平行四边形小结教案设计2
- 格式:doc
- 大小:30.50 KB
- 文档页数:1
平行四边形优秀教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、演讲致辞、条据文书、合同协议、心得体会、自我鉴定、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, written documents, contract agreements, insights, self-evaluation, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形优秀教案6篇编写好教案可以帮助我们更好地理清教学思路和目标,提高教学的针对性和有效性,编写教案可以帮助教师更好地组织和安排教学材料和教学资源,以下是本店铺精心为您推荐的平行四边形优秀教案6篇,供大家参考。
五年级上册数学教案平行四边形北京版 (2)
一、教学目标
1.理解平行四边形的定义及性质。
2.能够画出平行四边形。
3.能够使用平行四边形的性质解决问题。
二、教学重点
1.理解平行四边形的定义及性质。
2.能够画出平行四边形。
三、教学难点
1.能够使用平行四边形的性质解决问题。
四、教学方法
1.演示法
2.案例法
3.分组讨论法
五、教学过程
1. 导入
老师将上节课所学的内容复习一遍,回答学生的提问,将学生的注意力吸引回课堂。
2. 呈现问题
老师请学生思考:如何判断一个四边形是平行四边形?在白板上呈现出一张图来。
3. 演示平行四边形
一名学生上去讲解平行四边形的定义,并画出平行四边形的形状。
4. 案例分析
老师让学生分组进行案例分析,指导学生如何将知识应用到实际问题当中。
5. 拓展
老师呈现更加复杂的平行四边形问题,引导学生思考更多的使用方法。
六、教学小结
本节课通过案例分析和实际问题拓展,让学生更加深刻地理解了平行四边形的性质和应用。
七、教学反馈
老师与学生进行课堂反馈,让学生提出他们对于课程的疑问和看法,以此来改进教学质量。
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
认识平行四边形數學教案設計标题:认识平行四边形数学教案设计一、教学目标:1. 知识与技能:学生能理解并掌握平行四边形的基本性质,如对边平行且相等,对角相等。
2. 过程与方法:通过观察、操作和讨论,培养学生的空间观念和推理能力。
3. 情感态度价值观:培养学生积极思考、主动探究的学习态度,激发他们对几何学习的兴趣。
二、教学重难点:重点:理解和掌握平行四边形的定义和性质。
难点:运用平行四边形的性质解决实际问题。
三、教学过程:(一)导入新课教师展示一些生活中常见的平行四边形实物图片,引导学生观察其形状特征,提出“什么是平行四边形?”的问题,引发学生的好奇心和求知欲。
(二)讲授新课1. 定义讲解:教师讲解平行四边形的定义——两组对边分别平行的四边形叫做平行四边形。
2. 性质讲解:教师通过图形演示和实例解释,帮助学生理解平行四边形的性质:对边平行且相等,对角相等。
3. 实例应用:教师举例说明如何在实际生活中运用平行四边形的性质解决问题。
(三)实践探索教师布置任务,让学生自己动手画一个平行四边形,并测量其各边长和角度,验证平行四边形的性质。
同时,鼓励学生在生活中寻找更多的平行四边形实例。
(四)课堂小结教师带领学生回顾本节课的主要内容,强调平行四边形的定义和性质,巩固学生的学习成果。
(五)作业布置布置一些关于平行四边形的基础习题,以检验学生对所学知识的理解和掌握程度。
四、教学评价:通过观察学生的课堂表现、参与度和作业完成情况,评价学生对平行四边形知识的理解和应用能力。
对于理解困难的学生,应及时给予个别辅导。
以上就是关于“认识平行四边形”的数学教案设计,希望能为教师提供一些教学参考,帮助学生更好地理解和掌握平行四边形的相关知识。
《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。
平行四边形教案最新3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形教案最新3篇平行四边形(Parallelogram)是在同一个二维平面内,由两组平行线段组成的闭合图形。
人教版数学三年级上册平行四边形的认识教案与反思推荐(3)篇〖人教版数学三年级上册平行四边形的认识教案与反思第【1】篇〗[教学目标]1、知识与技能直观地认识平行四边形学会从各种平面图或实物中辨认平行四边形培养初步的观察能力,空间观念和动手能力。
2、过程与方法让学生在观察、操作、合作交流中探索新知3、情感态度与价值观渗透事物之间相互联系及转化的辩证唯物主义思想。
[教学重点]引导学生直观的认识平行四边形[教学难点]引导学生通过直观感知抽象出平行四边形。
[教学关键]在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。
[教学方法]演示法、观察法、操作法等。
[教具准备]多媒体课件、可拉动的长方形框架、钉子板,方格纸[学具准备]可拉动的长方形框架,一张长方形的纸。
[教学过程]一、复习引入游戏引入(出示课件)以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。
板书课题:平行四边形二、探索新知1、观察感知(课件展示)教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的平行四边形,课件出示平行四边形的图和文字。
2、操作感知教学例2拉一拉:⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。
在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。
平行四边形性质课标解读与教材分析【课标要求】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.教学内容分析:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等、对角线互相平分的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.教学目标知识与技能1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.过程与方法培养学生发现问题、解决问题的能力及逻辑推理能力.情感态度价值观1、培养学生观察、分析、猜想、归纳知识的自学能力.2、使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.3、初步达到演绎数学论证过程的能力.教学重点与难点重点平行四边形的定义,平行四边形对角、对边相等、对角线互相平分的性质,以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.媒体教具三角板课时1课时教学过程修改栏教学内容师生互动配套练习P23-251、典型例题讲析2、基础演练运用平行四边形的性质进行有关的论证和计算.板书设计作业布置教学反思平行四边形的判定——三角形的中位线课标解读与教材分析【课标要求】1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.教学内容分析:一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?二、定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)三、例题分析例1如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC .(也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE到F ,使EF=DE ,连接CF 、CD和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形. 分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.∵ AH=HD ,CG=GD , ∴ HG ∥A C ,HG=21AC (三角形中位线性质). 同理EF ∥AC ,EF=21AC .∴ HG ∥EF ,且HG=EF . ∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.板 书设 计作业布置教 学反 思18.1.1 平行四边形的性质一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:18.1.1 平行四边形的性质三、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.四、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:。
平行四边形教案(7篇)作为一位杰出的老师,时常需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?读书破万卷下笔如有神,以下内容是本文范文为您带来的7篇《平行四边形教案》,如果能帮助到亲,我们的一切努力都是值得的。
平行四边形教案篇一导学目标:1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
能根据判别方法进行有关的应用。
3、在探索过程中发展学生的合理推理意识、主动探究的习惯。
4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
导学重点:平行四边形的判别方法。
导学难点:根据判别方法进行有关的应用导学准备:多媒体课件导学过程:一、快速反应1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?结论:______________________________________符号表示:4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。
图中有哪些互相平行的线段?二、议一议1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?三、平行四边形的判别方法:(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的。
四边形是平行四边形。
平行四边形的认识教案3篇平行四边形的认识教案篇一教学目标1、让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。
2、让学生在活动中进一步积累认识图形的学习经验,学会做一个平行四边形,会在在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形的学习兴趣。
教学重点进一步认识平行四边形,发现平行四边形的基本特征。
教学难点进一步认识平行四边形,发现平行四边形的基本特征。
教具三角形框架、长方形框架、正方形框架,分别长5cm、10cm、15cm、20cm的纸条不等,大头钉。
课时一课时教学过程一、导入1、复习学过的三角形、长方形和正方形。
师:同学们喜欢玩游戏吗?学习新课之前我们来玩一个猜图游戏。
(教具三角形框架、长方形框架、正方形框架)2、师:同学们真棒!现在老师要变一个魔术给你们看。
看看你们能不能认出它。
(拿出长方形教具,拉动长方形框架对角使其变为另一个图形。
)根据学生的回答,板书:认识平行四边形。
一边板书,一边说“今天,我们就来认识平面图形家族的另一个新成员平行四边形。
相信通过这节课我们一起来进一步研究平行四边形,相信通过研究,我们会有新的收获。
二、探索新知1、找平行四边形。
师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校园了吗?翻开书本三十七页,在图中你们能找到平行四边形吗?在主题上找,在学校里找,在身边生活中找。
师:你们还能找出生活中的一些平行四边形吗?(如活动衣架、风筝、楼梯栏杆)2、画平行四边形(1)师:你们想把刚才在生活中找到的平行四边形在电子图中画出来吗?(生答)在38页的点子图中画出来。
(2)展示作品,引导学生参与评价。
3、做平行四边形(1)师:现在各小组手上都有很多纸条,那我们可不可以自己动手做一个平行四边形呢?每一小组发教具纸条(5cm、10cm各一条,15cm、20cm各两条),用大头钉固定。
平行四边形优秀教案平行四边形优秀教案「篇一」平行四边形及其性质优秀教案学习目标:1、理解并掌握平行四边形的定义2、掌握平行四边形的性质定理1及性质定理23、提高综合运用知识的能力预习指导:1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________。
学习过程:一、学习新知1、平行四边形的定义(1)定义:________________ ________________________叫做平行四边形。
(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形(3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形。
反过来,平行四边形就一定具有性质。
(4)平行四边形的'表示:平行四边形ABCD 记作_________,读作___________。
2、平行四边形的性质平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?已知:如图 ABCD。
求证:AB=CD,CB=AD.分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.证明:总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。
在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。
证明:通过上面的证明,我们得到了:平行四边形的性质定理1是_______________________________________。
回顾与思考:本章我们主要学习了平行四边形的性质定理、判定定理;探索并证明了三角形的中位线定理,介绍了平行线问距离的概念;通过平行四边形边、角的特殊化,获得了特殊的平行四边形——矩形、菱形和正方形,了解了它们之间的关系;根据它们的特殊性,得到了这些特殊的平行四边形的性质定理和判定定理.在学习这些知识的过程中,我们采用了从一般到特殊的研究方法:利用图形的性质定理与判定定理之间的关系,通过证明性质定理的逆命题,得到了图形的判定定理,这些方法在今后的学习中都是很有用的.请你带着下面的问题,复习一下全章的内容吧。
1,你能概述一下研究平行四边形的思路和方法吗?2.平行四边形有哪些性质?如何判定一个四边形是平行四边形?3.矩形、菱形、正方形除了具有平行四边形的性质外,分别还具有哪些性质?如何判定一个四边形是矩形、菱形、正方形?你能总结一下研究这些性质和判定的方法吗?4.本章我们利用平行四边形的性质,得出了三角形的中位线定理,你能仿照这一过程,再得出一些其他几何结论吗?本章学习了哪些特殊的四边形?是按照什么顺序学习这些四边形的?请说说这些四边形之间的关系.各种平行四边形的研究中,它们各自的研究内容、研究步骤、研究方法有什么共同点?能列表说明吗?各种平行四边形的研究中,它们各自的研究内容、研究步骤、研究方法有什么共同点?能列表说明吗?(1)本章研究内容:各种平行四边形的边、角、对角线的特征;(2)研究步骤:下定义→探性质→研判定;(3)研究方法:观察、猜想、证明;建立当前图形(平行四边形)与三角形的联系;从性质定理的逆命题的讨论中研究判定定理;类比、一般到特殊.【课堂探究案】考点讲练考点一 平行四边形的性质与判定例1 如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG.(1)求证:四边形DEGF 是平行四边形;(2)如果点G 是BC 的中点,且BC =12,CD =10,求四边形AGCD 的面积.(1)证明:∵ AG ∥CD ,AD ∥BC∴ 四边形AGCD 是平行四边形∴ AG=CD∵ E 、F 分别为AG 、CD 的中点∴ EG=21AG ,DF=21CD ∴ EG=DF 且EG ∥DF∴ 四边形DEGF 是平行四边形(2)解:∵ 点G 是BC 的中点,BC=12∴ BG=CG=21BC=6 ∵ 四边形AGCD 是平行四边形∴ AG=CD=10在R t △ABG 中,根据勾股定理2222610-=-=BG AG AB =8∴ S 四边形AGCD =6×8=48例2如图,在□ABCD中,点E在边BC上,点F在边DA的延长线上,且AF=CE,EF与AB交于点G.(1)求证:AC∥EF;(2)若点G是AB的中点,BE=6,求边AD的长.(1)证明:∵四边形ABCD是平行四边形∴ AD∥BC∴ AF∥CE又∵ AF=CE∴四边形AFEC是平行四边形∴ AC∥EF(2)解:∵ AD∥BC,∴∠F=∠BEG,∠FAG=∠B∵点G是AB的中点,∴ AG=BG∴△AGF≌△BGE (AAS)∴ AF=BE=6∴ CE=AF=6∴ BC=BE+CE=12∵四边形ABCD是平行四边形∴ AD=BC=12考点二三角形的中位线与R t△斜边上的中线例3如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.证明:(1)∵点D,E,F分别是AB,BC,CA的中点∴ DE、EF都是△ABC的中位线∴ DE∥AC,EF∥AB∴四边形ADEF是平行四边形(2)∵四边形ADEF是平行四边形∴∠DEF=∠BAC∵ D,F分别是AB,CA的中点,AH是边BC上的高∴ DH、FH分别是R t△ABH和R t△ACH斜边上的中线∴ DH=AD,FH=AF∴∠DAH=∠DHA,∠FAH=∠FHA∵∠DAH+∠FAH=∠BAC∠DHA+∠FHA=∠DHF∴∠DHF=∠BAC∴∠DHF=∠DEF考点三特殊平行四边形的性质与判定例4如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作DE∥AC,两线相交于点E.(1)求证:四边形AODE是菱形;(2)连接BE,交AC于点F.若BE⊥DE于点E,求∠AOD的度数.(1)证明:∵ AE ∥BD ,DE ∥AC∴ 四边形AODE 是平行四边形∵ 四边形ABCD 是矩形∴ AC=BD ,OA=21AC ,OD=21BD ∴ OA=OD∴ 四边形AODE 是菱形(2)解:连接OE.由(1)得,四边形AODE 是菱形,∴ AE=AO=BO∵ AE ∥BO ,∴ 四边形AEOB 是平行四边形∵ BE ⊥DE ,DE ∥AC ,∴ BE ⊥AO∴ 四边形AEOB 是菱形∴ AE=AB=BO∴ AB=BO=AO∴ △AOB 是等边三角形∴ ∠AOB=60°∴ ∠AOD=180°-60°=120°例5 如图,已知在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)试判断四边形BECF 是什么四边形?并说明理由;(2)当∠A 的大小满足什么条件时,四边形BECF 是正方形?请回答并证明你的结论.解:(1)四边形BECF 是菱形.理由如下:∵ EF 垂直平分BC ,∴ BF=CF ,BE=CE∴ ∠3=∠1∵ ∠ACB=90°,∴ ∠3+∠A=90°,∠1+∠2=90°∴ ∠2=∠A ,∴ CE=AE∴ BE=AE∵ CF=AE∴ BE=CE=CF=BF∴ 四边形BECF 是菱形(2)当∠A=45°时,四边形BECF 是正方形.证明:∵ ∠A=45°,∠ACB=90°∴ ∠CBA=45°∵ 四边形BECF 是菱形∴ ∠EBF=2∠CBA=90°∴ 菱形BECF 是正方形【课堂检测案】一、分类讨论思想例6 在一个平行四边形中,若一个角的平分线把一条边分成长是2cm 和3cm 的两条线段,求该平行四边形的周长是多少.解:如图,∵在平行四边形ABCD 中,AB=CD ,AD=BC ,AD ∥BC ,。
《平行四边形》教学设计《平行四边形》教学设计(通用17篇)作为一名辛苦耕耘的教育工作者,可能需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
那么应当如何写教学设计呢?以下是小编收集整理的《平行四边形》教学设计,欢迎阅读,希望大家能够喜欢。
《平行四边形》教学设计篇1教学目标:1、使学生初步认识平行四边形,初步体会平行四边形的对边平行且相等的特征。
2、理解平行四边形的底和高,并能正确画出底对应的高。
3、通过直观演示,个体操作,集体交流,帮助学生掌握平行边形的特性:易变形。
4、积极引导学生参与学习,帮助学生建立初步的空间观念和逻辑观念。
教学重点:认识平行四边形,初步体会平行四边形的对边平行且相等的特征。
教学难点:理解平行四边形的底和高,并能正确画出底对应的高。
学具准备:每人一张平行四边形卡片,每人一张练习纸,三角尺。
教具准备:多媒体课件,平行四边形卡片、平行四边形的框架。
一、创设情境,揭示主题。
1、游戏导入回顾旧知:同学们学过哪些几何图形?回顾长方形、正方形等图形做游戏—芝麻开门猜测门后面是什么图形?揭示课题:像这样的图形是平行四边形。
师:这节课老师将和同学们一起来认识平行四边形。
(板书课题)2、感受生活中的平行四边形设计意图:把平行四边形与其他图形的联系中揭示,让学生在游戏中学习,初步了解要研究的问题,达到回顾旧知、引出新知的良好效果。
更重要的是在这个过程中学生体会到先进的思维方式——迁移。
二、探究新知(一)认识平行四边形1、观察表象明确平行四边形的对边、邻边。
2、动手操作,感悟特征。
独立研究老师准备的平行四边形卡片,测一测,量一量,研究平行四边形的特点。
3、交流汇报,描述特征。
每4人一组,说说发现了什么以及怎么发现的。
师:仔细观察这个平行四边形,说一说,它有哪些特征?思考:用什么办法知道平行四边形的对边相等?师:电脑展示,通过平移验证平行四边形对边平行且相等。
二年级上册数学教案及教学反思2.2 认识平行四边形|苏教版今天我要为大家分享的是二年级上册数学教案及教学反思,主题是认识平行四边形,使用的教材是苏教版。
一、教学内容今天我们的教学内容来自于苏教版二年级上册的数学教材,主要涉及第16页至第18页关于平行四边形的认识。
这部分内容主要包括平行四边形的定义、特点以及如何识别和画出平行四边形。
二、教学目标通过本节课的学习,我希望学生们能够掌握平行四边形的定义和特点,并能够识别和画出平行四边形。
三、教学难点与重点本节课的重点是让学生们理解和掌握平行四边形的定义和特点,难点则是如何让学生们能够灵活运用这一知识,识别和画出平行四边形。
四、教具与学具准备为了帮助学生们更好地理解和掌握平行四边形,我准备了一些教具和学具,包括平行四边形的模型、画图工具等。
五、教学过程1. 实践情景引入:我会先向学生们展示一些平行四边形的模型,让他们观察并描述一下这些模型的特点。
2. 讲解知识点:然后我会向学生们讲解平行四边形的定义和特点,通过讲解和示例,让学生们理解和掌握这一概念。
4. 随堂练习:在讲解完例题之后,我会给学生们一些随堂练习题,让他们在课堂上完成,以检验他们对平行四边形的掌握情况。
6. 作业设计:对于课后作业,我会出一道题目,让学生们画出一个平行四边形,并标注出它的各条边和各个角。
六、作业设计请同学们画出一个平行四边形,并标注出它的各条边和各个角。
答案:七、课后反思及拓展延伸我还可以通过一些拓展延伸的活动,让学生们进一步探索和发现平行四边形的性质和特点,提高他们的学习兴趣和积极性。
重点和难点解析我需要注重让学生们通过实际操作来加深对平行四边形的理解。
这可以通过让学生们自己动手画图、观察和描述平行四边形的模型来实现。
通过亲身体验和操作,学生们能够更加深入地理解和记忆平行四边形的特征。
另外,我还需要设计一些例题和随堂练习,让学生们能够通过解决实际问题来运用和巩固对平行四边形的理解。
平行四边形數學教案設計
标题:平行四边形数学教案设计
一、课程目标
在这部分,你可以描述你希望学生通过这节课学习到什么,比如理解平行四边形的定义和性质,能够识别并画出平行四边形,等等。
二、教学内容与过程
这部分是教案的核心部分,你可以按照以下步骤进行设计:
1. 引入新课:你可以用一个有趣的谜语或者问题来吸引学生的注意力,比如“有一种四边形,它的对边都是平行的,你知道是什么吗?”然后引导学生猜测并引入平行四边形的概念。
2. 新知识讲解:在这里,你需要解释平行四边形的定义和性质。
你可以使用图形、模型或者实物来帮助学生理解。
同时,也要强调平行四边形与其他四边形(如矩形、菱形、正方形)的区别和联系。
3. 学生实践:设计一些活动让学生亲手操作,比如让学生用直尺和铅笔在纸上画出平行四边形,或者用橡皮泥捏出平行四边形。
这样可以帮助学生更好地理解和记忆平行四边形的性质。
4. 巩固练习:准备一些题目让学生做,以检验他们是否掌握了平行四边形的知识。
题目可以包括选择题、填空题和应用题。
三、教学方法与策略
在这里,你可以描述你打算使用哪些教学方法,比如直接教学法、讨论法、实验法等。
同时,也可以谈谈你如何调动学生的学习积极性,如何处理可能的教学难点等。
四、教学评估与反思
在课程结束后,你需要对学生的学习效果进行评估,看看他们是否达到了预期的学习目标。
同时,你也需要反思你的教学过程,看看哪些地方做得好,哪些地方需要改进。
以上就是关于平行四边形数学教案设计的一个大致框架,你可以根据自己的需要进行修改和补充。
希望对你有所帮助!。
1.平行四边形第二课时教案设计教学目标:一.知识与能力1.会用综合法证明平行四边形的判定定理。
2.掌握平行四边形的判定定理并能灵活运用。
二.过程与方法经历探索、猜想、证明的过程,进一步发展学生的推理论证能力。
三.情感、态度与价值观在探索、讨论、猜想、证明中养成与他人合作交流的习惯,提高克服困难的勇气和信心。
教学重点:1.会用综合法证明平行四边形的判定定理。
2.能够运用平行四边形的判定定理判定平行四边形。
教学难点 :运用综合法证明问题的思路。
教学过程:一、复习,引入新课。
提问:1.什么叫做平行四边形?2.平行四边形有哪些性质?3.判定一个四边形是平行四边形的方法有哪些?二、出示学习目标,进行自学指导。
1.学习目标(一)会用综合法证明平行四边形的判定定理。
自学指导(一)自学议一议前面的内容。
(1)证明时辅助线是如何做的?这么做的目的是什么?(2)课本中的证明思路是什么?定理: 两组对边分别相等的四边形是平行四边形.自学指导(二)议一议:一组对边平行且相等的四边形是平行四边形吗?如果是,请你证明它。
学生先独立证明,再与同桌交流,板演。
定理: 一组对边平行且相等的四边形是平行四边形.2.学习目标(二)能够利用平行四边形的判定定理来判定平行四边形。
自学指导(三)看课本86页做一做。
图中的△MON是什么三角形?它的三边长有怎样的关系?x的值是多少?你是根据什么判定平行四边形的?还有其他判定方法吗?三.随堂练习:1.证明:对角线互相平分的四边形是平行四边形.2.已知:如图,在□ ABCD 中,BF=DE. 求证:四边形AFCE 是平行四边形3.已知:如图,BD 是△ABC 的中线, 延长BD 至E,使得DE=BD,连接AE,CE. 求证: ∠BAE = ∠ BCE.四.小结:这节课你的收获是什么?平行四边形的判定定理:两组对边分别相等的四边形是平行四边形. 一组对边平行且相等的四边形是平行四边形.五.布置作业习题3.2 第1题 第2题板书设计:1.平行四边形——平行四边形的判定平行四边形的判定定理:两组对边分别相等的四边形是平行四边形. 一组对边平行且相等的四边形是平行四边形. 练习A BCD E F B E C AD小结布置作业:习题3.2 第1题第2题。
平行四边形教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作总结、策划方案、演讲致辞、报告大全、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays for everyone, such as work summary, planning plan, speeches, reports, contracts and agreements, articles and letters, party and group materials, teaching materials, essays, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!平行四边形教案关于平行四边形教案三篇作为一位无私奉献的人·民教师,常常需要准备教案,教案是教学活动的依据,有着重要的地位。