、小叶片形状彼此相同、小叶片的基部相连叶的解剖结构双子叶植物叶的结构(以女贞叶为代表)表皮:异面叶,具有上下表皮之分表皮细胞一层,细胞排列紧密,无细胞间隙细胞外壁覆盖有一层连续的角质层,上表皮的角质层明显较厚气孔器主要分布于下表皮,由2个保卫细胞+气孔组成叶肉:由上下表皮内的薄壁组织组成含叶绿体,是叶进行光合作用制造有机物的主要场所邻接上表皮的为栅栏组织,是叶内主要的光合作用场所邻接下表皮的为海绵组织,是气体交换、水分蒸腾的主要场所叶脉:分布于叶片组织内的维管束,由茎内维管束分出经叶柄通至叶片维管束的上下两侧常有厚壁组织或厚角组织分布木质部接近于上表皮,韧皮部位于木质部下方,接近下表皮,中间常具有形成层单子叶植物叶的结构(禾本科植物水稻为例)表皮:长细胞:长轴与叶平行,外壁角质化并含有硅质短细胞:正方形或稍扁,分硅质细胞与栓质细胞泡状细胞:位于近轴面气孔器:保卫细胞,哑铃状,内侧副卫细胞:外侧分布在叶的脉间区域,长轴与叶脉相平行,叶上下表皮分布的气孔数目相近叶肉:均一的同化组织,无栅栏组织和海绵组织之分,为等面叶叶脉:在中脉与较大维管束上下两侧有发达的厚壁组织与表皮相连,增加机械支持力维管束外包围有1~2层维管束鞘细胞C3植物:维管束鞘由2层细胞构成,内层为较小的厚壁细胞,外层为大的薄壁细胞C4植物:维管束鞘仅由1层较大的薄壁细胞组成,与外侧相邻的一圈辐射排列的叶肉细胞组成花环状结构木质部由位于近轴面的原生木质部(螺纹导管破裂形成气腔)和后生木质部(两个大管径的孔纹导管)组成韧皮部位于木质部下方靠近远轴面,由筛管和伴胞组成裸子植物叶的结构(以黑松针叶为例)复表皮:表皮:表皮细胞只有一层细胞外壁有角质层细胞壁加厚并强烈的木质化气孔器下陷,由保卫细胞和副卫细胞组成下表皮:由1或2层木质化的厚壁细胞组成,排列整齐无细胞间隙叶肉:由3~4层细胞,没有栅栏组织和海绵组织之分为等面叶叶肉细胞的细胞壁多处内陷,形成突入细胞内部的皱褶,细胞壁互相嵌合,叶绿体沿外沿排列,又称为绿色折叠薄壁组织,增强了光合作用树脂道:在叶肉组织近下皮层处分布,树脂道的腔由一层上皮细胞(具有分泌功能的薄壁细胞)围绕,外层是由一层具有木质化厚壁的纤维所构成的鞘状结构内皮层:位于叶肉组织内方,在内皮层细胞的径向壁上具有凯氏带结构维管组织:木质部位于近轴面,组成成分是管胞和薄壁细胞韧皮部位于远轴面,组成成分是筛胞和薄壁细胞转输组织包围在两个维管束外方:活的薄壁细胞,原生质浓厚。
试述禾本科植物叶片的解剖构造特点。
禾本科植物是指属于禾本科的植物,其叶片的解剖构造特点主要包括以下几个方面:
1.叶片整体形态:禾本科植物的叶片通常为线状,呈线状披针
形或细长条形,叶片的长度通常远大于宽度。
2.叶片表皮:禾本科植物的叶片表皮通常由角质层和表皮细胞
组成,表皮细胞密集排列,呈长形,具有蜡质层,可以减少水分蒸发。
3.气孔:禾本科植物的叶片通常具有大量的气孔,气孔分布在
叶片的上下表皮中,且密度较高。
气孔具有开启和关闭的机构,调节叶片的气体交换和蒸腾作用。
4.维管束:禾本科植物的叶片维管束排列整齐,通常为并列排列,维管束主要由导管和木质部组成,导管用于水分和养分的输送。
5.排列方式:禾本科植物的叶片排列方式通常为互生或对生,
互生指叶片交替地生长在茎上,对生指两片叶片在同一节点上对生。
总体来说,禾本科植物的叶片解剖构造特点主要表现为叶片细长,表皮细胞密集有蜡质层,具有众多气孔,维管束排列整齐,并且叶片的排列方式多为互生或对生。
这些特点使得禾本科植
物在生活环境中具有适应力,能够充分利用光能和碳源,进行光合作用,并且减少水分蒸发。
叶的形态一叶的形态(一)叶的组成1.双子叶植物的组成:叶片(lamina或blade)、叶柄(petiole)和叶托(stipule)·叶片是叶的主要部分,多数为绿色的扁平体。
·叶柄是叶的细长柄状部分,上端与叶片相连,下端与茎相连。
·托叶是柄基两侧所生的小叶状物。
2.单子叶植物叶的组成(禾本科):叶片、叶鞘(leaf sheath)。
·叶鞘是由叶的基部扩大而成。
3.完全叶:具叶片、叶柄和叶托三部分的叶。
不完全叶:只具一或两个部分的叶。
(二)叶片的形态三叶的结构(一)被子植物叶的一般结构·异面叶——两面的内部结构不同,上面深绿色,下面浅绿色。
·等面叶——两面的内部结构相似,叶肉组织分化不大。
·三种基本结构:1.表皮——包在叶的最外层,有保护作用A.角质层的存在起保护作用,控制水分蒸腾,加固机械性能,防止病菌侵入,对药液有不同程度的吸收能力。
B.角质层的厚壁可作为作物优良品种选育时的依据之一。
C.气孔是由保卫细胞和它们间的孔口共同组成D.气孔的类型:无规则形、不等形、平列形、横列形2.叶肉——在表皮的内方,有制造和贮藏营养的作用。
栅栏组织:近上表皮部位的绿色组织排列整齐细胞呈长柱形,细胞长轴和叶表面相垂直,呈栅栏状。
海绵组织:栅栏组织的下方,即近下表皮部分的绿色组织,形状不规则,排列不整齐,疏松和具较多间隙,做海绵状。
. 3.叶脉——埋在叶肉中的维管组织,有输导和支持的作用总结:叶肉是叶的主要结构,是叶的生理功能主要进行的场所.表皮包被在外,起保护作用,使叶肉得以顺利地进行工作。
叶脉分布于内,一方面,源源不绝地供应叶肉组织所需的水分和盐类,同时运输出光合的产物;另一方面,又支撑着叶面,使叶片舒展在大气中,承受光照。
三种基本结构的合理组合和有机联系,也就保证叶片生理功能的顺利进行,这也表明叶片的形态、结构是完全适应它的生理功能的。
裸子植物叶的解剖结构表皮系统:表皮、下皮层、气孔叶肉:胞壁内折,叶绿体沿皱折分布内皮层:一圈细胞维管束:木质部(管胞)、韧皮部(管胞)松针的结构松针叶小,表皮壁厚,叶肉细胞壁向内褶叠,具树脂道,内皮层显著,维管束排列在叶的中心部分等,都是松属针叶的特点。
第七章叶的形态与结构第一节叶的发生组成和叶序叶是先于根发育出现的结构,是植物光合作用制造养分的重要场所,是植物重要的营养器官之一。
本章主要讲述叶的形态、结构特征及其与功能间的相互关系。
第一节叶的发生、组成与叶序一、叶的发生与生长(一)叶的发生与生长1.叶的发生叶由叶原基生长分化而来。
当芽形成和生长时,在茎的生长锥的亚顶端,周缘分生组织区的外层细胞不断分裂,形成侧生的突起。
这些突起是叶分化发育的起点,因而被称为叶原基。
叶原基是一团原分生组织细胞,将朝着长、宽、厚三个方向进一步生长,逐渐形成具有叶片、叶柄、托叶等结构雏形的幼叶,最终发育成为成熟叶。
叶的这种起源发育方式称为外起源(图7-1)。
2.叶的生长由叶原基发育成叶的过程包括顶端生长、边缘生长和居间生长三个阶段。
叶原基形成后,首先进行顶端生长,不断伸长,成为圆柱状的结构,称为叶轴。
叶轴是尚未分化的叶柄和叶片。
具有托叶的植物,叶原基上部形成叶轴;叶原基基部的细胞分裂较上部快,且发育较早,分化成为托叶,包围着上部叶轴,起到保护作用。
具有叶鞘的植物(如禾本科),叶原基基部生长活跃,侧向延伸可以包围整个茎端分生组织。
在叶轴伸长的同时,叶轴两侧边缘的细胞开始分裂,进行边缘生长(边缘生长进行一段时间后,顶端生长停止)。
叶轴的边缘生长,使叶轴变宽,形成具有背腹性的、扁平的叶片雏形;如果是复叶,则通过边缘生长形成多数小叶片。
没有进行边缘生长的叶轴基部分化为叶柄,当幼叶叶片展开时叶柄才随之迅速伸长(图7-2)。
当幼叶由芽内逐渐伸出、展开时,边缘生长逐渐停止,整个叶片进入居间生长,最后发育成熟。
大多数幼叶叶片的生长基本上是等速生长,但有些幼叶各部分细胞的生长速度并非完全一致,因而在叶的生长过程中,便出现了不同的叶缘、叶形等。
叶片在不断增大的同时,伴随着内部组织的分化成熟。
在边缘生长时期,叶轴两侧的边缘分生组织经垂周分裂产生原表皮,将来发育成为表皮;近边缘分生组织平周分裂和垂周分裂交替进行,形成了基本分生组织和原形成层。
单叶和复叶名词解释单叶和复叶是植物解剖构造中的两个重要概念,指的是植物叶子的形态及结构。
在植物学中,单叶和复叶的区分对于了解植物的形态结构、生长特点和分布区域都有着十分重要的作用。
一、单叶的定义单叶是指植物叶子的基本形态为一个叶片。
一片单叶一般包括叶片、叶柄和叶脉三部分。
单叶的叶脉一般呈辐射状或成网状,采光面积较大,可以更快地吸收阳光和二氧化碳进行光合作用。
常见的单叶植物有毛地黄、万寿菊、向日葵等。
二、复叶的定义复叶是指植物叶子的基本形态为由许多小叶子组成或分叉形成多片的叶子。
每片复叶叶子的基本构成部分为小叶子,小叶子由叶柄连接成片,一片复叶由若干叶片连接成形。
复叶比单叶更容易调节蒸腾作用,从而减少水分流失。
常见的复叶植物有扁豆、槐树、银杏等。
三、单叶与复叶的区别单叶与复叶在结构上存在明显区别。
单叶仅由一片叶子构成,叶脉主要呈放射状分布。
而复叶则由多个小叶子构成,小叶子的主脉有分叉和网脉状分布。
此外,单叶的叶脉关系密集,光合面积较多,可以吸收更多的阳光和二氧化碳进行光合作用,灵活性不如复叶。
复叶具有调节蒸腾的能力,可以减少水分的流失,对环境的适应性更优。
四、单叶与复叶的对比应用单叶和复叶的结构特点决定了它们在自然界中的分布条件,以及它们的不同用途。
由于单叶植物光合面积较大,所以比较适合在富含阳光和二氧化碳的环境下生长,如草地、草原、沙漠等地。
常见的单叶植物大部分都有较为相似的叶片结构,如一些草类植物、菊科、茉莉科等。
而复叶植物由于具有调节蒸腾的能力,因此更适合在潮湿和雨量充足的环境下生长,如亚热带、热带雨林等。
常见的复叶植物包括豆科、金缕梅科、榆树科等。
综上所述,单叶和复叶的概念可以帮助我们更好地了解植物的解剖学结构,了解不同植物在不同环境中的适应能力和分布情况。
通过研究单叶和复叶植物的特征,有利于我们更好地认识到植物和自然之间的关系,同时也为我们更好地保护和利用自然资源提供了依据。
植物形态学中的叶片特征植物形态学是研究植物的外部形态结构及其分化的学科,叶片是植物体的重要器官之一。
通过对叶片的观察和分析,可以了解植物的分类、生长发育以及适应环境的策略。
本文将探讨植物形态学中的叶片特征,包括叶片形态、叶缘形态、叶尖与叶基形态、叶脉形态等,以期帮助读者更好地理解叶片的特点以及其在植物生物学中的重要性。
一、叶片形态叶片形态指的是叶片的大小、形状以及叶片的排列方式。
在植物界中,叶片形态千差万别,可以是线形、椭圆形、圆形、倒卵形等各种形状。
叶片的大小取决于植物的种类和生长环境,有些叶片很小,只有几毫米长,而有些叶片具有巨大的面积,如莲藕叶。
此外,叶片的排列方式也有多样性,可以是对生、互生、螺旋生、簇生等不同排列方式。
二、叶缘形态叶缘形态指的是叶片边缘的形状。
在植物界中,叶片的边缘可以是光滑的、锯齿状的、波状的、裂片状等。
这些不同的叶缘形态对植物的生存和适应环境起着重要的作用。
例如,某些具有锯齿状叶缘的植物可以减少光照面积,从而减少水分流失,适应干燥环境。
三、叶尖与叶基形态叶尖与叶基形态指的是叶片顶端和基部的形态特征。
叶片的顶端可以是尖锐的、渐尖的、圆钝的等。
叶片的基部可以是圆形的、心形的、镰刀状的等。
这些特征不仅能够帮助我们鉴别植物的种类,还具有生理和生态学上的意义。
例如,某些叶尖渐尖的植物对阳光的利用更充分,有助于光合作用的进行。
四、叶脉形态叶脉形态指的是叶片内部的导管系统形态特征。
叶脉主要分为平行脉和网状脉两种形态。
平行脉指的是平行排列的叶脉,如禾本科植物的叶脉。
网状脉指的是呈网状排列的叶脉,如木兰科植物的叶脉。
叶脉的形态具有分类学和解剖学的意义,可以帮助我们鉴别植物的科属,同时也与植物在水分和养分的吸收与传输方面密切相关。
总结植物形态学中的叶片特征是研究植物形态多样性和适应环境的重要线索之一。
通过对叶片形态、叶缘形态、叶尖与叶基形态以及叶脉形态等特征的观察和研究,我们可以更好地理解植物的生长发育、适应性特征以及它们在生态系统中的作用。