四种命题2
- 格式:ppt
- 大小:435.50 KB
- 文档页数:17
四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
1.3.2命题的四种形式教学目标:1.判断所给语句是否是命题,并能判断一些简单命题的真假.2.理解命题对的逆命题、否命题与逆否命题的含义.3.能分析四种命题的相互关系.教学难点:理解命题对的逆命题、否命题与逆否命题的含义.教学重点:能分析四种命题的相互关系.基础知识•自主学习n知识梳理1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.【思考辨析】判断下面结论是否正确(请在括号中打“ J ”或“ X ”)⑴“x2+2x—3<0 "是命题.( )(2)命题"a=¥,则tana=l"的否命题是“若a=;贝lj tan a#l".( )(3)若一个命题是真命题,则其逆否命题是真命题.( )考点自测1.命题“若[=;则tan 1=1”的逆否命题是( )71A.右a气,贝!j tan 171B.右a=3,贝[J tan 1TTC.右tan 1,则[乂彳兀D.右tan otT^l,贝lj a=~^2.已知命题p:若x= — \,贝。
向量Q=(1, x)与b=(x+2, x)共线,则在命题p的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A.0B. 2C. 3D. 4题型分类•深度剖析题型一四种命题及真假判断例1 (1)给定下列四个命题:%1若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;%1若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;%1垂直于同一直线的两条直线相互平行;%1若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④(2)命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”跟踪训练1IT 1(1)命题“若a=g,则海0(=矿的逆命题是()71 1A.右a=亍贝I cos a乂万71 1B.右贝U cos“] 71C.若cos a=万,贝U a=a-H- ] 丸D.右* cos ot乂贝!I ot乂3(2)命题“若x, >都是偶数,则x+丁也是偶数”的逆否命题是()A.若x+y是偶数,则x与〉不都是偶数B.若x+丁是偶数,则x与〉都不是偶数C.若x+丁不是偶数,则x与〉不都是偶数D.若x+丁不是偶数,则x与丁都不是偶数思想方法•感悟提高方法与技巧1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.失误与防范1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若〃则0"的形式.练出高分A组专项基础训练(时间:30分钟)1 •下列命题中为真命题的是()A.命题“若x>y,则x>W'的逆命题B.命题“若X>1,则》2>1,,的否命题C.命题“若x=l,则U+x—2=0”的否命题D.命题"若.r>0,则x>l”的逆否命题2."如果x、],6R,且?+i;2 = 0,则x、y全为0”的否命题是()A.若x、且疽+],2/0,则x、全不为0B.若x、且/+]/2力0,则x、不全为0C.若x、],6R 且x、],全为0,则x2+j^2 = 0D.若x、且x、y 不全为0,则x2+_y2^03.下列结论错误的是()A.命题“若J—3x—4=0,贝»=4”的逆否命题为“若x#4,则盘一3x—4N0"B.“x=4”是"J—3x—4=0”的充分条件C.命题“若m>0,则方程x2+x-w=0有实根”的逆命题为真命题D.命题“若m2+«2 = 0,则m = 0且"=0”的否命题是“若m2+n~^0,则m/0或4.命题“若检〉/,则x>j/'的逆否命题是()A.“若X<y,则了2勺2"B.“若X>y,则疽>>>2”C."若xWy,则D."若xNy,则检勺声5.给出命题:若函数y=»是慕函数,则函数y=Ax)的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A. 3B. 2C. 1D. 06.“若aWb,则a&Wbc1”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是.7.有下列几个命题:%1“若泓,贝言对2”的否命题;%1“若x+v=0,则x, V互为相反数”的逆命题;%1“若检<4,则一2<x<2”的逆否命题.其中真命题的序号是.题型一四种命题及真假判断答案(DD (2)B角学析(1)只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.(2)将原命题的条件与结论互换即得逆命题,故原命题的逆命题为"若一个数的平方是正数,则它是负数".思维升华(1)写一个命题的其他三种命题时,需注意:%1对于不是“若P,则形式的命题,需先改写;%1若命题有大前提,写其他三种命题时需保留大前提.自主学习答案:【思考辨析】判断下面结论是否正确(请在括号中打“ J ”或“ X ”)(1)a x* 2 3~\~2x—3<0”是命题.(X )JT JT(2)命题 %=彳,则tana=l”的否命题是“若。
命题命题:可以判断真假、用文字或符号表述的语句叫做命题。
判断为真的叫真命题,判断为假的叫做假命题。
一般地,一个命题由条件和结论两部分组成,通常表示为“若p ,则q ”形式。
四种命题:原命题:若p ,则q逆命题:若q ,则p否命题:若⌝p ,则⌝q逆否命题:若⌝q ,则⌝p四种命题的真假性关系:互为逆否命题的两个命题真假性一致。
若A B ⊆,则A B ⇒为真,⇔B 在A 上恒成立。
例1, 写出命题“对顶角相等”的逆命题、否命题、和逆否命题,并判断这四个命题的真假。
例2, 写出命题“正方形的四条边相等”的逆命题、否命题、和逆否命题,并判断这四个命题的真假。
例3, 设原命题是“若0a =,则0ab =”。
(1) 写出它的逆命题、否命题和逆否命题。
(2) 判断这四个命题是真命题还是假命题。
例4, 设原命题是“若0x >,则2x >”。
(1) 写出它的逆命题、否命题和逆否命题。
(2) 判断这四个命题是真命题还是假命题。
例5, 设命题P :方程()244210x a x +-+=无实数根;命题q :函数()2ln 1y x ax =++的值域为R 。
如果命题P 和Q 中有且只有一个真命题,求实数a 的取值范围。
例6, 设命题P :方程210x mx ++=有两个不等的正实数根,命题Q :()4xy m =+为x R ∈上的增函数。
若命题P 和Q 中恰有一个假命题,求实数m 的取值范围。
例7, 设命题P :|43|1x -≤;命题Q :()()22110x a x a a -+++≤,已知若P 则Q 为真命题,若Q 则P 为假命题,求实数a 的取值范围。
常用词语的否定:等于------不等于大于------不大于(小于等于)小于------不小于(大于等于)是---------不是都是------不都是至多有1个------至少有2个至多有n 个-----至少有n+1个至少有1个-----一个也没有。