Self-Organization of Sensor Networks Using Genetic Algorithms
- 格式:pdf
- 大小:314.39 KB
- 文档页数:6
《信息检索与利用》课程考核与实习报告(理工类)2010---2011 学年第二学期指导教师陈忠萍学院、班级____计算机学院网络0902 姓名、学号周桢栋3090610045_报告完成日期__6月8日__ 总成绩_____________________ _说明:1.“课程考核与实习报告”为本课程考核形式,最迟请于课程结束后一周内完成。
2.提交形式:纸质文本以A4纸打印交给班长,由班长按学号整序后交给任课老师。
第一部分基础练习15分1、根据题录,按以下步骤查找原文。
5分(1)识别文献,指出是何种一次文献;(2)可通过我馆收藏的哪些数据库获取全文?(3)列出此文的详细题录(包含外部特征和内容特征)。
Detection of drive-by downloads based on dynamic page viewsZhang, Huilin (Institute of Computer Science and Technology, Peking University, Beijing 100871, China); Zhuge, Jianwei; Song, Chengyu; Han, Xinhui; Zou, Wei Source: Qinghua Daxue Xuebao/Journal of Tsinghua University, v 49, n SUPPL. 2, p 2126-2132, December 2009 Language: Chinese答:外部特征:篇名:Embedded self-organized communication protocol stack for wireless sensor networks 作者:Zheng, Jie,Zhao, Bao-Hua 刊物:Beijing Youdian Daxue Xuebao出版社:Journal of Beijing University of Posts and Telecommunications内部特征:关键词:Embedded self-organized communication protocol stack,wireless sensor network 主题:Embedded self-organized communication protocol stack for wireless sensor networksDetection of drive-by downloads based on dynamic page viewsZhang, Huilin(Institute of Computer Science and Technology, Peking University,Beijing 100871, China); Zhuge, Jianwei; Song, Chengyu; Han, Xinhui; Zou, Wei Source:Qinghua Daxue Xuebao/Journal of Tsinghua University, v 49, n SUPPL. 2, p 2126-2132, December 2009 Language: Chinese2、什么是学术规范?在我们的学习工作中应遵守哪些基本的学术规范?3分所谓学术规范,是指学术共同体内形成的进行学术活动的基本伦理道德规范。
形容多个传感器之间可以相互独立的英文单词Title: Describing Sensors that Can Operate IndependentlyIntroductionIn the world of technology and IoT (Internet of Things), sensors play a crucial role in collecting and transmitting data for various applications. These sensors can operate independently, performing their designated functions without the need for constant human intervention. In this article, we will explore and describe various terms used to depict sensors that can function autonomously.1. AutonomousAutonomous sensors refer to devices that can operate or function independently without the need for external control. These sensors are self-sufficient in terms of power supply, data collection, processing, and transmission. The autonomy of these sensors allows them to perform their tasks efficiently without relying on a central system or operator.2. StandaloneStandalone sensors are those that are self-contained and do not rely on other devices for operation. These sensors aredesigned to function independently, collecting and processing data on their own. Standalone sensors are commonly used in applications where mobility, flexibility, or remote operation is required.3. DecentralizedDecentralized sensors operate independently and can communicate with each other without the need for a centralized control system. This decentralized approach allows sensors to collaborate and exchange information to achieve a common goal. Decentralized sensors are often used in distributed sensor networks for monitoring and control applications.4. Self-organizingSelf-organizing sensors have the ability to form networks and coordinate their activities without human intervention. These sensors can establish connections, assign roles, and adapt to changing environments autonomously. Self-organizing sensors are commonly used in dynamic and unpredictable settings where traditional communication methods may not be feasible.5. Ad-hocAd-hoc sensors are capable of forming temporary networks on the fly, without the need for pre-established infrastructure. These sensors can spontaneously connect with each other to share data and collaborate on tasks. Ad-hoc sensors are often used in scenarios where quick deployment and flexibility are essential.ConclusionIn conclusion, sensors that can operate independently play a vital role in various applications, from smart homes and industries to healthcare and environmental monitoring. Understanding and describing the characteristics of these sensors, such as autonomy, standalone capability, decentralization, self-organization, and ad-hoc networking, are essential for designing and implementing efficient sensor systems. By harnessing the power of independent sensors, we can create smarter, more responsive, and interconnected systems for a wide range of practical applications.。
《信息检索与利用》课程考核与实习报告(理工类)2010---2011 学年第二学期指导教师陈忠萍学院、班级____计算机学院网络0902 姓名、学号周桢栋3090610045_报告完成日期__6月8日__ 总成绩_____________________ _说明:1.“课程考核与实习报告”为本课程考核形式,最迟请于课程结束后一周内完成。
2.提交形式:纸质文本以A4纸打印交给班长,由班长按学号整序后交给任课老师。
第一部分基础练习15分1、根据题录,按以下步骤查找原文。
5分(1)识别文献,指出是何种一次文献;(2)可通过我馆收藏的哪些数据库获取全文?(3)列出此文的详细题录(包含外部特征和内容特征)。
Detection of drive-by downloads based on dynamic page viewsZhang, Huilin (Institute of Computer Science and Technology, Peking University, Beijing 100871, China); Zhuge, Jianwei; Song, Chengyu; Han, Xinhui; Zou, Wei Source: Qinghua Daxue Xuebao/Journal of Tsinghua University, v 49, n SUPPL. 2, p 2126-2132, December 2009 Language: Chinese答:外部特征:篇名:Embedded self-organized communication protocol stack for wireless sensor networks 作者:Zheng, Jie,Zhao, Bao-Hua 刊物:Beijing Youdian Daxue Xuebao出版社:Journal of Beijing University of Posts and Telecommunications内部特征:关键词:Embedded self-organized communication protocol stack,wireless sensor network 主题:Embedded self-organized communication protocol stack for wireless sensor networksDetection of drive-by downloads based on dynamic page viewsZhang, Huilin(Institute of Computer Science and Technology, Peking University,Beijing 100871, China); Zhuge, Jianwei; Song, Chengyu; Han, Xinhui; Zou, Wei Source:Qinghua Daxue Xuebao/Journal of Tsinghua University, v 49, n SUPPL. 2, p 2126-2132, December 2009 Language: Chinese2、什么是学术规范?在我们的学习工作中应遵守哪些基本的学术规范?3分所谓学术规范,是指学术共同体内形成的进行学术活动的基本伦理道德规范。
无线局域网下数据实时自组织推送系统设计沈军彩【摘要】当前数据推送系统大多采用单项协议,不能顺利实现服务器向浏览器推送数据,客户端仅可通过向服务器发出请求得到数据,无法保证推送数据的实时性.为此,设计了一种新的无线局域网下数据实时自组织推送系统,所设计系统主要由缓存模块、数据处理模块、总线、串口通信模块、控制转发器、数据实时自组织推送模块、服务器和用户兴趣挖掘模块构成,选用B/S架构,利用SPring框架进行整体管理,通过SPringMVC进行请求转发.详细介绍了数据实时自组织推送模块、数据处理模块和用户兴趣挖掘模块的设计过程,利用用户关联计算增强数据推送结果的可靠性与实用性.经压力测试、实时性测试和终端耗电量测试,得出系统容量大、实时性高、耗电量低的结论.%In current data delivery system,individual agreement is mostly used,which cannot deliver the data smoothly from the server to the browser, and the client can only obtain data by sending requests to the server, which cannot guarantee the real-time performance of the data delivery.Therefore, a new real time self-organizing delivery system for WLAN is designed.The designed system is mainly composed of cache module,data processing module,serial communication module, bus control transponder, real-time data organization module, server push and user interest mining ing the B/S structure and SPring framework,the overall management is carried out,and based on SPringMVC,the request is forwarded.In addition,the design process of real time self-organizing push module,data processing module and user interest mining module are introduced in detail,and the reliability and practicability of data deliveryresult are enhanced by user association calculation.Through the pressure test,re-al-time test and terminal power consumption test,it is concluded that the system has large capacity,high real-time and low power consumption.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)030【总页数】6页(P246-251)【关键词】无线局域网;数据;实时;自组织;推送系统【作者】沈军彩【作者单位】上海商学院信息与计算机学院,上海201204【正文语种】中文【中图分类】TP311.12近年来,随着互联网的快速发展,无线局域网用户端也在不断改进[1,2]。
1000-9825/2003/14(10)1717©2003 Journal of Software 软件学报Vol.14, No.10 传感器网络及其数据管理的概念、问题与进展∗李建中1,2+, 李金宝1,2, 石胜飞11(哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨 150001)2(黑龙江大学计算机科学技术学院,黑龙江哈尔滨 150080)Concepts, Issues and Advance of Sensor Networks and Data Management of Sensor NetworksLI Jian-Zhong1,2+, LI Jin-Bao1,2, SHI Sheng-Fei11(School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)2(School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China)+ Corresponding author: Phn: 86-451-86415827, Fax: 86-451-86415827, E-mail: lijzh@Received 2003-01-26; Accepted 2003-03-06Li JZ, Li JB, Shi SF. Concepts, issues and advance of sensor networks and data management of sensor networks. Journal of Software, 2003,14(10):1717~1727./1000-9825/14/1717.htmAbstract: Sensor networks are integration of sensor techniques, nested computation techniques, distributed computation techniques and wireless communication techniques. They can be used for testing, sensing, collecting and processing information of monitored objects and transferring the processed information to users. Sensor network is a new research area of computer science and technology and has a wide application future. Both academia and industries are very interested in it. The concepts and characteristics of the sensor networks and the data in the networks are introduced, and the issues of the sensor networks and the data management of sensor networks are discussed. The advance of the research on sensor networks and the data management of sensor networks are also presented.Key words: sensor; sensor network; data in sensor network; data management of sensor network摘 要: 传感器网络综合了传感器技术、嵌入式计算技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集各种环境或监测对象的信息,并对其进行处理,传送到这些信息的用户.传感器网络是计算机科学技术的一个新的研究领域,具有十分广阔的应用前景,引起了学术界和工业界的高度重视.介绍了传感器网络及其数据管理的概念和特点,探讨了传感器网络及其数据管理的研究问题,并综述了传感器网络及其数据管理的研究现状.关键词: 传感器;传感器网络;传感器网络数据;传感器网络数据管理中图法分类号: TP393 文献标识码: A∗第一作者简介: 李建中(1950-),男,黑龙江哈尔滨人,教授,博士生导师,主要研究领域为数据库,并行计算.1718 Journal of Software软件学报 2003,14(10)随着通信技术、嵌入式计算技术和传感器技术的飞速发展和日益成熟,具有感知能力、计算能力和通信能力的微型传感器开始在世界范围内出现.由这些微型传感器构成的传感器网络引起了人们的极大关注.这种传感器网络综合了传感器技术、嵌入式计算技术、分布式信息处理技术和通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户.例如,传感器网络可以向正在准备进行登陆作战的部队指挥官报告敌方岸滩的详实特征信息,如丛林地带的地面坚硬度、干湿度等,为制定作战方案提供可靠的信息.传感器网络可以使人们在任何时间、地点和任何环境条件下获取大量详实而可靠的信息.因此,这种网络系统可以被广泛地应用于国防军事、国家安全、环境监测、交通管理、医疗卫生、制造业、反恐抗灾等领域.传感器网络是信息感知和采集的一场革命.传感器网络作为一个全新的研究领域,在基础理论和工程技术两个层面向科技工作者提出了大量的挑战性研究课题.由于传感器网络的巨大应用价值,它已经引起了世界许多国家的军事部门、工业界和学术界的极大关注.美国自然科学基金委员会2003年制定了传感器网络研究计划,投资34 000 000美元,支持相关基础理论的研究.美国国防部和各军事部门都对传感器网络给予了高度重视,在C4ISR的基础上提出了C4KISR计划,强调战场情报的感知能力、信息的综合能力和信息的利用能力,把传感器网络作为一个重要研究领域,设立了一系列的军事传感器网络研究项目.美国英特尔公司、美国微软公司等信息工业界巨头也开始了传感器网络方面的工作,纷纷设立或启动相应的行动计划.日本、英国、意大利、巴西等国家也对传感器网络表现出了极大的兴趣,纷纷展开了该领域的研究工作.传感器网络的研究起步于20世纪90年代末期.从2000年起,国际上开始出现一些有关传感器网络研究结果的报道.但是,这些研究成果处于起步阶段,距离实际需求还相差甚远.我国在传感器网络方面的研究工作还很少.目前,哈尔滨工业大学和黑龙江大学已经开始了该领域的研究工作.一言以蔽之,传感器网络的研究任重而道远.本文将分别介绍传感器网络及其数据管理的概念和特点、需要研究的问题以及目前的研究进展情况.1 传感器网络1.1 传感器网络的概念我们可以如下定义传感器网络:传感器网络是由一组传感器以Ad Hoc方式构成的有线或无线网络,其目的是协作地感知、采集和处理网络覆盖的地理区域中感知对象的信息,并发布给观察者[1].从上述定义可以看到,传感器、感知对象和观察者是传感器网络的3个基本要素;有线或无线网络是传感器之间、传感器与观察者之间的通信方式,用于在传感器与观察者之间建立通信路径;协作地感知、采集、处理、发布感知信息是传感器网络的基本功能.一组功能有限的传感器协作地完成大的感知任务是传感器网络的重要特点.传感器网络中的部分或全部节点可以移动.传感器网络的拓扑结构也会随着节点的移动而不断地动态变化.节点间以Ad Hoc方式进行通信,每个节点都可以充当路由器的角色,并且每个节点都具备动态搜索、定位和恢复连接的能力.下面,我们详细地来讨论传感器、感知对象和观察者.传感器由电源、感知部件、嵌入式处理器、存储器、通信部件和软件这几部分构成,如图1所示[2].电源为传感器提供正常工作所必需的能源.感知部件用于感知、获取外界的信息,并将其转换为数字信号.处理部件负责协调节点各部分的工作,如对感知部件获取的信息进行必要的处理、保存,控制感知部件和电源的工作模式等.通信部件负责与其他传感器或观察者的通信.软件则为传感器提供必要的软件支持,如嵌入式操作系统、嵌入式数据库系统等. 观察者是传感器网络的用户,是感知信息的接受和应用者.观察者可以是人,也可以是计算机或其他设备.例如,军队指挥官可以是传感器网络的观察者;一个由飞机携带的移动计算机也可以是传感器网络的观察者.一个传感器网络可以有多个观察者.一个观察者也可以是多个传感器网络的用户.观察者可以主动地查询或收集传感器网络的感知信息,也可以被动地接收传感器网络发布的信息.观察者将对感知信息进行观察、分析、挖李建中等:传感器网络及其数据管理的概念、问题与进展1719掘、制定决策,或对感知对象采取相应的行动.感知对象是观察者感兴趣的监测目标,也是传感器网络的感知对象,如坦克、军队、动物、有害气体等.感知对象一般通过表示物理现象、化学现象或其他现象的数字量来表征,如温度、湿度等.一个传感器网络可以感知网络分布区域内的多个对象.一个对象也可以被多个传感器网络所感知.图2给出了一个典型的传感器网络的结构.这个网络由传感器节点、接收发送器(sink)、Internet或通信卫星、任务管理节点等部分构成[2].传感器节点散布在指定的感知区域内,每个节点都可以收集数据,并通过“多跳”路由方式把数据传送到Sink.Sink也可以用同样的方式将信息发送给各节点.Sink直接与Internet或通信卫星相连,通过Internet或通信卫星实现任务管理节点(即观察者)与传感器之间的通信.图3给出了另一种传感器网络的结构[3].在这种传感器网络中,数据通过基站转送到有线网络.网络节点分为3类:基站节点(base station nodes)、固定节点(fixed node)和应用节点(application node).基站节点担任无线传感器网络和有线网络的网关.固定节点通过多跳路由方式与基站进行数据通信.应用节点是可移动或者固定的节点.1.2 传感器网络的特点与挑战传感器网络除了具有Ad Hoc网络的移动性、断接性、电源能力局限等共同特征以外,还具有很多其他鲜明的特点.这些特点向我们提出了一系列挑战性问题:(1) 通信能力有限.传感器网络的传感器的通信带宽窄而且经常变化,通信覆盖范围只有几十到几百米.传感器之间的通信断接频繁,经常导致通信失败.由于传感器网络更多地受到高山、建筑物、障碍物等地势地貌以及风雨雷电等自然环境的影响,传感器可能会长时间脱离网络,离线工作.如何在有限通信能力的条件下高质量地完成感知信息的处理与传输,是我们面临的挑战之一.(2) 电源能量有限.传感器的电源能量极其有限.网络中的传感器由于电源能量的原因经常失效或废弃.电1720 Journal of Software软件学报 2003,14(10)源能量约束是阻碍传感器网络应用的严重问题.商品化的无线发送接收器电源远远不能满足传感器网络的需要.传感器传输信息要比执行计算更消耗电能.传感器传输1位信息所需要的电能足以执行3 000条计算指令.如何在网络工作过程中节省能源,最大化网络的生命周期,是我们面临的第2个挑战.(3) 计算能力有限.传感器网络中的传感器都具有嵌入式处理器和存储器.这些传感器都具有计算能力,可以完成一些信息处理工作.但是,由于嵌入式处理器和存储器的能力和容量有限,传感器的计算能力十分有限.如何使用大量具有有限计算能力的传感器进行协作分布式信息处理,是我们面临的第3个挑战.(4) 传感器数量大、分布范围广.传感器网络中传感器节点密集,数量巨大,可能达到几百、几千万,甚至更多.此外,传感器网络可以分布在很广泛的地理区域.传感器的数量与用户数量比通常也非常大.传感器数量大、分布广的特点使得网络的维护十分困难甚至不可维护,传感器网络的软、硬件必须具有高强壮性和容错性.这是我们面临的第4个挑战.(5) 网络动态性强.传感器网络具有很强的动态性.网络中的传感器、感知对象和观察者这三要素都可能具有移动性,并且经常有新节点加入或已有节点失效.因此,网络的拓扑结构动态变化,传感器、感知对象和观察者三者之间的路径也随之变化.传感器网络必须具有可重构和自调整性.这是我们面临的第5个挑战.(6) 大规模分布式触发器.很多传感器网络需要对感知对象进行控制,如温度控制.这样,很多传感器具有回控装置和控制软件.我们称回控装置和控制软件为触发器.成千上万的动态触发器的管理是我们面临的第6个挑战.(7) 感知数据流巨大.传感器网络中的每个传感器通常都产生较大的流式数据,并具有实时性.每个传感器仅仅具有有限的计算资源,难以处理巨大的实时数据流.我们需要研究强有力的分布式数据流管理、查询、分析和挖掘方法.这是我们面临的第7个挑战.1.3 传感器网络的性能评价传感器网络的性能直接影响其可用性,至关重要.如何评价一个传感器网络的性能是一个需要深入研究的问题.下面,我们讨论几个评价传感器网络性能的标准.这些标准还没有达到实用的程度,需要进一步地模型化和量化.(1) 能源有效性.传感器网络的能源有效性是指该网络在有限的能源条件下能够处理的请求数量.能源有效性是传感器网络的重要性能指标.到目前为止,传感器网络的能源有效性还没有被模型化和量化,还不具有有被普遍接受的标准,需要进行深入研究.(2) 生命周期.传感器网络的生命周期是指从网络启动到不能为观察者提供需要的信息为止所持续的时间.影响传感器网络生命周期的因素很多,既包括硬件因素也包括软件因素,需要进行深入研究.在设计传感器网络的软、硬件时,我们必须充分考虑能源有效性,最大化网络的生命周期.(3) 时间延迟.传感器网络的延迟时间是指当观察者发出请求到其接收到回答信息所需要的时间.影响传感器网络时间延迟的因素也有很多.时间延迟与应用密切相关,直接影响传感器网络的可用性和应用范围.目前的相关研究还很少,需要进行深入研究.(4) 感知精度.传感器网络的感知精度是指观察者接收到的感知信息的精度.传感器的精度、信息处理方法、网络通信协议等都对感知精度有所影响.感知精度、时间延迟和能量消耗之间具有密切的关系.在传感器网络设计中,我们需要权衡三者的得失,使系统能在最小能源开销条件下最大限度地提高感知精度、降低时间延迟.(5) 可扩展性.传感器网络可扩展性表现在传感器数量、网络覆盖区域、生命周期、时间延迟、感知精度等方面的可扩展极限.给定可扩展性级别,传感器网络必须提供支持该可扩展性级别的机制和方法.目前不存在可扩展性的精确描述和标准,还需要进一步的深入研究.(6) 容错性.传感器网络中的传感器经常会由于周围环境或电源耗尽等原因而失效.由于环境或其他原因,物理地维护或替换失效传感器常常是十分困难或不可能的.这样,传感器网络的软、硬件必须具有很强的容错性,以保证系统具有高强壮性.当网络的软、硬件出现故障时,系统能够通过自动调整或自动重构纠正错误,保证李建中等:传感器网络及其数据管理的概念、问题与进展1721网络正常工作.传感器网络容错性需要进一步地模型化和定量化.容错性和能源有效性之间存在着密切关系.我们在设计传感器网络时,需要权衡两者的利弊.上述6个传感器网络的性能指标不仅是评价传感器网络的标准,也是传感器网络设计的优化目标.为了达到这些目标的优化,我们有大量的研究工作需要完成.1.4 数据管理与处理是传感器网络的核心技术基于传感器网络的任何应用系统都离不开感知数据的管理和处理技术.不言而喻,感知网数据管理和处理技术是确定感知网可用性和有效性的关键技术,关系到感知网的成败.对于观察者来说,传感器网络的核心是感知数据,而不是网络硬件.观察者感兴趣的是传感器产生的数据,而不是传感器本身.观察者不会提出这样的查询:“从A节点到B节点的连接是如何实现的?”,他们经常会提出如下的查询:“网络覆盖区域中哪些地区出现毒气?”.在传感器网络中,传感器节点不需要地址之类的标识.观察者不会提出查询:“地址为27的传感器的温度是多少?”,他们感兴趣的查询是,“某个地理位置的温度是多少?”.综上所述,传感器网络是一种以数据为中心的网络.以数据为中心的传感器网络的基本思想是,把传感器视为感知数据流或感知数据源,把传感器网络视为感知数据空间或感知数据库,把数据管理和处理作为网络的应用目标.传感器网络以数据为中心的特点使得其设计方法不同于其他计算机网络(包括Internet).传感器网络的设计必须以感知数据管理和处理为中心,把数据库技术和网络技术紧密结合,从逻辑概念和软、硬件技术两个方面实现一个高性能的以数据为中心的网络系统,为用户或观察者提供一个有效的感知数据空间或感知数据库管理和处理系统,使用户如同使用通常的数据库管理系统和数据处理系统一样自如地在传感器网络上进行感知数据的管理和处理.感知数据管理与处理技术是实现以数据为中心的传感器网络的核心技术.感知数据管理与处理技术包括感知网数据的存储、查询、分析、挖掘、理解以及基于感知数据决策和行为的理论和技术.传感器网络的各种实现技术必须与这些技术密切结合,融为一体,而不是像目前其他网络设计那样分而治之.只有这样,我们才能够设计实现高效率的以数据为中心的传感器网络系统.显然,感知数据管理和处理技术的研究是一项实现高效率传感器网络的重要和关键的任务.遗憾的是,到目前为止,感知数据管理和处理技术的研究还不多,还有大量的问题需要解决.感知数据管理与处理技术的研究是数据库界面临的新任务和新挑战,也为数据库界提供了新机遇.2 传感器网络的研究问题在讨论传感器网络的研究问题之前,我们需要介绍一下传感器网络的功能结构.由于传感器网络的设计一般都面向应用,我们很难在比较详细的级别上给出它的功能结构.在此,我们在一个比较抽象的级别上讨论传感器网络的功能结构,如图4所示.基础层以传感器集合为核心,包括每个传感器的软、硬件资源,如感知器件、嵌入式处理器与存储器、通信器件、嵌入式操作系统、嵌入式数据库系统等.基础层的功能包括监测感知对象、采集感知对象的信息、传输发布感知信息以及初步的信息处理.网络层以通信网络为核心,实现传感器与传感器、传感器与观察者之间的通信,支持多传感器协作完成大型感知任务.网络层包括通信网络、支持网络通信的各种协议和软、硬件资源.数据管理与处理层以传感器数据管理与处理软件为核心,包括支持感知数据的采集、存储、查询、分析、挖掘等各种数据管理和分析处理软件系统,有效地支持感知数据的存储、查询、分析和挖掘,为用户决策提供有效的支持.1722 Journal of Software软件学报 2003,14(10)应用开发环境层为用户能够在基础层、网络层和数据管理与处理层的基础上开发各种传感器网络应用软件提供有效的软件开发环境和软件工具.应用层由各种传感器网络应用软件系统构成.下面,我们以如图4所示的传感器网络功能结构为主线,讨论有关传感器网络的研究问题. 2.1 基础层研究问题基础层研究问题的核心是传感器软、硬件技术的研究,主要包括:新传感器概念、理论和技术的研究;新型传感器材料和新型传感器装置的研究,如化学物质感知材料和装置、生物物质感知材料和装置等;恶劣环境下可操作的传感器技术的研究;把多个传感器、计算部件、行为部件集成为一个单集成电路片的微型传感器技术的研究;增强传感器计算能力、感知能力和感知精度的研究;提高传感器强壮性和容错性的研究;缩小传感器体积和重量的研究;传感器电源技术的研究;模拟技术和工具的研究;传感器自校准和自测试技术的研究;传感器制造和封装技术的研究;适应于传感器的嵌入式容错操作系统、嵌入式容错信号处理、嵌入式容错数据库等嵌入式软件系统的研究.2.2 网络层研究问题网络层主要研究传感器网络通信协议和各种传感器网络技术.传感器通信网络协议第1方面的研究是通过分析模拟,研究现有通信协议的性能,确定各种现有协议对于传感器网络的可用性及其优缺点.传感器通信网络协议第2方面的研究是以数据为中心的新的通信协议的研究,包括通用能源有效性路由算法的研究、面向应用的能源有效性路由算法的研究、动态传感器网络的路径重构技术的研究.除了上述两个方面的研究问题,网络层还有很多其他方面的研究问题,如可扩展的强壮传感器网络结构的研究、传感器节点的自适应管理和自适应控制技术的研究、资源受限的传感器网络设计策略和性能优化技术的研究、具有局部信息管理能力的能源极低的传感器节点的设计与管理技术的研究、感知数据处理策略的研究、异构传感器网络技术的研究、传感器网络的安全与认证机制的研究、嵌入与组合系统技术的研究、能源有效的介质存取、错误控制和流量管理技术的研究、移动传感器网络技术的研究、传感器网络的自扩展、自适应和自重构技术的研究、传感器网络中传感器节点协作和分组管理技术的研究、传感器网络中传感器节点能源管理技术的研究、传感器网络拓扑结构管理技术的研究、传感器网络中的时间同步技术的研究、数据分发、融合和信息处理技术的研究、仿真技术与仿真系统的研究等. 2.3 数据管理与处理层研究问题数据管理与处理层提供支持感知数据存储、存取、查询、分析和挖掘的软件工具.因此,该层的研究内容主要包括感知数据管理技术的研究、感知数据查询处理技术的研究、感知数据分析技术的研究、感知数据挖掘技术的研究以及感知数据管理系统的研究.感知数据管理技术的研究主要包括传感器网络和感知数据的模型的研究、感知数据存储技术的研究、感知数据存取方法与索引的研究、元数据管理技术的研究、传感器数据处理策略的研究、面向应用的感知数据管理技术的研究.感知数据查询技术的研究主要包括感知数据查询语言的研究、感知数据操作算法的研究、感知数据查询优化技术的研究、感知数据查询的分布式处理技术的研究.感知数据分析技术的研究主要包括OLAP分析处理技术的研究、统计分析技术的研究以及其他复杂分析技术的研究.感知数据挖掘技术的研究主要包括相关规则等传统类型知识的挖掘、与感知数据相关的新知识模型及其挖掘技术的研究、感知数据的分布式挖掘技术的研究.感知数据管理系统的研究主要包括感知数据管理系统的体系结构和感知数据管理系统的实现技术的研究.李建中等:传感器网络及其数据管理的概念、问题与进展17232.4 应用开发环境层研究问题应用开发环境层旨在为各种传感器网络应用系统的开发提供有效的软件开发环境和软件工具,需要研究的问题包括:传感器网络程序设计语言的研究;传感器网络程序设计方法学的研究;传感器网络软件开发环境和工具的研究;传感器网络软件测试工具的研究;面向应用的网络和系统服务的研究,如基于属性的编址方法、位置管理和服务发现等;基于感知数据的理解、决策和举动的理论和技术,如智能应用感知数据的决策理论、监测报警的监测和识别技术、基于感知数据的反馈理论、适用于传感器网络应用的新统计算法、抽样理论和监控系统、监控大规模传感器阵列的数学组合系统工具、适用于传感器网络的模式识别和状态估计理论与技术.2.5 应用层研究问题应用层由各种面向应用的软件系统构成.应用层的研究主要是各种传感器网络应用系统的开发,如作战环境侦查与监控系统、军事侦查系统、情报获取系统、战场监测与指挥系统、环境监测系统、交通管理系统、灾难预防系统、危险区域监测系统、有灭绝危险或珍贵动物的跟踪监护系统、民用和工程设施的安全性监测系统、生物医学监测、诊断或治疗系统等.3 传感器网络的研究进展3.1 军事领域的研究进展情况美国陆军2001年提出了“灵巧传感器网络通信”计划,已被批准为2001财政年度的一项科学技术研究计划,并在2001~2005财政年度期间实施.灵巧传感器网络通信的目标是建设一个通用通信基础设施,支援前方部署,将无人值守式弹药、传感器和未来战斗系统所用的机器人系统连成网络,成倍地提高单一传感器的能力,使作战指挥员能更好、更快地作出决策,从而改进未来战斗系统的生存能力.美国陆军近期又确立了“无人值守地面传感器群”项目,其主要目标是使基层部队指挥员具有在他们所希望部署传感器的任何地方灵活地部署传感器的能力.该项目是支持陆军“更广阔视野”的3个项目之一.美国陆军最近还确立了“战场环境侦察与监视系统”项目.该系统是一个智能化传感器网络,可以更为详尽、准确地探测到精确信息,如一些特殊地形地域的特种信息(登陆作战中敌方岸滩的翔实地理特征信息,丛林地带的地面坚硬度、干湿度)等,为更准确地制定战斗行动方案提供情报依据.它通过“数字化路标”作为传输工具,为各作战平台与单位提供“各取所需”的情报服务,使情报侦察与获取能力产生质的飞跃.该系统组由撒布型微传感器网络系统、机载和车载型侦察与探测设备等构成.美国海军最近也确立了“传感器组网系统”研究项目.传感器组网系统的核心是一套实时数据库管理系统.该系统可以利用现有的通信机制对从战术级到战略级的传感器信息进行管理,而管理工作只需通过一台专用的商用便携机即可,不需要其他专用设备.该系统以现有的带宽进行通信,并可协调来自地面和空中监视传感器以及太空监视设备的信息.该系统可以部署到各级指挥单位.2002年5月,美国Sandia国家实验室与美国能源部合作,共同研究能够尽早发现以地铁、车站等场所为目标的生化武器袭击,并及时采取防范对策的系统.该研究属于美国能源部恐怖对策项目的重要一环.该系统融检测有毒气体的化学传感器和网络技术于一体.安装在车站的传感器一旦检测到某种有害物质,就会自动向管理中心通报,自动进行引导旅客避难的广播,并封锁有关入口等.该系统除了能够在专用管理中心进行监视之外,还可以通过WWW进行远程监视.美国海军最近开展的网状传感器系统CEC(cooperative engagement capability)是一项革命性的技术.CEC 是一个无线网络,其感知数据是原始的雷达数据.该系统适用于舰船或飞机战斗群携带的电脑进行感知数据的处理.每艘战船不但依赖于自己的雷达,还依靠其他战船或者装载CEC的战机来获取感知数据.例如,一艘战船除了从自己的雷达获取数据以外,还从舰船战斗群的20个以上的雷达中获取数据,也可以从鸟瞰战场的战机上获取数据.空中的传感器负责侦察更大范围的低空目标,这些传感器也是网络中重要的一部分.利用这些数据合成图片具有很高的精度.由于CEC可以从多方面探测目标,极大地提高了测量精度.利用CEC数据可以准确地。
传感器节点关键技术(中英文版)Title: Key T echnologies of Sensor NodesTitle: 传感器节点的关键技术Sensor nodes are a critical component in wireless sensor networks, playing a significant role in data collection and transmission.传感器节点是无线传感器网络的关键组成部分,在数据收集和传输中起着重要的作用。
These nodes are designed to be compact and energy-efficient, enabling them to be deployed in various environments for a wide range of applications.这些节点被设计为小巧和节能,使它们能够在各种环境中部署,用于广泛的应用。
One of the key technologies in sensor nodes is the ability to sense and process environmental information.传感器节点的关键技术之一是感知和处理环境信息的能力。
This allows the nodes to detect changes in their surroundings and respond accordingly, such as sending alerts or adjusting their monitoring parameters.这使得节点能够检测周围环境的变化并做出相应的响应,例如发送警报或调整其监测参数。
Another important technology is the communication protocol usedfor data transmission.另一个重要的技术是用于数据传输的通信协议。
信 息 技 术DOI:10.16661/ki.1672-3791.2005-9899-0254论无线传感器网络的特点及应用①叶宁1,2(1.闽江师范高等专科学校; 2.物联网福建省高校应用技术工程中心 福建福州 350001)摘 要:宏观信息化生态下,信息技术在我国的发展已然相当成熟,并推动着各行业的深度变革,产出了巨大的应用价值。
在此过程中,无线传感器作为一个分布式的自组织网络,以数据应用为目的,大规模、高密度、动态性等特点,爆发出了巨大的应用潜力,并广泛应用于军事、环境监测、医疗健康、智能家居等领域。
该文基于对无线传感器网络特点的分析总结,就其在主要领域的应用进行了探究。
关键词:互联网 无线传感器网络 技术特点 主要应用中图分类号:TP212.9 文献标识码:A 文章编号:1672-3791(2020)12(a)-0053-03 On the Characteristics and Application of Wireless SensorNetworkYE Ning1,2(1.Minjiang Teachers College, Fuzhou; 2.Internet of Things Fujian University Application TechnologyEngineering Center, Fuzhou, Fujian Province, 350001 China)Abstract: Under the macro-informatization ecology, the development of information technology in our country has been quite mature, and it has promoted in-depth changes in various industries, and produced huge application value. In this process, wireless sensors, as a distributed self-organizing network, aiming at data applications, have the characteristics of large-scale, high-density, and dynamics. They have exploded with huge application potential and are widely used in military, environmental monitoring, medical and health, smart home and other f ields. Based on the analysis and summary of the characteristics of wireless sensor networks, this article explores its applications in main areas.Key Words: Internet; Wireless sensor network; Technical characteristics; Main applications无线传感器网络简称WSN,它是一种分布式的传感网络,其网络末梢可对分布于外部世界的各类传感器,进行自动探查、感知。
河海大学本科毕业设计(论文)任务书(理工科类)Ⅰ、毕业设计(论文)题目:基于OPNET的无线传感器网络QoS路由及流量建模研究与仿真Ⅱ、毕业设计(论文)工作内容(从综合运用知识、研究方案的设计、研究方法和手段的运用、应用文献资料、数据分析处理、图纸质量、技术或观点创新等方面详细说明):(1)搜集/阅读无线传感器网络、OPNET网络仿真等资料文献,熟悉无线传感器网络的基本理论问题,熟悉OPNET网络仿真这个仿真软件。
(2)对无线传感器网络的QoS路由进行了研究分析,定向扩散进行了扩展,利用一种新的QoS路由算法建立网络模型提高网络的生存期。
(3)对OPNET的流量建模机制进行研究分析,然后阐述一种建立无线传感器网络流量模型的方法。
(4)利用OPNET平台对仿真模型进行仿真实验,验证模型的有效性。
(5)总结与展望。
总结前面的工作,展望以后需要进一步展开的工作。
(6)整理论文,完成论文答辩。
Ⅲ、进度安排:~查阅无线传感器网络(WSN)、OPNET网络仿真及相关资料~熟悉OPNET仿真平台~研究分析无线传感器网络的QoS路由算法和OPNET的流量建模机制,提出一种建立无线传感器网络流量模型的方法~对所提模型进行OPNET仿真实验,验证其有效性~整理相关资料,撰写毕业设计论文,准备论文答辩Ⅳ、主要参考资料:【1】王文博,张金文. OPNET Modeler与网络仿真,人民邮电出版社,【2】孙屹,孟晨. OPNET通信仿真开发手册,国防工业出版社,【3】陈敏. OPNET网络仿真,清华大学出版社,【4】孙利民,李建中,陈渝,朱红松. 无线传感器网络,清华大学出版社,指导教师:, 2006 年 3 月 2 日学生姓名:,专业年级:2002级通信工程专业系负责人审核意见(从选题是否符合专业培养目标、是否结合科研或工程实际、综合训练程度、内容难度及工作量等方面加以审核):系负责人签字:,年月日摘要无线传感器网络是一种全新的信息获取和处理技术,是一种新型的、无基础设施的、自组织的无线网络。
TCP协议优化总结1.TCP协议的缺点分析传输控制协议 TCP 是 TCP/IP 协议栈中的传输层协议。
根据统计,目前全球互联网数据流量90%以上通过 TCP 传输,通过 UDP 传输的不足10%。
TCP这一设计于二十多年前的传输协议已经越来越不适应飞速发展的高速网络环境和新型应用的要求。
当网络路径上存在一定的丢包和延时的情况下,TCP 连接的吞吐显著下滑,常常无法有效地利用带宽,从而造成带宽的闲置和浪费,并必然导致远程数据传输耗时太长,应用响应缓慢甚至无法使用等问题。
上图为TCP协议在不同的丢包率和延时下的传输效率的问题。
由图可知随着网络丢包率和延时的上升,TCP协议传输效率大幅下降,造成这种现象的根本原因有两个:(1) TCP协议简单的将丢包作为拥塞判断的标准,一旦发现丢包,就转入拥塞控制阶段,发送窗口大幅下降,传输速率随之下降;而现代网络中很大一部分丢包并非由拥塞造成的,例如无线网络中信号衰减、干扰以及传输路径上的大量网络设备都可能造成丢包。
(2) TCP协议的丢包判断及重传机制落后。
其采用“3重ACK+超时”的方式进行丢包判断;通常链路的丢包都是双向的,因此接收端响应的ACK包也常常会丢失,所以很多情况下,标准TCP都是以超时方式来响应丢包并进行重传;这种方式对丢包的判断太不及时,导致丢包无法被快速重传,TCP传输迟迟无法从丢包中恢复;另外,在链路状况比较复杂(如无线网络环境下经常发生的丢包率或链路延时抖动)时,标准TCP往往会产生误判,这将导致额外过多的重传,使链路传输有效数据率下降,造成带宽资源浪费,并在链路繁忙时加重链路负担。
2.优化思想分类2.1 双边TCP优化双边TCP优化就是在TCP连接的两端部署硬件设备或安装软件。
通常协议优化文献中所提到的多为双边优化。
典型的方法是TCP透明代理,透明代理工作在TCP连接的两端,两个代理之间通常通过UDP或其它自定义协议工作,这些协议本身可以按照自己的要求进行控制,达到提高TCP性能的效果,此外双边TCP加速还可以引入压缩、缓存等技术进一步提高性能。
SON(Self-Organized_Network)自组织网络SON技术的特点是:自动配置、自动发现、自动组织和多跳路由。
SON技术的自动配置和自动发现特性使WIFI设备在组成一个网络的时候对用户是透明的。
在网络拓扑变动和链路断开的情况下,SON技术的自动愈合和自动组织特性增强了移动Adhoc网络的健壮性。
SON也能够保证优化带宽使用效率。
SON多跳路由技术扩展了Adhoc和网络的覆盖范围。
基于IP层的SON 技术,支持多种无线和有线接口。
降低运营成本的4G新技术—LTE SONSON是在LTE的网络的标准化阶段由移动运营商主导提出的概念,其主要思路是实现无线网络的一些自主功能,减少人工参与,降低运营成本。
在未来的网络中,由于不同的网络共存,网络将变得更加复杂,大量无线参数和数据将使网络优化人员的工作量大幅提高,而运营商希望降低运营成本及人工干预。
于是在这一背景下,EUTRAN系统的SON(自组织网络)特性被作为3GPP的重要研究方向。
NGMN中的移动运营商对SON的部署有强烈的需求,于是纷纷投入SON需求的研究,发布有关SON 的白皮书和建议书。
3GPP也在重点研究SON和当前电信管理网络的实现方案。
欧盟也在进行两个相关项目,一个主要由欧洲主要运营商、设备商共同承担,从SON的技术方案、实现方法及验证平台入手,研究SON对网络运维产生的影响;另一项目是利用感知无线电和分布式感知原理进行前沿重点研究。
3GPP确定接入网结构主要由演进型eNodeB和接入网关(AGW)构成。
eNodeB由R6阶段的NodeB、RNC、SGSN、GGSN四个主要网元演进而来,eNodeB之间通过X2接口采用网格(mesh)方式互连,同时还建议当某eNodeB需要同其它eNodeB通信时,这个接口总是存在,支持处于LTE_ACTIVE状态下手机的切换。
E-NodeB与AGW之间的接口称为S1接口,S1接口支持多对多的AGWs和eNodeB连接关系,eNodeB通过S1接口与EPC(EvolvedPacketCore)连接。
SensIT: Sensor Information TechnologyFor the WarfighterSrikanta Kumar, Ph.D.DARPA – ITO 3701 North Fairfax Drive Arlington, VA 22203-1714David ShepherdStrategic Analysis, Inc. 3601 Wilson Blvd Suite 500Arlington, VA 22201Abstract –The Defense Advanced Research Projects Agency’s Sensor Information Technology (SensIT) program is developing software for networks of distributed microsensors. This paper outlines the program goals, technical challenges, and some of the ongoing research. Specific ongoing work in collaborative signal and information processing and fusion is emphasized.Keywords: collaborative signal and information processing, distributed microsensors, fusion, query/ tasking1 IntroductionSensors have always been important to the military for use is reconnaisance, surveillance, and tracking and targeting. Recent advances in MEMS technology, embedded processing, and wireless communication, is enabling the development of microsensor devices that can be deployed in large numbers in the battlefield. A microsensor device will have multiple on board sensors (such as acoustic, seismic, infra-red, magnetic, etc.) embedded processing and storage, short range wireless links (ten to hundreds of meters), and positioning capability either through GPS or through a relative positioning mechanism. Continued advances in microtechnology will also enable “smart dust,” i.e. microsensors, on the order of square millimeters or square centimeters in size, packaged with transceivers, having the capability to produce enormous quantities of data. In battlefield conditions, the large quantities of information available to the warfighter must be simplified, processed and presented appropriately and in a timely manner, due to the unique demands placed on warfighters and the penalties for cognitive overload on the battlefield. To accomplish these goals, methods of data fusion, collaboration and sensor networking are being developed by researchers in the Sensor Information Technology (SensIT) program, sponsored by the Information Technology Office (ITO) at the Defense Advanced Research Projects Agency (DARPA). SensIT researchers are also testing their software in the field, with the assistance of the United States Marine Corps and other service entities.2 Program GoalsThe SensIT program’s primary goal is the creation of a new class of software for distributed microsensors. The program has two key thrusts: a) development of novel networking methods for ad hoc deployable microsensors, and b) leveraging the distributed computing paradigm for extraction of right and timely information from a sensor field, including detection, classification, and tracking of targets. The program has five tasks: Fixed Networking, Fixed-Mobile Networking, Collaborative Signal and Information Processing, Query/Tasking, and Integration. 2.1 Fixed NetworkingNetworked microsensors for the military must have many desirable characteristics. First, the networking algorithms and protocols should support ad hoc networking that can scale to large numbers. Second, networking must support rapid self-assembly without any manual intervention for configuration. Third, networking must be adaptive to the environment, as nodes or links may be dead on arrival or links may suffer outages due to fading. Fourth, networking must support the primary operational and technical requirements that drive system parameters, such as low latency and high energy efficiency. Sensor networking must be resource efficient, and support incremental deployment. Finally, networking must be survivable, secure, and have low probability of detection by others when the sensors are deployed.2.2 Fixed-Mobile Inter-NetworkingSensIT research aims to enable seamless interaction between forward-deployed, ad hoc sensors and fixed devices, and networks in rear areas. Sensors on mobile platforms might be located on UAVs, robots, ground vehicles, and even troop uniforms. Relays and other power-rich resources such as UAVs and mobile command posts will be integral elements of a fixed-mobile network.2.3 Collaborative Signal and Information Processing; FusionA key feature of a sensor network is collaborative processing among nodes. Incorporating inputs from multiple sources increases the signal to noise ratio, i.e. the accuracy of useful target information. High node density enables dense spatial sampling and data sharing. This data must be fused, whereby the data from multiple nodes is combined to detect, classify, and track targets. The information must be exfiltrated to users or dynamic query points.2.4 Querying and TaskingUser interaction with sensors is handled primarily through tasking of sensor operations and queries. In a sense a sensor field is a database, as sensor devices collect, process, and store data and information. Temporal and spatial data and information is stored in the distributed database of the sensor field. Queries and tasks must be simple for the user to input, sensor reports easy to understand. Dynamic querying and tasking should also be supported. The distributed nature of both users as well as data locations means information must be available at any location and recoverable with a minimum of latency.2.5 IntegrationA SensIT goal includes the integration of all the software from the above tasks, through well-defined APIs, and demonstration, in lab and in field, of new capabilities of microsensor networks. The software is being developed, tested, and integrated on hardware platforms developed by Sensoria [/ito/research/sensit/], with integration performed by BBN. Researchers have performed extensive integrated experiments in the summer of 2000 and 2001, and are planning additional experiments in the future.3 Technical ChallengesThe uncertain and harsh environmental conditions of sensor networks demand dynamic adjustment of mode of operations, including dynamic and adaptive routing, deployment of redundant nodes, and employment of robust communications protocols. Nodes and networks must be able to operate autonomously for extended periods of t ime. Resources such as transmission and processing power as well as bandwidth must be used only on a restricted or as-needed basis. Networks must be reliable, survivable and secure in the face of enemy jamming, friendly transmissions and incidental and spurious signals. 3.1 Fixed NetworkingThe primary challenge in operating a network of sensors is to ensure reliable operation in an uncertain environment. Traditional network performance metrics, such as latency, reliability, and energy performance, remain critical. Additional factors perhaps unique to sensor networks include scalability and device form factor. Sensors’ small sizes limit battery size and performance. Given decreasing sensor sizes and intentions to deploy large quantities of sensors, how does network performance change as the numbers of nodes increase? How does network density, e.g. number of devices per square kilometer, affect performance? Yet throughout the requirements space, achieving reliable networking in an environment without always having to maintain end-to-end connections remains important. To achieve this goal, SensIT is examining alternatives to traditional Internet Protocol (IP) routing, such as diffusion routing [1].3.2 Fixed – Mobile NetworkingThe challenges of fixe d device networking are multiplied in the case of interaction between fixed and mobile devices. Challenges inherent in networking of both static and mobile devices include discovery of new devices, provisioning of services in a network of varying resource capacities, and handling of engagements between fixed and mobile devices. Intermittent connectivity as well as varying speeds of mobile devices must be handled. A mobile device such as a UAV might be in the range of several fixed devices; traditional protocols developed for cellular and PCS are not adequate, and as such new protocols, and new ways of handling handoffs, are required. Fixed networks with established user lookup tables must be able to handle incoming, new users. Finally, the user poses the ultimate requirement: does network operation appear seamless?3.3 Collaborative Signal and Information Processing; FusionThe high node densities found in sensor networks facilitate collaborative processing, yet truly collaborative behavior, combining efficient routing with the fusion of data from relevant nodes to determine consensus on targets, remains challenging. Processing, synthesizing and fusing inputs from multiple sources requires sophisticated distributed signal processing algorithms. Primary challenges include the processing of data asynchronously, as processing speeds may vary dramatically due to differing resource availabilities. When times of arrival appear irregularly or far apart in time, has more than one target appeared? Does a similar signal from multiple sensors spaced far apart mean one target is moving rapidly, or have several similar targets appeared simultaneously? How should processing bedivided among multiple sensors to enable maximum power efficiency and minimum latency? Aside from latency, detection accuracy also plays a large role in this scenario. What is the fusion strategy for on-board multi-modal processing at one device? And what are good methods for cross-node fusion? Algorithms are needed that enable progressive accuracy, so processing can be stopped to conserve power when desired accuracy is reached. Yet throughout the process, energy and processing efficiency must remain critical.3.4 Querying and TaskingChallenges arising from distributed sensor networks’ interaction with the environment include enabling users to simply and quickly query the networks, as well as to task them with requirements. Processing functions and database calls during data exfiltration must remain hidden to the user. Set up and maintenance of distributed databases and execution of remote queries requires coordination and fusion among nodes, while access to the database from potentially anywhere in the sensor field requires intelligent data and cache placement and servicing.3.5 IntegrationThe primary challenge implicit in networking hundreds or potentially thousands of sensors is achieving a complete, end-to-end solution. Sensors come in a variety of shapes and sizes, with varying power, processing and connectivity requirements, varying task responsibilities, and varying reporting demands. Achieving timely interaction among the tremendous variety of sensors requires a program of iterative development and testing, particularly in military-relevant scenarios. SensIT will provide real-time proof of the functionality of a baseline system, and the collection of data to support laboratory experiments and ongoing algorithm development.4 Collaborative Signal and Information Processing; Fusion Collaborative behavior is superior to single processor behavior because nodes acting collaboratively can in effect perform computations in parallel, compare results to enable more intelligent decisions, minimize communication needs through local summarization and maximize data quality by selecting the highest value data sources. Primary collaborative signal processing (CSP) activities include- The exchange of data among sensor nodes to enable better decisions and other high level data to be derived from raw sensor signals.- Fusing data from multiple sensing m odalities and irregular sensor placements. - Minimizing power consumption on sensor nodes for communications, signal processing, and sensing.- Reaching a consensus belief state among sensor nodes about what is occurring in the physical world and mapping sensor data to entities in this consensus.- Creating timely reports in response to user needs.4.1 SensIT CSP and Fusion ResearchSensIT researchers are developing several CSP techniques for use in distributed networks. Collaborative signal processors being b uilt by SensIT researchers have the ability to associate or correlate data sets for the same target from multiple nodes, selectively fuse data from multiple nodes and sensor types, select the geometrically optimal nodes for collaboration, iteratively update feature estimates based on asynchronous data received (possibly out-of-order) across the network, and distribute processing components across the sensor network to minimize power usage. Other methods under research include exploiting asynchronous feature update estimations to make on-the-fly decisions for localization and classification, and resource-bounded optimization techniques.Analyzing data from multiple sources presents challenges not encountered in the case of single processor computation. Among these is threshold decisions: due to differences in background noise, the same signal may appear to be noise to one sensor while appearing distinct to others. When multiple sources appear in a sensor field simultaneously, how are the targets differentiated? Responses will vary among sensors, due to variations in sensor type or connectivity conditions.One technically challenging area especially relevant to collaborative processing is finding a balance between the cost of communicating and the cost of computation. Traditional signal processing algorithms, which tend to rely on large matrix operations, require too much communication between nodes to be useful in a distributed signal processing environment. As such, it may be worth performing more than the minimum number of computations at the local level if the total cost of communications can be reduced [2].Several SensIT projects are related to fusion and collaborative processing. First, multimodal onboard fusion of data from acoustic, seismic and infrared sensors for detection is being performed by Steven Beck and Joseph Reynolds of BAE Systems - Austin[3]. Second, the technique of Latent Semantic Analysis is being developed to convert large quantities of raw sensor data to useful information. T his technique integrates signal data, in the form of time-series data, and semantic information, in the form of target attributes. This way, time series data from heterogeneous sensors can be compressed into semantic attributes. These attributes can processed locally at sensor nodes and, using pattern matching, compared to templates preloaded onto sensor platforms [4]. Third, RichardBrooks and S.S. Iyengar are employing collaborative processing for target tracking using methods based on the Byzantine Ge nerals based approach. In this approach, one node is chosen to combine the sensor readings and determine the target location most consistent with the information provided. Field tests showed that this local collaboration produced fused localization estimates robust to node errors and more accurate than individual readings [5, 13].SensIT researchers from MIT LL have studied Time Difference of Arrival (TDOA) based approach for estimating a bearing to target. Whereas the Closest Point of Approach (CPA) method is useful when distances between nodes and targets are small, permitting reports from multiple nodes in close proximity, TDOA is most useful in estimating information when targets are located further from the sensors: TDOA works best when the distance between the targets and nodes is two to three times the distance between the nodes. It provides any-time information, unlike the tripwire approach of CPA, but it is more computation- and communication-intensive than CPA. On the other hand, compared to beamforming, TDOA can require less computation, makes fewer demands on precise node location information and time synchronization, and avoids a full exchange of time series data. TDOA produces a composite bearing estimate by choosing mutually consistent bearing solutions after comparing frequency tracking data across pairs of nodes Unneeded portions of targets’ frequency profiles can be discarded, saving processor cycles but leading to a tradeoff between bandwidth and accuracy [6].Another group of researchers is also improving multiple target tracking capabilities by combining classification algorithms with more traditional tracking algorithms. Researchers tracked targets using a two-step process: first, nodes surrounding a target detection share data to create a region of interest. The nodes in the vicinity of the detection select one node to be the manager for the detection process, and then report the energy detection and CPA information to the manager node. Second, nodes report energy levels and CPAs for successive time instants, and then use this information to predict the position of the target at later times. The information is also used to create and activate new regions for subsequent detection and tracking. Temporal processing is performed locally at each node in more sophisticated versions of this capability. To differentiate between targets that might appear closely in space and/or time, classifiers that contain data collected previously operate in parallel to recognize unfamiliar target [7].Researchers from Xerox are studying techniques for information-directed sensor querying. These techniques allow the intelligent selection of sensors for collaboration based on information-theoretic and communication-based cost measures. This work may use a hybrid of traditional tracking techniques with a distributed particle filter. This nonparametric Bayesian approach to tracking and fusion of multiple sensing modalities allows incorporation of nonlinear dynamics and complex sensor noise models [8]4.2 ExperimentationSensIT researchers have conducted two field experiments to test collaborative signal processing theories in real world environments. In these experiments, termed SensIT Experiment 2000 (SITEX00) and SensIT Experiment 2001 (SITEX01), researchers teamed with the U.S. Marine Corps to test SensIT CSP capabilities at the Marine Corps Air Ground Test Facility at Twentynine Palms, California.For SITEX01, researchers conducted three experiments. In the first experiment, 10 nodes equipped with seismic sensors and separated by approximately 10 meters were used to track vehicle position, speed and direction of travel. Vehicles utilized included tanks, LAVs (light armored vehicles), HMMWVs (light to medium weight all purpose vehicles), and Dragon Wagons (heavy weight off-road tractor-trailer combinations). Data was remotely displayed. The second experiment used three passive infrared sensor nodes and one imager node to detect the presence and motion of ground vehicles and predict the vehicles’ location so that the imager node, located further along the vehicles’ direction of travel, was triggered to transmit the image of the vehicles, and then return to sleep mode. In the third demonstration, 15 nodes carrying magnetometers were deployed along a road, half of them hand emplaced and half dropped by a UAV. After circling back, the UAV queried the ground network for vehicle detection, time of occurrence and speed. The UAV then exfiltrated the responses to a remote base camp. The UAV also relayed images taken from cameras mounted in its nose and body [9].Joe Reynolds and Steven Beck of BAE Systems-Austin have performed multi-node collaborative target detection and tracking. For the SITEX00 experiments, the group built 12 single sensor nodes containing omni-directional electret microphones, an 8-element linear array, a 2X4 element planar array, and two tetrahedron microphone arrays. They distributed eight of the single element microphone nodes along a road, and digitized the signals from different vehicles and troops using a 12-bit simultaneous sampling with 8 kilosamples per second per channel (20 kilosample/sec data at 16 bits is available for some of the nodes). The acoustic data was primarily used for target identification and for calculation of the time of CPA to the sensor based on Doppler line tracking. For the SITEX01 experiment, the group implemented a likelihood ratio vehicle detector for seismic and passive infrared sensing modalities, and combined the multiple detections using Bayesian techniques. The combined detections provided a false alarm rate less than 1 in a million andwere input to a decentralized Kalman tracker used to trigger a wireless imager. On-node processing reduced the data rate to less than 100 bits of target state information per detection event, making low power wireless collaboration feasible. In a related project, this group recently demonstrated real-time vehicle and dismounted troop detection, discrimination, and tracking using four sensing modalities (acoustic, magnetic, seismic, and pulsed Doppler radar). The 8 KHz per channel data was collected, stored, and processed in real-time, and a Bayesian inference network was used to combine the detections from each sensor modality and discriminate pedestrian troop movement from vehicles and other clutter sources [10].Similar experiments were conducted as part of SITEX00 in March, 2000. In 33 scripted runs, SensIT researchers gathered 13.5 hours of data on targets such as amphibious assault vehicles (AAVs), LAVs, Dragon Wagons, HMMWVs, 5-ton trucks and targets of opportunity. Forty nodes containing a total of 120 sensors (acoustic, seismic, and infrared) were used. Data on these experiments, available to SensIT researchers at , includes information on each run, a narrative description of each run, run parameters, and node locations. Run data is listed by day and number of run and includes target data and node settings. Visitors may access a limited portion of the si te by using the username of “visitor” and password of “visitor.”4.3 CSP Canonical Scenarios [11]To assist with the development of collaborative processing algorithms, SensIT researchers have written twelve “canonical scenarios.” These scenarios were written to test key capabilities of collaborative sensing systems. By utilizing combinations of these capabilities, it should be possible to demonstrate scenarios typical of those found in ground sensor deployments for military uses. Parameters employed i n the scenarios include sensor field size, node type and deployment densities, initial states, trajectories and maneuvers of targets (vehicles only), desired accuracy, precision and resolution of target position, and network performance factors such as reliability, latency, and output rates. Targets included eight types of vehicles, ranging in size and acoustic signature from light wheeled trucks to heavily armored tanks. Sensors employed included directional and omnidirectional acoustic, seismic, passive infrared and magnetic sensors. Benchmarks measured for each scenario include energy consumption, detection accuracy, detection latency, tracking accuracy, and tracking latency. The scenarios, listed in rough order of processing difficulty, include:1. Track Single Target: continually estimate targetposition versus time as the target moves alonga road. Technical challenges include targetlocalization, maintenance of estimate accuracy despite widely-varying temporal and physical distances between sensors, and the fusion of data from multiple sensor types.2. Track Single Maneuvering Target (see figure 1):estimate target position versus time as a target maneuvers along an a priori unknown, offroad path. Challenges presented by this task include estimating position and time without prior knowledge of vehicle trajectory, and fusion of reports from many simultaneous observations ina 2D sensor network.Fig. 1: Single Maneuvering Target scenario3. Track One Accelerating/Decelerating Target:estimate target position versus time. In this scenario, target signatures vary with time, preventing the use of constant vehicle dynamics models. Shifts in vehicle gears may require maintenance of several discrete internal sensor states.3. Count Stationary (Idling) Targets: counting andlocating a number of pre-positioned targets.Challenges in accomplishing these tasks include source separation, achieving consensus on a distributed count of the vehicles, locating them without using closest point of approach (CPA) methods, and differentiating between types of vehicles.4. Two-Way Traffic: Two-way or crossing trafficrequires the sensor system to maintain vehicle identities through the time of crossover, when multiple vehicles of the same type produce simultaneous signals on the same sensors. This crossover time presents the primary technical challenge: maintaining accuracy of identity tracks by noting and tracking vehicle dynamics, and maintaining a running estimate of target crossing time. Useful parameters for these characteristics include determining time of crossing within 0.5 seconds and achieving 99%rate of correct target identification.5. Convoy on a Road: Tracking multiple targetsof various types along a road requires tracking an a priori unknown number of vehicles as well as determination of vehicle order. Technical challenges include initialization of new vehicle tracks, and handoff of vehicle tracks along a long road.6. Track Multiple Maneuvering Targets: In thisscenario three vehicles maneuver on the same layout as in the single target maneuvering scenario (#2). Two vehicles are of one type, the third is of another type. The task is to estimate the target positions versus time. The primary technical challenge presented by this scenario is the two-dimensional data association problem: how to map the raw sensor data to tracks and how to harmonize the beliefs of multiple nodes. No a priori knowledge of paths is provided.7. Perimeter Violation Sensing: In this case, aperimeter has been set up; violators entering the perimeter must be identified and tracked, while activity outside of the perimeter ignored.The primary challenge arising in this scenario is filtering distracters from appropriate targets.Benchmarks used in this case include detection latency, power usage during periods when distracters are present but no violation occurs, and frequency of false positive reports.8. Tracking in an Obstacle Field (see figure 2):track a vehicle amidst a field of obstacles of varying sizes and locations. Technical challenges include maintaining tracks despite loss of data due to obstacle interference, keeping sensors from locking on obstacles, and dealing with distinct obstacles affecting modalities in different manners. Obstacle configuration and density can be changed to vary the difficulty of the problem.Fig. 2: Tracking an Obstacle in a Field9. Identity Tracking and Mutual Exclusion usingOne-Time Sensors (see figure 3): When multiple targets are separated in space and time, a sensor establishes individual target identities, but when the targets pass together through a tunnel without sensors the distinct identities are lost. When the identity of one target is regained, the system must re-establish the connection between the original tracks and the identities of both vehicles. The primary technical challenge of this scenario is to reason about target identities despite periods of uncertainty. For example, if targets A and B merge then split and the target heading one direction is later identify as A, then the target headed the other direction must be B.Fig. 3: Identity Tracking and Mutual Exclusionscenario10. Cluster Behavior: When the separation betweenmultiple vehicles becomes too small, tracking them individually becomes difficult if not impossible. This scenario demonstrates the ability to track the centroid of a group of vehicles and count the number of vehicles even while some cluster members arrive and depart.Challenges in this task include differentiating between multiple targets, coalescing multiple similar targets into a centroid, limiting exponential hypothesis blowup, and measuring the global properties of the cluster rather than properties of a single target.11. Multiple Target Clusters: The most demandingof the scenarios presents multiple groups of many vehicles. The task is to determine the number of clusters and number of vehicles in each cluster, and to track the centroid of each cluster over time. Clusters may merge or split, and vehicles may depart or arrive. The amount of data involved might cause latency between cluster merge/split and notification to other clusters, and in the formation of cluster centroids.Cluster maintenance requires dynamic collaboration between nodes. Cluster size estimates and identities must be maintained over multiple queries. The size of the network and the。
传感器网络启动式自组织方法管伟;罗旭;杨君【期刊名称】《微计算机信息》【年(卷),期】2012(000)009【摘要】How the wireless sensor networks becoming a self-organization network was an important part of the research of wireless sensor networks.A self-organization scheme was proposed in dynamic monitoring network with alternant working way according to the geographicalarea.This scheme was triggered by sink nodes as a bootup way,using unicast token to assign MAC addresses which marking the adjacent nodes and forwarding data frame according a local minimum costfunction.Simulation shows the scheme is suitable for the corresponding network with short MAC addresses.%无线传感器网络如何形成一个有序的自组织网络结构是一项重要研究内容,针对按地理区域交替性工作的动态监测网络,提出了相应的网络自组织方法,该方法以启动式方式运行网络,通过单播信令的方式分配MAC地址,标记相邻节点。
在数据转发过程中以局部最小代价函数为准则转发数据。
仿真实验表明,该自组织方法具有较短的MAC地址,适宜相应的网络环境。
【总页数】3页(P378-380)【作者】管伟;罗旭;杨君【作者单位】武汉龙安集团;武汉科技大学信息学院;武汉科技大学信息学院【正文语种】中文【中图分类】TP301【相关文献】1.自组织网络中基于ID加密的自启动分布式CA [J], 王海波;胡汉平;吴俊2.基于分布式和协同波束形成算法的自组织无线传感器网络 [J], 付兴武;刘亮亮3.事件驱动无线传感器网络节点自组织分簇休眠方法 [J], 叶江;王玉林4.用于水声传感器网络自组织的询问式泛洪广播算法 [J], 肖东;魏丽萍;陈庚;陈岩;马力5.嵌入式无线传感器网络自组织通信协议栈 [J], 郑杰;屈玉贵;赵保华因版权原因,仅展示原文概要,查看原文内容请购买。
自组织映射(self-organizing feature mapping)自组织神经网络SOM(self-organization mapping net)是基于无监督学习方法的神经网络的一种重要类型。
自组织映射网络理论最早是由芬兰赫尔辛基理工大学Kohen于1981年提出的。
此后,伴随着神经网络在20世纪80年代中后期的迅速发展,自组织映射理论及其应用也有了长足的进步。
它是一种无指导的聚类方法。
它模拟人脑中处于不同区域的神经细胞分工不同的特点,即不同区域具有不同的响应特征,而且这一过程是自动完成的。
自组织映射网络通过寻找最优参考矢量集合来对输入模式集合进行分类。
每个参考矢量为一输出单元对应的连接权向量。
与传统的模式聚类方法相比,它所形成的聚类中心能映射到一个曲面或平面上,而保持拓扑结构不变。
对于未知聚类中心的判别问题可以用自组织映射来实现。
[1]自组织神经网络是神经网络最富有魅力的研究领域之一,它能够通过其输入样本学会检测其规律性和输入样本相互之间的关系,并且根据这些输入样本的信息自适应调整网络,使网络以后的响应与输入样本相适应。
竞争型神经网络的神经元通过输入信息能够识别成组的相似输入向量;自组织映射神经网络通过学习同样能够识别成组的相似输入向量,使那些网络层中彼此靠得很近的神经元对相似的输入向量产生响应。
与竞争型神经网络不同的是,自组织映射神经网络不但能学习输入向量的分布情况,还可以学习输入向量的拓扑结构,其单个神经元对模式分类不起决定性作用,而要靠多个神经元的协同作用才能完成模式分类。
学习向量量化LVQ(learning vector quantization)是一种用于训练竞争层的有监督学习(supervised learning)方法。
竞争层神经网络可以自动学习对输入向量模式的分类,但是竞争层进行的分类只取决于输入向量之间的距离,当两个输入向量非常接近时,竞争层就可能把它们归为一类。