VoLTE要点
- 格式:doc
- 大小:1.23 MB
- 文档页数:12
VOLTE知识点VOLTE知识点1、VOLTE概述和基本特征VOLTE是什么?最直接简单的理解就是VOIP,因为LTE没有电路域,需要基于分组域提供IP语⾳业务,即VoLTE(Voice over LTE)。
特征1:VoLTE由IMS提供呼叫控制和业务逻辑。
VoLTE的信令和媒体经EPC路由⾄IMS⽹络,由IMS提供会话控制和业务逻辑。
特征2:VoLTE由EPC提供⾼质量的分组域承载。
在VoLTE中EPC作为IMS的接⼊⽹,通过全球统⼀的专⽤APN(‘IMS’ APN)及独⽴承载为⽤户提供区别于普通数据业务的QoS保障。
特征3:连续覆盖前VoLTE可通过eSRVCC保障呼叫连续性。
VoLTE终端在通话过程中漫游⾄⽆LTE覆盖的区域时,通过eSRVCC将当前呼叫切换⾄2G/3G电路域,此时2G/3G⽹络作为IMS的接⼊⽹。
2、VoLTE竞争⼒体验VoLTE 2G/3G特性呼叫时延0.5-2秒5-8秒视频质量典型分辨率:480*640可选720P/1080P分辨率:176*144话⾳质量AMR-WB频率:50~7000Hz编解码:AMR-WB23.85Kbps抽样:16KHzAMR-NB频率:300~3400Hz编解码:AMR-NB12.2Kbps抽样:8KHz3、终端开机的IMS注册过程⽤户开机以后,⾸先完成EPC附着过程,建⽴QCI=9默认承载,附着完成以后,发起IMS注册过程和鉴权。
在IMS注册流程中,先建⽴QCI=5的SIP信令承载。
然后进⾏SIP的注册过程,当完成注册过程以后,就可以进⾏VoLTE呼叫了。
SIP信令的注册过程如下图所⽰。
SIP注册过程:序号消息解释1 ⽤户⾸次试呼时,终端向代理服务器发送REGISTER注册请求2 IMS认证/计费中⼼获知⽤户信息不在数据库中,向终端回401 Unauthorized质询信息,其中包含安全认证所需的令牌3 终端将⽤户标识和密码根据安全认证令牌加密后,再次⽤REGISTER消息报告给IMS服务器4 IMS服务器将REGISTER消息中的⽤户信息解密,认证合法后,将该⽤户信息登记到数据库中,并向终端返回响应消息200 OK。
VoLTE最全知识点-图文一VoLTE介绍1.1LTE语音解决方案演进SvLTE(SimultaneouVoiceandLTE),即双待手机方式。
手机同时工作在LTE和CS,前者提供数据业务,后者提供语音业务。
是纯粹基于手机的方案。
对网络无特别要求,不需要部署IMS,缺点是手机成本高、耗电高。
目前已经有CDMA1某和LTE的双待手机,被一些CDMA运营商采用作为IMS部署前的过渡方案,而GSM/UMTS和LTE的双待手机目前还没有推出。
CSFB(CircuitSwitchedFallBack),LTE只提供数据业务,当发起或者接受语音呼叫时,回落到CS域进行处理。
运营商无需部署IMS,只需要升级MSC就可以支持。
这是一种快速提供业务的方案,但缺点是呼叫接续速度慢。
CSFB适合作为IMS部署之前的过渡方案,另外还可以用来解决LTE手机漫游场景的语音呼叫问题,在拜访地网络没有部署IMS,或者IMS漫游协议尚未应用的情况下,CSFB可以为漫入的LTE用户提供语音业务。
SRVCC(SingleRadioVoiceCallContinuity),解决语音控制和移动到CS网络切换时的语音连续性问题。
为基于IMS的VOIP呼叫解决方案,利用IMS核心网络提供LTEVoIP语音业务的路由、控制和业务触发,并提供LTE向2G/3G切换时的语音连续性保证。
SRVCC的实现过程实质上就是一个切换过程,在LTE网络中终端是通过IMS来实现语音功能的,当终端离开LTE网络后,则通过MSCerver(MobileSwitchingCentererver)切换到2G/3G网络中从而实现z在2G/3G网络中的语音功能。
VoLTE(VoiceoverLongTermEvolution),实现LTE网络中的IMS域提供高清晰的语音服务。
IMS由于支持多种接入和丰富的多媒体业务,成为全IP时代的核心网标准架构。
经历了过去几年的发展成熟后,如今IMS已经跨越裂谷,成为固定话音领域VoBB、PSTN网改的主流选择,而且也被3GPP、GSMA确定为移动语音的标准架构。
1、VOLTE概述和基本特征VOLTE是什么?最直接简单的理解就是VOIP,因为LTE没有电路域,需要基于分组域提供IP语音业务,即VoLTE(Voice over LTE)。
特征1:VoLTE由IMS提供呼叫控制和业务逻辑。
VoLTE的信令和媒体经EPC路由至IMS网络,由IMS提供会话控制和业务逻辑。
特征2:VoLTE由EPC提供高质量的分组域承载。
在VoLTE中EPC作为IMS的接入网,通过全球统一的专用APN(‘IMS’ APN) 及独立承载为用户提供区别于普通数据业务的QoS保障。
特征3:连续覆盖前VoLTE可通过eSRVCC保障呼叫连续性。
VoLTE终端在通话过程中漫游至无LTE覆盖的区域时,通过eSRVCC将当前呼叫切换至2G/3G电路域,此时2G/3G网络作为IMS的接入网。
2、VoLTE竞争力3、终端开机的IMS注册过程用户开机以后,首先完成EPC附着过程,建立QCI=9默认承载,附着完成以后,发起IMS注册过程和鉴权。
在IMS注册流程中,先建立QCI=5的SIP信令承载。
然后进行SIP的注册过程,当完成注册过程以后,就可以进行VoLTE呼叫了。
SIP信令的注册过程如下图所示。
SIP注册过程:4、VoLTE呼叫VoLTE的信令呼叫流程对关键流程的解释如下表所示:5、Volte呼叫volte的AMR-WB 12.65K的确定1)AMR-WB的9种速率索引表2)volte呼叫过程中,Invite消息中携带的媒体类型和编码格式3)主被叫协商以后,在UPDATE消息中确定的媒体类型和编码格式AMR-WB采样频率为16kHz,AMR的采用频率为8kHZ。
AMR-WB总共支持8种模式,在上图中就是mode-set=2,表示AMR-WB只适应12.65kbps编码方式。
6、Volte呼叫vollte的AMR-WB 23.85k的确定1)Invite消息中的AMR-23.85k的编码方法2)update 消息中协商以后的媒体类型和编码方式下图中:媒体类型为AMR-WB,采样频率为16k,单通道。
VOL TE关键知识一、VOLTE是什么?有哪些优势?要了解VOLTE是什么,首先了解LTE以及需求,LTE即3GPP网络的长期发展和演进,只有PS网络,LTE网络不包含传统的23G语音业务,对该网络提出了更高的速率,更优的服务质量和更小的时延等需求.VoLTE即Voice络提供语音业务的解决方案,该方案需要解决网络通讯及时性\服务质量保证\与其他网络完成互操作等问题,因此VOLTE网络引入了IMS协议架构,VoLTE又是基于IMS 的语音业务。
IMS由于支持多种接入和丰富的多媒体业务,成为全IP时代的核心网标准架构。
经历了过去几年的发展成熟后,如今IMS已经跨越裂谷,成为固定话音领域VoBB、PSTN网改的主流选择,而且也被3GPP、GSMA 确定为移动语音的标准架构。
VOLTE是一种IP数据传输技术,无需2G/3G网,全部业务承载于4G网络上,可实现数据与语音业务在同一网络下的统一。
换言之,4G 网络下不仅仅提供高速率的数据业务,同时还提供高质量的音视频通话,后者便需要VoLTE技术来实现。
优势:1、对于用户而言,VoLTE能够带来更好的使用感受和更佳的用户体验,高清语音和视频编解码的引入将语音通话质量提升2倍,VoLTE的呼叫接续时长大幅缩短,测试表明VoLTE比CSFB缩短一半以上,VoLTE能将高清语音业务与IMS(IP多媒体子系统)网络具有的其他多媒体业务(如融合消息、会议、视频共享等)以及互联网业务进行有机融合,从而提供远比窄带语音业务丰富的融合业务体验。
2、VoLTE基于LTE承载语音,能够充分利用LTE无线技术高频谱利用率、抗衰落性、高带宽、大容量的优点。
同时,LTE的核心网EPC(Evolved Packet Core)网络在设计之初就为对时延敏感而带宽要求较低的语音业务制定了相应的QoS控制机制,从而保证了在LTE网络上提供高质量VoIP的能力。
“3、VoLTE网络性能高于现网,其接续时间相比2G/3G 网络可提高50%以上。
Volte面试知识什么是Volte?Volte(Voice over LTE)是一种通话技术,它允许手机用户通过LTE(Long Term Evolution)网络进行语音通话。
传统上,语音通话是通过2G或3G网络传输的,而Volte技术将语音通话转换为数据包,通过LTE网络进行传输。
Volte的优势Volte技术相比传统的2G或3G语音通话有以下几个优势: 1. 高清语音质量:Volte使用宽带LTE网络传输语音数据,相比传统通话质量更高,语音更加清晰。
2. 快速呼叫接通:Volte技术可以更快地建立语音通话连接,减少了呼叫接通的时间。
3. 高效能力利用:Volte可以与数据业务共享LTE网络,提高了网络资源的利用率。
4. 兼容性强:Volte技术兼容现有的2G和3G网络,可以实现与传统网络的互通。
Volte的技术原理Volte技术的实现依赖于以下几个关键技术: 1. VoIP(Voice over IP):Volte 将语音转换为数据包,并通过VoIP技术进行传输。
VoIP技术将语音信号转换为数字信号,并使用IP协议进行传输。
2. IMS(IP Multimedia Subsystem):IMS是一种网络架构,它支持多媒体业务,包括语音、视频和消息等。
Volte使用IMS来管理和控制语音通话。
3. QoS(Quality of Service):Volte技术通过QoS机制保证语音通话的优先级,提供高质量的语音服务。
QoS可以确保语音数据在网络中的传输优先级高于其他数据。
Volte面试常见问题1.请解释什么是Volte技术?2.Volte与传统语音通话有什么不同?3.Volte技术有哪些优势?4.Volte如何实现语音通话的高清质量?5.请解释VoIP技术在Volte中的作用。
6.请解释IMS在Volte中的作用。
7.如何确保Volte语音通话的优先级?8.Volte技术对LTE网络的利用率有何影响?9.请解释QoS在Volte中的作用。
VOLTE知识点1、VOLTE概述和基本特征VOLTE是什么?最直接简单的理解就是VOIP,因为LTE没有电路域,需要基于分组域提供IP语音业务,即VoLTE(Voice over LTE)。
特征1:VoLTE由IMS提供呼叫控制和业务逻辑。
VoLTE的信令和媒体经EPC路由至IMS网络,由IMS提供会话控制和业务逻辑。
特征2:VoLTE由EPC提供高质量的分组域承载。
在VoLTE中EPC作为IMS的接入网,通过全球统一的专用APN(‘IMS’ APN) 及独立承载为用户提供区别于普通数据业务的QoS保障。
特征3:连续覆盖前VoLTE可通过eSRVCC保障呼叫连续性。
VoLTE终端在通话过程中漫游至无LTE覆盖的区域时,通过eSRVCC将当前呼叫切换至2G/3G电路域,此时2G/3G网络作为IMS的接入网。
2、VoLTE竞争力体验VoLTE 2G/3G特性呼叫时延0.5-2秒5-8秒视频质量典型分辨率:480*640可选720P/1080P分辨率:176*144话音质量AMR-WB频率:50~7000Hz编解码:AMR-WB23.85Kbps抽样:16KHzAMR-NB频率:300~3400Hz编解码:AMR-NB12.2Kbps抽样:8KHz3、终端开机的IMS注册过程用户开机以后,首先完成EPC附着过程,建立QCI=9默认承载,附着完成以后,发起IMS注册过程和鉴权。
在IMS注册流程中,先建立QCI=5的SIP信令承载。
然后进行SIP的注册过程,当完成注册过程以后,就可以进行VoLTE呼叫了。
SIP信令的注册过程如下图所示。
SIP注册过程:序号消息解释1 用户首次试呼时,终端向代理服务器发送REGISTER注册请求2 IMS认证/计费中心获知用户信息不在数据库中,向终端回401 Unauthorized质询信息,其中包含安全认证所需的令牌3 终端将用户标识和密码根据安全认证令牌加密后,再次用REGISTER消息报告给IMS服务器4 IMS服务器将REGISTER消息中的用户信息解密,认证合法后,将该用户信息登记到数据库中,并向终端返回响应消息200 OK。
VoLTE端到端业务质量分析要点什么是VoLTE?VoLTE,即Voice over LTE,是一项利用LTE网络传输语音和多媒体信息的技术。
相比于传统的通话方式,VoLTE具有更高的通话质量、更快的接通速度和更低的通话掉线率。
VoLTE业务质量分析对于VoLTE业务运营商和用户而言,业务质量分析是十分重要的。
以下是VoLTE端到端业务质量分析的一些要点:1. 测试方法针对VoLTE的业务质量分析,应采用业界已经认可的测试方法,如3GPP(3rd Generation Partnership Project)规定的测试方法。
测试结果应当可重复性和可比性。
2. 网络漫游在进行VoLTE业务质量分析时,需要考虑到网络漫游的情况。
在用户移动时,需要了解业务质量的变化,以便了解VoLTE网络在不同地点的业务质量表现。
3. 网络覆盖率VoLTE业务质量分析应考虑到网络覆盖率。
网络覆盖率的高低直接影响VoLTE 的通话质量和通话掉线率。
测试时应该按照网络覆盖率进行测试,并对测试结果加以分析。
4. 信号强度信号强度是影响VoLTE业务质量的重要因素之一。
对于VoLTE来说,信号强度需要达到一定的水平,才能保证语音、多媒体传输的质量。
测试时应考虑信号强度,并对测试结果进行比较和分析。
5. QoS保障在VoLTE业务质量分析时,需要重点关注QoS保障。
QoS保障是VoLTE能够提供高质量服务的关键。
在测试时,应关注到VoLTE是否满足业务质量要求,如通话质量、接通速度、通话掉线率、数据传输速度等。
6. 时延VoLTE业务质量还与时延有关。
在VoLTE通话中,时延较大会导致通话质量下降。
因此,在进行业务质量分析时,时延也是需要考虑到的因素之一。
7. 安全性VoLTE业务质量分析中还应特别关注安全性,尤其是数据传输的安全性。
业务质量分析应包括对VoLTE的安全性进行测试,并对测试结果进行评估。
结论VoLTE业务质量分析是一个综合性的任务,需要考虑到多个因素的影响。
1、VOLTE概述和基本特征VOLTE是什么?最直接简单的理解就是VOIP,因为LTE没有电路域,需要基于分组域提供IP语音业务,即VoLTE(Voice over LTE)。
特征1:VoLTE由IMS提供呼叫控制和业务逻辑。
VoLTE的信令和媒体经EPC路由至IMS 网络,由IMS提供会话控制和业务逻辑。
特征2:VoLTE由EPC提供高质量的分组域承载。
在VoLTE中EPC作为IMS的接入网,通过全球统一的专用APN(‘IMS’APN) 及独立承载为用户提供区别于普通数据业务的QoS保障。
特征3:连续覆盖前VoLTE可通过eSRVCC保障呼叫连续性。
VoLTE终端在通话过程中漫游至无LTE覆盖的区域时,通过eSRVCC将当前呼叫切换至2G/3G电路域,此时2G/3G 网络作为IMS的接入网。
2、VoLTE竞争力3、终端开机的IMS注册过程用户开机以后,首先完成EPC附着过程,建立QCI=9默认承载,附着完成以后,发起IMS注册过程和鉴权。
在IMS注册流程中,先建立QCI=5的SIP信令承载。
然后进行SIP 的注册过程,当完成注册过程以后,就可以进行VoLTE呼叫了。
SIP信令的注册过程如下图所示。
SIP注册过程:4、VoLTE呼叫VoLTE的信令呼叫流程对关键流程的解释如下表所示:5、Volte呼叫volte的AMR-WB 12.65K 的确定1)AMR-WB的9种速率索引表2)volte呼叫过程中,Invite消息中携带的媒体类型和编码格式3)主被叫协商以后,在UPDATE消息中确定的媒体类型和编码格式AMR-WB采样频率为16kHz,AMR的采用频率为8kHZ。
AMR-WB总共支持8种模式,在上图中就是mode-set=2,表示AMR-WB只适应12.65kbps编码方式。
6、Volte呼叫vollte的AMR-WB 23.85k 的确定1)Invite消息中的AMR-23.85k的编码方法2)update 消息中协商以后的媒体类型和编码方式下图中:媒体类型为AMR-WB,采样频率为16k,单通道。
lte volte概述功能指导书LTE-VoLTE(Long Term Evolution – Voice over LTE)是一种基于LTE(长期演进)技术的语音传输服务,通过VoLTE可以在4G网络上实现高质量的语音和视频通话。
本文将对VoLTE的功能和使用方法进行概述。
一、VoLTE的主要功能1. 高音质:VoLTE支持宽带语音(HD Voice)和超高清语音(Ultra HD Voice),可以传输更高质量的语音和音乐,并提供更清晰、更真实的通话体验。
2. 高通话接通率:VoLTE利用LTE网络优势,实现了快速的呼叫接通时间,提高了通话接通率。
3. 语音与数据同时传输:与传统的2G/3G网路相比,VoLTE可以在通话时同时进行数据传输,例如同时浏览网页、下载文件等,提高了用户的多任务处理能力。
4. 调度与优先级:VoLTE在网络调度上具有优先级,可以保证语音数据的传输优先级高于数据业务,确保语音通话的优质体验。
5. 网络覆盖与漫游:VoLTE通过利用LTE网络的全球覆盖特性,可以在国内外实现高清语音的漫游。
二、VoLTE的使用方法1. VoLTE支持的设备:使用VoLTE功能需要使用支持VoLTE的手机或其他终端设备。
用户可以通过运营商提供的官方网站或其他渠道查询所使用的设备是否支持VoLTE功能。
2. 开启VoLTE功能:在支持VoLTE功能的设备上,用户可以进入手机设置界面,搜索“VoLTE”相关选项,然后开启VoLTE功能。
开启后,手机将会连接VoLTE网络。
3. 呼叫通话:开启VoLTE功能后,用户可以使用手机拨号界面输入电话号码,发起语音通话。
VoLTE支持高质量语音通话和视频通话,用户可以根据需求选择通话方式。
4. 数据传输:在VoLTE通话过程中,用户仍然可以同时进行其他数据业务,例如浏览网页、使用社交媒体等。
同时,VoLTE也支持语音与数据的切换,例如在通话过程中需要查看其他应用,可以通过切换到数据传输模式实现。
VOLTE语音质量提升方案VOLTE(Voice over LTE)是一种在LTE网络上进行语音通信的技术,它可以提供更高质量、更快速的语音通话体验。
然而,即使使用VOLTE,语音通话的质量仍然可能受到一些因素的影响,例如网络拥塞、信号弱等。
为了提升VOLTE语音质量,可以采取以下方案:1.加强网络规划和优化:合理规划LTE网络的站点布局,提升网络覆盖和容量,减少网络拥塞和干扰。
通过优化信道和功率控制等策略,提高信号质量和覆盖范围,减少通话中断和丢包的概率。
2.网络保障措施:建立专门的QoS机制,为VOLTE语音通话分配更高的网络优先级,确保其在网络拥塞时能够获得更稳定、高质量的带宽。
同时,采用流量控制和动态带宽分配等技术,保障VOLTE语音通话的带宽需求,提高语音质量和稳定性。
3. 强化呼叫控制和质量管理:通过引入呼叫优化策略,包括最佳基站选择、呼叫前MOS(Mean Opinion Score)测量等,提升呼叫建立的成功率和语音质量。
在通话过程中,实时监测语音质量参数,包括丢包率、噪音和码化器性能等,及时调整参数和采取措施以优化语音通话质量。
4. 增强VOLTE终端设备性能:支持更高的语音编码解码器(codec),提供更好的语音质量。
通过对终端设备进行升级和软件优化,增强其对网络环境的适应性,减少通话中的音频延迟、波动和抖动,提升语音通话质量。
5. 提高语音编解码器的效率:采用先进的语音编解码技术,提高编码效率和音频质量,减少传输延迟和带宽占用。
通过引入更高级的音频编解码器,如HD Voice(高清语音)和EVS(Enhanced Voice Services)等,提供更清晰、更自然的语音质量。
6.引入音频增强技术:通过应用降噪技术和回声抑制技术,减少周围环境的噪声和回声对语音通话的干扰。
这些技术可以在终端设备和网络端进行实时处理,提升语音通话的清晰度和可听性。
7.加强用户培训和意识提升:提供培训和教育,向用户介绍VOLTE技术的优势和特点,提高用户对VOLTE语音服务的认知和认可度。
1 VoLTE关键知识点VOLTE概述和基本特征VOLTE是什么最直接简单的理解就是VOIP,因为LTE没有电路域,需要基于分组域提供IP 语音业务,即VoLTE(Voice over LTE)。
网络结构:CSCF(Call Session Control Function):多媒体呼叫会话过程中的信令控制MGCF(Media Gateway Control Function):执行IMS与CS域的互通;不同域间协议转换MGW(Media Gateway):连接不同域的用户面;不同网络之间的编解码转换特征1:VoLTE由IMS提供呼叫控制和业务逻辑。
VoLTE的信令和媒体经EPC路由至IMS网络,由IMS提供会话控制和业务逻辑。
特征2:VoLTE由EPC提供高质量的分组域承载。
在VoLTE中EPC作为IMS的接入网,通过全球统一的专用APN(‘IMS’ APN) 及独立承载为用户提供区别于普通数据业务的QoS保障。
特征3:连续覆盖前VoLTE可通过eSRVCC保障呼叫连续性。
VoLTE终端在通话过程中漫游至无LTE覆盖的区域时,通过eSRVCC将当前呼叫切换至2G/3G电路域,此时2G/3G网络作为IMS的接入网。
VoLTE竞争力终端开机的IMS注册过程为什么要注册:- 用户使用IMPU(IP Multimedia Public Identity)通信- 建立用户当前的IP与其IMPU的对应关系- 掌握用户当前的位置信息及业务能力- 注册过程的鉴权与认证保证了网络的安全性用户开机以后,首先完成EPC附着过程,建立QCI=9默认承载,附着完成以后,发起IMS 注册过程和鉴权。
在IMS注册流程中,先建立QCI=5的SIP 信令承载。
然后进行SIP的注册过程,当完成注册过程以后,就可以进行VoLTE呼叫了。
SIP信令的注册过程如下图所示。
附着请求,连接重配,重配完成,附着同意,Activate Default EPS Bearer(点击放大浏览)SIP注册过程:1)用户首次试呼时,终端向代理服务器发送REGISTER注册请求2)IMS认证/计费中心获知用户信息不在数据库中,向终端回401 Unauthorized质询信息,其中包含安全认证所需的令牌3)终端将用户标识和密码根据安全认证令牌加密后,再次用REGISTER消息报告给IMS服务器4)IMS服务器将REGISTER消息中的用户信息解密,认证合法后,将该用户信息登记到数据库中,并向终端返回响应消息200 OK。
一、volte基本原理VoLTE(Voice over Long-Term Evolution)是指在LTE网络上实现的语音通信服务。
与传统的语音通信服务相比,VoLTE具有高清晰度、低时延、高稳定性等特点,可以为用户带来更好的通信体验。
VoLTE基本原理包括语音编解码、IP包交换、QoS保障等多个方面的技术。
1. 语音编解码VoLTE使用了AMR-WB(Adaptive Multi-Rate Wideband)编解码技术,能够提供更高的音频质量和更广泛的频率范围。
与传统的AMR-NB(Narrowband)相比,AMR-WB支持更高的比特率和更好的语音保真度。
2. IP包交换VoLTE利用LTE网络的IP技术进行语音数据的传输,实现了语音通信和数据通信的统一。
在VoLTE中,语音数据被转换成IP数据包,通过LTE网络进行传输,然后再解码成语音信号,这种方式可以提高语音通信的效率和质量。
3. QoS保障在VoLTE网络中,通过QoS(Quality of Service)技术对语音数据进行优先处理,保证语音通话的实时性和稳定性。
VoLTE网络能够为语音通话提供更低的时延和更高的可靠性,从而保障了语音通信的质量和体验。
二、关键技术实现VoLTE需要涉及到多项关键技术的研发和部署,包括IMS(IP Multimedia Subsystem)、eSRVCC(enhanced Single Radio Voice Call Continuity)、eMBMS(enhanced Multimedia Broadcast Multicast Service)等。
1. IMSIMS是VoLTE的关键支撑技术,它提供了语音、视频和多媒体通信的统一架构,能够实现不同网络之间的互通和互操作。
IMS架构包括了多个网络实体,如P-CSCF(Proxy-Call Session Control Function)、S-CSCF(Serving-Call Session Control Function)、HSS(Home Subscriber Server)等,它们共同构成了VoLTE网络的核心部分。
VOLTE优化经验总结VOLTE(Voice Over LTE)是一种基于LTE网络的语音服务技术,主要用于4G网络。
它提供高质量的语音通话,同时允许用户同时进行语音和数据传输,提供更好的用户体验。
然而,由于网络质量、硬件设备、软件等方面的限制,VOLTE的性能可能会受到影响。
为了提高VOLTE的质量和可靠性,需要对网络进行优化。
以下是VOLTE优化的几个方面的经验总结:1.信号覆盖优化:VOLTE通话对网络信号要求较高,因此需要优化网络信号覆盖。
可以通过增加基站数量、调整天线方向和高度、增加室内覆盖等方式来改善信号覆盖。
此外,可以使用信号增强器或信号中继器来提高覆盖范围和信号质量。
2.指令调度优化:指令调度对于VOLTE通话的质量和稳定性至关重要。
需要合理调度资源,保证VOLTE用户在通话过程中能够获得足够的带宽和优先权。
可以通过优化调度算法和参数配置来提高指令调度效果。
3.传输链路优化:传输链路是VOLTE通话的关键部分。
传输链路的稳定性和带宽对通话质量有重要影响。
可以通过优化传输链路参数配置、增加传输链路容量和带宽等方式来提高传输链路质量。
4.网络拓扑优化:网络拓扑对VOLTE通话的质量和稳定性也有重要影响。
需要合理规划网络结构,减少网络节点数量,优化网络节点位置等。
此外,还可以通过增加容量、优化网络拓扑配置、设置负载均衡等方式来提高VOLTE通话的质量。
5.核心网优化:核心网是VOLTE通话的关键组成部分。
需要优化核心网节点的位置和容量,合理配置核心网参数,以提高通话质量和稳定性。
此外,还可以通过增加核心网资源、提高核心网处理能力等方式来提高VOLTE通话的质量。
6. QOS优化:QOS(Quality of Service)是VOLTE通话优化的重要指标之一、需要合理配置QOS参数,为VOLTE通话设置优先级,并根据用户需求进行调整。
通过QOS优化,可以保证VOLTE通话的质量和稳定性。
VOLTE方案及测试指导讲解VOLTE(Voice over LTE)是一种技术解决方案,用于在LTE网络上提供高质量的语音通话服务。
它使用IP数据传输进行语音通信,将语音信号转换为数字数据流进行传输,从而提供更高质量、更稳定可靠的通话体验。
以下是对VOLTE方案及测试指导的详细讲解。
1.VoLTE协议:2.VoLTE可用性:VoLTE可用性解决了在LTE网络中实现高质量语音通话的问题。
它通过优化无线网络资源使用和增强实时语音传输技术,提供更好的语音通话质量和稳定性。
3.VoLTE服务质量管理:VoLTE服务质量管理包括对语音通话性能和用户体验的监控和管理。
通过对通话质量指标进行监控和分析,可以及时发现和解决网络问题,提高用户满意度。
测试指导:1.VoLTE功能测试:a.测试VoLTE的基本功能,如呼叫建立、通话保持、通话转移等;b.测试VoLTE在不同场景下的能力,如高速移动、弱信号等;c.测试VoLTE与其他服务(如数据传输)之间的互操作性。
2.VoLTE性能测试:a.测试语音通话的音质和延迟,以及信号覆盖范围和容量等指标;b.测试VoLTE的抗干扰和鲁棒性,如对干扰和噪声的抑制能力;c.测试VoLTE在不同网络条件下的表现,如对网络质量变化的适应能力。
3.VoLTE兼容性测试:a.测试VoLTE与不同设备(如终端设备、网络设备)之间的互操作性;b.测试VoLTE在多个运营商网络之间的互通性。
4.VoLTE安全测试:a.测试VoLTE网络的安全性,如对入侵和攻击的防护能力;b.测试VoLTE的加密和鉴权机制的可靠性;c.测试VoLTE对隐私和数据保护的保障能力。
5.VoLTE网络优化测试:a.测试VoLTE在不同网络参数下的性能,如无线接入、传输、核心网等;b.测试VoLTE在网络拓扑变化和负载增加等情况下的性能表现;c.测试VoLTE对移动性管理和切换的支持能力。
综上所述,VOLTE方案及测试指导是为了保证在LTE网络上提供高质量、稳定可靠的语音通话服务。
VOLTE的10个重点指标1. 呼叫建立成功率(Call Setup Success Rate):指呼叫成功建立的比率。
该指标衡量了VOLTE网络在发起呼叫时的可靠性。
2. 呼叫掉话率(Call Drop Rate):指呼叫在通话过程中意外中断的比率。
较低的掉话率意味着VOLTE网络的稳定性和可靠性较高。
3. 通话音质(Voice Quality):衡量通话质量的指标,包括语音清晰度、抗干扰性和抗噪性等。
VOLTE应提供高质量的音频传输,确保用户能够流畅、清晰地进行通话。
4. 呼叫建立时延(Call Setup Delay):指呼叫建立所需的时间。
较低的时延对于提供即时通话体验至关重要,因此VOLTE网络应尽量减少呼叫建立时延。
5. 发送和接收时延(Transmission Delay):衡量从发送语音数据到接收方接收到语音数据所需的时间。
较低的传输时延对于保证VOLTE通话的实时性非常重要。
6. 延迟变化(Delay Variation):指传输时延的变化范围。
它影响着通话过程中的丢包率和抖动情况。
较低的延迟变化可以提供更稳定和平滑的通话体验。
7. 抖动(Jitter):指数据包的传输时间不一致性。
抖动越小,通话过程中的语音质量越好。
VOLTE网络应能够有效控制抖动,以提供稳定的语音通话。
8. 丢包率(Packet Loss Rate):指在数据传输过程中丢失的数据包比率。
较低的丢包率可以提供更高质量的语音通话体验。
9. 音频带宽(Audio Bandwidth):指在通话过程中使用的音频频率范围。
VOLTE技术可以支持更宽带的音频频率范围,提供更丰富细腻的通话体验。
10. 通话容量(Call Capacity):指在给定时间内网络可以支持的并发通话数。
高通话容量意味着网络可以应对更多用户同时进行通话,提供更好的用户体验。
这些重点指标是衡量VOLTE网络性能和用户体验的关键因素。
移动网络运营商和设备制造商可以通过监测和改进这些指标,提供更稳定和高质量的VOLTE服务。
VOLTE后台参数指导VOLTE(Voice over LTE)是一项让移动通信运营商通过LTE网络提供语音通话服务的技术。
它提供更高的语音质量、更快的呼叫连接速度和更低的功耗。
在配置和优化VOLTE后台参数时,需要考虑以下几个方面。
1.QoS参数配置:优先级和预留带宽是VOLTE语音通话的关键参数。
通过设置优先级,可以确保VOLTE通话在网络拥塞时得到更高的优先级,从而确保通话质量。
通过预留带宽,可以保证VOLTE语音通话在网络负载较高时不受影响。
2. SIP的参数配置:SIP(Session Initiation Protocol)是VOLTE 语音通话的基础协议。
在配置SIP参数时,需要考虑到网络容量、延迟和稳定性等因素。
例如,可以设置SIP超时时间以确保呼叫建立的稳定性,同时设置SIP协议优化参数以减少通话建立时间。
4. 编解码参数配置:VOLTE语音通话使用的编解码格式对通话质量有很大影响。
在配置编解码参数时,需要根据网络质量和设备支持的编解码格式来选择合适的参数。
例如,可以配置AMR-WB(Adaptive Multi-Rate Wideband)编解码器以提供更好的语音质量。
5.信令超时参数配置:通话建立和结束过程中的信令控制对VOLTE语音通话的成功率和质量有很大影响。
在配置信令超时参数时,需要根据网络延迟和设备响应时间来设置合适的超时时间。
例如,可以设置呼叫建立和结束的超时时间,以防止呼叫长时间无响应或无法成功建立。
6.容量与负载平衡参数配置:VOLTE语音通话可能会占用网络资源,因此需要考虑网络容量和负载平衡。
在配置容量与负载平衡参数时,需要根据网络的实际情况来设置合适的参数。
例如,可以配置最大并发呼叫数以限制VOLTE通话的数量,同时配置负载均衡参数以均衡语音通话的负载。
总之,配置和优化VOLTE后台参数是确保VOLTE语音通话质量和稳定性的重要步骤。
通过合理配置QoS参数、SIP参数、IMS核心网络参数、编解码参数、信令超时参数和容量与负载平衡参数,可以提高VOLTE语音通话的质量和可靠性,提升用户体验。
V oLTE KPI指标定义1概述2资源占用类2.1上行RB数(新指标)1,定义•每秒上行调度RB数/每秒上行实际调度次数。
2,统计方法•每秒上行调度RB数:指该用户在过去1秒内被实际调度的上行RB数;•每秒上行实际调用次数:指该用户在过去1秒内被系统实际上行调度的次数,而非过去1秒内的所有调度机会(例如过去一秒内所有的上行时隙数目);•例如,在过去1秒内如果系统调度了4次,调度的RB数分别为34、81、57、70,则该数据应为(34+81+57+70)/4,而不是简单得将总调度RB数平摊到过去1秒内所有的调度机会上:(34+81+57+70)/600。
2.2下行RB数(新指标)1,定义•每秒下行调度RB数/每秒下行实际调度次数。
2,统计方法•每秒下行调度RB数:指该用户在过去1秒内被实际调度的下行RB数;•每秒下行实际调用次数:指该用户在过去1秒内被系统实际下行调度的次数,而非过去1秒内的所有调度机会(例如过去一秒内所有的下行时隙数目);•例如,在过去1秒内如果系统调度了4次,调度的RB数分别为34、81、57、70,则该数据应为(34+81+57+70)/4,而不是简单得将总调度RB数平摊到过去1秒内所有的调度机会上:(34+81+57+70)/600。
2.3上行MCS(新指标)1,定义•每秒上行调度的MCS值之和/每秒实际调度次数。
2,统计方法•每秒上行调度的MCS值之和:该用户在过去一秒被上行调度的MCS值总和;•每秒实际调用次数:指该用户在过去1秒内被系统实际上行调度的次数,而非过去1秒内的所有调度机会(例如过去一秒内所有的上行时隙数目)。
2.4下行MCS(新指标)1,定义•每秒下行调度的MCS值之和/每秒实际调度次数。
2,统计方法•每秒下行调度的MCS值之和:该用户在过去一秒被下行调度的MCS值总和。
•每秒实际调用次数:指该用户在过去1秒内被系统实际下行调度的次数,而非过去1秒内的所有调度机会(例如过去一秒内所有的下行时隙数目)。
•对于下行来说,取2个code的MCS算术平均值。
2.5上行终端发射功率1,定义•每秒内终端发射功率的平均值2,统计方法•从终端侧进行统计,可以区分不同信道/信号,如PUSCH/PUCCH/PRACH2.6G SM通话时长占比1,定义•指定时间内终端在GSM制式下的通话时长/ 指定时间内终端总通话时长2.7呼叫SRVCC切换占比1,定义•发生了SRVCC切换的呼叫次数/ 总呼叫次数3语音质量类(VoLTE新指标)3.1M oS(Mean Opinion Score)1,定义•平均意见得分,其目的是评估通信系统的语音质量,厂家评估算法包括PESQ和POLQA算法,影响MoS值的因素包括语音编码方式、PLR、抖动等。
2,统计方法•MoS盒输出。
3,影响因素:•主叫端:抖动和时漂(Time Drift)•被叫端:去抖动缓存器、解码器、擦除处理•网络侧:丢包率、抖动•测试仪表:MOS评估工具3.2B LER(Block Error Rate)1,初传BLER•定义:(初传次数-初传成功次数)/初传次数*100%•统计方法:PUSCH / PDSCH信道初传BLER在过去1秒内的平均值2,剩余BLER•定义:(初传次数-多次重传后成功次数)/初传次数*100%•统计方法:PUSCH / PDSCH信道在多次重传后剩余BLER在过去1秒内的平均值3.3语音丢包率(PLR)1,定义•(发送的V oIP数据包数量—接收的数据包数量)/发送的V oIP数据包数量2,统计方法•统计RTP/PDCP层数据包3.4抖动(Jitter)1,不包含终端去抖动缓存器,纯考虑网络侧和空口导致的抖动•定义:接收端PDCP层数据包时延的方差,包括最小、最大和平均抖动时延,取决于用户端去抖动缓存器•测量方法:路测软件输出值2,包含终端去抖动缓存器•定义:接收端RTP层数据包时延的方差,包括最小、最大和平均抖动时延,取决于用户端去抖动缓存器测量方法:路测软件输出值3,备注:考虑终端60~80ms去抖动能力,通常输出的抖动应低于1ms3.5呼叫建立时延(Call Setup Time)(VoLTE新指标)1,定义•第一条随机接入消息到终端接收到网络侧下发的SIP 180 Ring消息之间的时间差。
处于RRC空闲态的终端由于有业务要传输,将首先发起Service Request流程,回到RRC连接态,然后发送SIP INVITE消息建立会话连接,并接收网络侧下发的SIP 180 Ring听到振铃音,一旦被叫接通电话,主叫将接收到SIP 200 OK消息,完成会话建立。
应支持分段统计RRC连接建立时延和SIP会话请求到振铃、振铃到会话建立时延。
2,统计方法•包括RRC状态转换和SIP会话请求、振铃、建立过程:i.RRC状态转换:定义为第一条随机接入消息到RRC Connection ReconfigurationComplete消息。
RRC IDLE状态的终端由于有数据需传送(比如发起Ping)而发起SERVICE REQUEST过程,终端通过“随机接入-RRC连接建立-DRB建立”立空口过程完成与无线网的连接并开始上、下行数据传送,视作成功完成连接建立;ii.SIP会话请求→振铃:从主叫终端发起SIP INVITE消息到接收到网络侧下发的SIP 180 Ring消息,包括专用承载建立、会话建立等过程。
iii.振铃→会话建立:主叫终端接收到SIP 180 Ring消息开始,到被叫接通电话后,主叫终端接收到SIP 200 OK消息。
3.6I P包时延(Packet Delay)1,定义•从主叫发出到被叫接收的V oLTE RTP层数据包时延。
2,统计方法•从主叫端语音编码器输出,到被叫端语音译码器输入前的时间差。
3.7端到端时延(Mouth-to-ear-delay,E2E时延测试工具)1,定义•端到端时延,从主叫端语音编码器输入到被叫端解码输出的时间差。
2,统计方法•采用专用的端到端测量工具•框架:3.8上行速率1,定义•过去一秒内,上行PDCP层发送的总比特数3.9下行速率1,定义•过去一秒内,下行PDCP层发送的总比特数3.10切换中断时延(VoLTE新指标)1,LTE系统内切换•控制面中断时延(Intra-LTE HO Interruption Time)i.定义:终端在源小区收到RRC重配消息指示切换,到终端在目标小区收到RRC重配消息指示切换完成之间的时间差。
•用户面中断时延i.定义:源小区最后一个PDCP层数据包到目标小区接收到的第一个PDCP层数据包的时间差。
2,eSRVCC切换•控制面中断时延(eSRVCC HO Interruption Time)i.空口:从eNodeB下发Handover Command到终端向BSS发送HO Complete之间的时间差。
ii.核心网:MME向eMSC发送PS to CS Request,到收到PS to CS Complete/Ack 之间的时间差(见下图)。
•用户面中断时延空口:源小区最后一个PDCP层数据包到目标小区建立专有信道恢复话音的时间差。
3.11话音挂机时延(Call End Time)(VoLTE新指标)1,定义•成功释放一个VoIP通话所需的时延,定义为从主叫端发起BYE Message到收到网络侧下发的SIP 200 OK消息时延2,统计方法•根据终端Log统计Home NetworkVisited NetworkVisited NetworkHome Network3.12 R RC 重建时延1, 定义:终端由于无线链路失败导致掉线,之后马上发起RRC 重建流程并重建成功,业务得到恢复的时延。
2, 统计方法:起始时间为终端发生RLF (Radio Link Failure ,无线链路失败)的时刻,终止时间为终端发出RRC Connection Reestablishment Complete 的时刻。
4 KPI 指标类4.1 I MS 注册成功率(VoLTE 新指标)1, 定义:• IMS 注册成功次数 /终端开机次数 2, 统计方法:• 终端开机后,将先后完成EPC 附着,IMS 信令承载建立和IMS 注册六程,以上3个流程均正常完成定义为一次IMS 注册成功。
i. EPC 附着:终端开机→广播消息读取→随机接入→RRC 连接建立→默认承载建立(CMNET ,QCI=9)→RRC Connection Reconfiguration Complete ii. IMS 信令承载建立:终端发起PDN Connectivity Service 到→默认承载建立(IMS ,QCI=5)→RRC Connection Reconfiguration Completeiii. IMS 注册:终端发起SIP REGISTER →SIP401→SIP REGISTER →SIP 200 OK4.2话音接通成功率(VoLTE新指标)1,定义成功完成呼叫次数/终端发起呼叫总数。
处于RRC空闲态的终端由于有业务要传输,将首先发起Service Request流程,回到RRC连接态,然后发送SIP INVITE消息建立会话连接。
2,统计方法•完成呼叫判断准则:成功完成SIP会话建立,包括RRC状态转换和SIP会话建立两个过程:i.RRC状态转换:定义为第一条随机接入消息到RRC Connection ReconfigurationComplete消息。
RRC IDLE状态的终端由于有数据需传送(比如发起Ping)而发起SERVICE REQUEST过程,终端通过“随机接入-RRC连接建立-DRB建立”立空口过程完成与无线网的连接并开始上、下行数据传送,视作成功完成连接建立;ii.SIP会话建立:从主叫终端发起SIP INVITE消息到接收到网络侧下发的SIP 200 OK消息,包括专用承载建立、会话建立等过程。
4.3掉话率1,定义•掉话次数/成功建立呼叫次数2,统计方法•掉线:空口RRC连接释放(终端Radio Link Failure或者网络侧RRC Release),或10s以上未接通均视作掉线。
•成功建立呼叫,包括RRC连接建立和SIP会话建立。
i.RRC连接建立:RRC IDLE状态的终端通过“随机接入-RRC连接建立-DRB建立”立空口过程完成与无线网的连接并开始上、下行数据传送,视作成功完成连接建立iii.成功建立呼叫:从主叫终端发起SIP INVITE消息到接收到网络侧下发的SIP 200 OK消息。
4.4网内切换成功率1,定义•切换成功次数/切换请求次数。
该定义同时适用于语音、数据业务。