应用弹性层状体系理论进行分析和计算路面结构的应力
- 格式:pptx
- 大小:1.67 MB
- 文档页数:33
一、沥青方面1、试叙述沥青路面几种主要的破坏现象?在确定柔性路面设计方法时是如何考虑的?(1990)答:沥青路面的损坏可以分为三类:1)裂缝类-路面结构的整体性受到破坏;2)变形类-路面表面的现状改变;3)表层损坏类。
其中,常见的损坏有:层陷,车辙,疲劳开裂,反射裂缝和低温裂缝,松散和坑槽,泛油和推移。
通常认为,疲劳开裂、车辙(永久变形)和低温开裂是导致路面结构破坏的三项最主要的损坏模式,在设计中应予考虑。
为控制路基路面结构的总变形,防止沉陷、车辙等整体强度不足的损坏,采用弯沉指标――路面竣工第一年路基路面结构表面实际回弹弯沉值l s≤该路面容许回弹弯沉值l d;为防止沥青混凝土和整体性材料基层疲劳开裂,采用弯拉指标――沥青混凝土面层和整体性基层底面的弯沉应力σm≤材料的容许弯拉应力σr。
i.沥青路面的主要损坏现象有那些?试详细说明其产生原因以及减少或克服这些损坏现象、改善路面性能、延长路面使用寿命应采取的措施(2000 )ii.沥青路面早期损坏现有哪些?试详细说明其产生原因及为减少或克服这些损坏现象、改善路面的高温稳定性、低温抗裂性和水稳定性而应采取的措施。
(2001/11 2001/11)答:损坏类型:沥青路面早期水损坏现象及其原因较为复杂,且因地而宜,可分为三大类,13种主要损坏类型。
(一)裂缝类:1、横向裂缝:其产生的原因是温度变化和地基的纵向不均匀沉降,半刚性基层沥青路面的横向裂缝绝大部分是反射裂缝2、纵向裂缝:产生原因是压实不好,路基或基层出现沉降,混合料摊铺时纵向施工搭接质量不好,或基层的反射裂缝以及荷载重复作用的结果。
3、龟裂:产生原因是行车荷载的反复作用;由于沥青层路面结构强度不足,结构组合不合理;基层排水不良,沥青混合料老化,或低温变硬、变脆等;横纵向裂缝出现后继续扩展,北方冰雪和南方多雨地区更是严重。
4、块状裂缝:面层材料的低温收缩和沥青老化以及砂砾基础的不均匀性。
(二)变形类:5、车辙:外因是渠化交通和荷载作用次数的增加,内因是沥青混凝土的高温稳定性和抗塑性变形能力差6、波浪和拥包:材料组成设计差,施工质量差,使面层材料不足以7、沉陷:地基未充分固结造成的继续沉降或地基压实不足造成路面的大面积沉陷8、隆起:冻胀、盐胀、膨胀土胀起,路面材料推移拥起。
国家开放大学《道路工程》期末复习模拟测试题模拟测试1一、选择题1.高速公路和具干线功能的一级公路,设计交通量预测年限是()A.10年B.15年C.20年D.25年答案:20年2.路面结构总变形中土基的变形约占()。
A.70%以上B.70%以下C.50%左右D.50%以下答案:70%以上3.路基中心高度与边坡高度()。
A.相同B.不同C.无关D.两者接近答案:不同4.不含或含很少细料的颗粒类混合料()。
A.密实度高B.透水性好C.易冰冻D.易压实答案:透水性好5.沥青玛蹄脂碎石混合料的矿料级配为()。
A.连续级配B.开级配C.密级配D.间断级配答案:间断级配6.应用弹性层状体系理论分析计算沥青路面时将其视做()。
A.非线性的弹粘塑性体B.线性弹性体C.粘一塑性体D.非线性体答案:线性弹性体D.180天答案:90天8.具集散功能的一级公路以及二、三级公路的设计个预测年限是()A.10年B.15年C.20年D.25年答案:15年9.水泥砼路面应力分析时,将砼板下由基层,垫层及土基组成的体系视为()。
A.多层弹性体B.弹塑性体C.弹一粘一塑性体D.弹性地基答案:弹性地基10.从路基的实际工作状态,确定对其上、中、下不同层位的压实度要求()。
A.上、中层应高些B.上、下层应高些C.中、下层应高些D.上层高些答案:上、下层应高些11.石灰剂量对石灰土强度的影响表现为()。
A.随剂量增加强度增加B.随剂量增加强度减小C.存在最佳剂量D.两者无关答案:存在最佳剂量12.中间带与中央分隔带的关系是()A.中间带与中央分隔带相等B.中间带为中央分隔带与两侧路缘带之和C.中央分隔带为中间带与两侧路缘带之和D.中间带为中央分隔带与一侧路缘带之和答案:中间带为中央分隔带与两侧路缘带之和13.道路中线竖向剖开再行展开在立面上的投影叫做()。
A.道路剖面B.道路纵断面C.道路立面D.道路平面答案:道路纵断面D.过山桥答案:隧道15.在平面设计中曲率半径是变化的曲线是()。
路面使用性能的评价内容及加铺层设计思路广州市市政工程设计研究院刘悦强摘要:路面在使用过程中,由于行车和自然因素的不断影响,其使用性能会逐渐衰变,最终达到不能满足使用要求的状态。
为使路面经常处于完好状态,需进行路面养护。
关键词:行驶质量损坏状况承载能力抗滑性加铺层1.引言路面在使用过程中,由于行车和自然因素的不断影响,其使用性能会逐渐衰变,最终达到不能满足使用要求的状态。
路面的使用性能可分为四个主要方面,分别从不同的角度反映路面状况对行车要求的适应情况:(1)路面表面的行驶质量;(2)路面结构的损坏状况;(3)路面结构的承载能力;(4)路面表面的抗滑性。
为使路面经常处于完好状态,需进行路面养护。
养护措施并不会改变现有路面结构,本次着重讨论在旧面层上铺设加铺层的设计思路。
2.路面使用性能的评价2.1路面行驶质量路面的基本功能是为车辆提供快速、安全、舒适和经济的行驶表面。
路面行驶质量反映路面满足这一性能的能力。
路面行驶质量的好坏,同(1)路面表面的平整度特性;(2)车辆悬挂系统的振动特性;(3)人对振动的反应和接受能力三方面因素有关。
从路面状况的角度看,影响路面行驶质量的主要因素是路面平整度。
路面平整度可定义为路面表面诱使行驶车辆出现振动的高程变化。
路面不平整所引起的车辆振动,会对行车速度、路面损坏和交通安全等多方面产生直接影响。
因而,采用平整度作为度量路面行驶质量的一项性能指标2.2路面结构损坏路面结构的损坏状况,反映了路面结构在行车和自然因素作用下保持完整性或完好的程度。
路面结构损坏的发生和发展同路面养护和改建工作密切相关。
路面结构的损坏状况,须从三方面进行描述:(1)损坏类型;(2)损坏严重程度;(3)出现损坏的范围或密度。
综合这三方面,才能对路面结构的损坏状况作出全面的估计。
2.3路面结构的承载能力路面结构承载能力,是指路面在达到预定的损坏状况之前还能承受的行车荷载作用次数,或者还能使用的年数。
城市沥青路面在标准轴载下路基中应力分析吴祖德(常州市建设工程施工图设计审查中心,江苏常州 213002)内容提要采用弹性层状体系理论计算城市沥青路面在标准轴载100KN荷载下,不同深度的总应力(自重应力+荷载应力)值,进行分析探讨。
关键词城市沥青路面标准轴载路基应力分析0前言采用SHELL公司按弹性层状体系理论编制计算沥青路面结构应力、应变的BISAR3.0软件,可计算出沥青路面在不同深度时的荷载应力值,本文把常州市支路、次干路、主干路、快速路的沥青路面结构,在标准轴载100KN作用下路基中的应力分布计算出来,加上自重应力进行分析,供设计人员参考、应用。
1 常州市各级沥青路面在标准轴载100KN作用下路基中的应力分布(1)常州市沥青路面支路1在标准荷载100KN时路基中的应力分布图1 常州市沥青路面支路1在标准荷载100KN时路基中的应力分布图路基工作区深度(cm)44 67.5 91图2 常州市沥青路面次干路1在标准荷载100KN时路基中的应力分布图(3)常州市沥青路面次干路2在标准荷载100KN时路基中的应力分布图4 常州市沥青路面主干路1在标准荷载100KN时路基中的应力分布图(5图6 常州市沥青路面快速路在标准荷载100KN时路基中的应力分布图2 常州市各级沥青路面在标准轴载100KN作用下路基中的应力分析(1)标准轴载100KN作用下,在路基顶面的总应力值(自重应力+荷载应力)均很小:(2)同样的标准轴载100KN作用下,随着路面厚度的增加,路基顶面的荷载应力减小;相同路面结构厚度时,路基回弹模量大的,路基顶面荷载应力大:(4)荷载作用下,路基顶面的总应力值虽很小,但对受荷载应力后的变形要求较高,要求此时路基应该是“理想的弹性体”,受力后不发生变形,不然路面结构会受损,产生裂缝、沉陷、车辙等。
所以要求路基在一定深度内(路基工作区深度)达到一定的压实度,使其受力后为“理想的弹性体”。
(5)路基顶面层(工作区深度范围)的总应力值,虽然不大,有个疲劳强度要求。
弹性层状体系理论在沥青路面中的应用发布时间:2021-10-25T06:24:07.732Z 来源:《基层建设》2021年第20期作者:牟健[导读] 摘要:相对于其他的路面结构设计理论,弹性层状体系理论可以建立简单明确又能大致代表道路实际受力状态模型。
莱阳市交通运输局山东莱阳 265200摘要:相对于其他的路面结构设计理论,弹性层状体系理论可以建立简单明确又能大致代表道路实际受力状态模型。
因此,弹性层状体系理论被广泛应用于沥青路面设计,特别是现代计算机技术的应用,更加促进了这个理论的应用。
值得注意的是,弹性层状体系理论的假设与沥青路面真实情况尚有一定的差异,还需从实际情况出发。
根据不同的情况采取不同的假设,以使得理论值更接近真实值,这样才会使得理论指导实践的意义更强。
关键词:弹性层状体系理论;沥青路面设计;应力分析1 弹性层状体系理论适用性1.1 基本思路弹性层状体系理论是专门研究在荷载作用下层状弹性体系内产生的应力与位移的方法。
为了从弹性层状体系力学问题中的已知量求出未知量,必须建立这些已知量和未知量的关系,以及各未知量之间的关系,从而导出一套求解的方程。
可从力的平衡条件、几何条件和物理条件建立应变和位移之间的关系。
包括以下几方面内容[1]:(1)弹性层状体系的十个假设;(2)弹性层状体系的五个模型;(3)弹性层状体系的三个解法;(4)弹性层状体系的层间状态描述。
在我国的道路设计中,弹性层状体系理论主要被用于沥青路面的厚度设计,如有下基本假设:a)各层都是由均质的各向同性的线弹性材料组成;b)假定土基在水平方向和向下的深度方向均为无限,其上的路面各层厚度均为有限,但水平方向为无限;c)假定路面上层表面作用有垂直荷载,荷载与路面表面接触面形状呈圆形,接触面上的压力呈均匀分布;d)每一层之间的接触面假定为完全连续的(具有充分的摩阻力)或部分连续或完全光滑(没有摩阻力)的。
1.2 沥青路面的适用性弹性层状体系由多个弹性层构成,上部各层拥有一定厚度,最下层为弹性半空间体。
1.为了保证公路与城市道路最大限度地满足车辆运行的要求,提高车速、增强安全性和舒适性,降低运输成本和延长道路使用年限,要求路基路面具有下述一系列基本性能:a承载能力(包括强度和刚度)、b稳定性、c耐久性、d表面平整度、e表面抗滑性能。
2.影响路基路面稳定的因素:a地理条件、b地质条件、c气候条件、d水文和水文地质条件、e土的类别。
3.我国公路用土依据土的颗粒组成特征,土的塑性指标和土中有机质存在的情况,将土划分为:巨粒土、粗粒土、细粒土和特殊地质。
4。
根据水热平衡和地理位置,划分为:冻土、温润、干湿过渡、湿热、潮暖和高寒7个区。
5。
路基湿度的水源可分为:大气降水、地面水、地下水、毛细水、水蒸气凝结水、薄膜移动水。
6。
路基按干湿状态不同分为:干燥、中湿、潮湿、过湿。
7。
在公路勘测设计中,确定路基的干湿类型需要在现场进行勘测,对于原有公路,按不利季节路槽底面以下80cm深度以内的平均稠度确定。
8.路基的湿度由下而上逐渐减小,与分界稠度相对应的路基离地下水位或地表积水水位的高度称为路基临界高度H。
9。
路面结构按层位功能的不同分为:面层、基层、垫层. 面层:应具有较高的结构强度,抗变形能力,较好的水稳定性和温度稳定性,耐磨,不透水,良好的抗磨性和平整度;基层:应具有足够的强度和刚度;垫层:足够的水稳定性和隔温性能。
10。
路面按力学特性的不同分为:柔性路面,刚性路面、半刚性路面。
11。
双圆荷载的当量圆直径d=0.213m; 单圆荷载的当量圆直径D=0。
302m.12.路基工作区:在路基某一深度Za处,当车轮荷载引起的垂直应力σz与路基自重引起的垂直应力σb相比所占的比例很小,仅为1/10~1/5时,该深度Za范围内的路基称为路基工作区。
13。
土的流变特性:通常在施加荷载的初期,变形量随荷载持续时间的延长而增大,以后逐渐趋向稳定,这称为土的流变特性。
试验表面,回弹应变与荷载的持续时间关系不大,土的流变特性主要同塑性应变有关. 一般情况下,土基的流变影响可以不予考虑。
基于弹性层状体系的水泥路面应力分析摘要本文借助河南省某国道水泥混凝土路面的组合形式,以弹性层状体系半空间地基理论为基础,分析了沿水泥混凝土路面深度方向双圆荷载作用下拉应力以及剪应力的变化情况。
在得出应力变化规律的同时,以westergaad公式为参考,对比分析了弹性层状体系半空间地基与Winkler地基模型下水泥混凝土面板应力分布的差异与相同点。
文中还针对弹性层状体系下,垫层刚度以及厚度的变化对水泥混凝土面板应力的影响进行了系统的对比分析,得出了两者变化对水泥混凝土面板应力的影响规律。
关键词水泥混凝土路面;弹性层状体系;Winkler地基;弯拉应力0 引言在以往水泥混凝土路面的应力分析中,人们通常借助于Winkler地基假定,即认为地基某一点的沉陷取决于作用于该点的力,而和邻近的地基不发生任何关系,以此来计算刚性路面某点的地基反力与路面结构的弯沉值。
然而实际情况却与Winkler地基假定存在有较大的差异,除了荷载作用下竖向的制约作用外,地基内土体或材料颗粒之间有一定的横向联系,地基表面一点的压力必然引起周围区域内产生一定的下沉,在横向也受到相互牵连相互制约的影响[1]。
人们进一步提出了考虑地基横向联系的双参数地基模型,弹性层状体系半空间地基模型作为双参数模型的一种,认为除了直接铺设在土体上的水泥混凝土路面外,只要设有垫层的水泥混凝土路面,都认为是弹性层状体系半空间地基上的板体。
弹性层状体系半空间地基在沿路面深度分为若干层,每层之间符合一定的连续条件,每一层由不同的材料组成,且每层材料符合连续、弹性、均质、各向同性的基本假定[2]。
如图1所示。
本文依据弹性层状体系半空间地基理论,针对双圆轴对称荷载作用下的水泥混凝土路面,借助于由东京电机大学松井教授等人于2004年开发的电算化有限元分析软件GAMES(Gerneral Analysis of Multiayered Elastic Systems),通过采用改进的层间滑动模型以及同时考虑零阶、一阶、二阶贝塞尔函数和DE积分,有效解决传统路面有限元分析软件部分缺陷的基础上,对水泥混凝土路面的内部应力及位移进行系统分析,在验证弹性层状体系半空间理论的同时,找到水泥混凝土路面内部应力的作用规律,为以后水泥混凝土路面的优化设计奠定理论基础。
图1 不同等级道路最大剪应力与深度的关系技术应用对快速路路面结构计算不同水平荷载作用下沿深度方向的最大剪应力(计算点平面坐标为(1.15d,0)),计算结果如下图所示,水平荷载为0.07MPa情况下如前所述,水平荷载为0.21MPa同水平荷载0.07MPa相似,最大剪应力自路表面175kPa增大,至深度距路表面4cm处为最大值245kPa,随后沿深度方向逐渐减小,至沥青层底94kPa。
水平荷载为0.35MPa情况下,最大剪应力自路表面404kPa减小至沥青层底94kPa。
具体计算结果见图3。
由此可知,水平荷载大小对路面结构中最大剪应力沿深度方向分布形式有较大影响;水平荷载仅影响路面结构中0-10cm范围内最大剪应力值。
图2 不同水平荷载条件下最大剪应力与深度的关系由以上计算结果可知,对于沥青路面材料,在0-10cm 范围内最大剪应力有可能大于抗剪强度,深度大于10cm 时,最大剪应力一般不会大于抗剪强度。
(2)最大剪应力水平面内分布规律为了明确在水平方向最大剪应力出现的位置在不同深度处是否具有一致性,选取X轴上不同的坐标点-0.2663m(-1.25d)、-0.245m(-1.15d)、-0.1598m (-0.75d)、-0.0533m(-0.25d)、0、0.0533m(0.25d)、0.1598m(0.75d)、0.245m (1.15d)、0.2663m (1.25d)为计算点,分别计算不同深度处各计算点的最大剪应力(路面结构组合选取快速路组合,水平力f=0.07MPa),计算结果如图4- 图5。
据图可知最大剪应力位置在深度大于7cm后出现的位置点是一直的,均为±0.75d,在0-7cm 范围内位置有一定地变化,出现的位置有±1.25d、±1.15d、±0.25d,此位置与规范指定验算位置不一致。
依据计算结果及图3-图4可知:在深度0-18cm 内最大剪应力变化较大,最大剪应力值变化范围为70-281kPa,18-24cm内最大剪应力变化不大,其数值处在68-100kPa范围内。
沥青路面承载能力应力应变指标分析摘要:笔者在路面结构力学基础上,研究了路面结构破坏的根本原因。
分析结果表面:路面破坏在于过度的应力或应变,而不是挠度造成。
有些路面损坏如推移、开裂与弯沉并无直接联系,而是与结构材料中的应力应变相联系。
因此,理想的承载力评价应以应力、应变为基础。
关键词:应力应变挠度承载力评价应力应变变化与“局部”破坏路面结构内的应力应变状况是极为复杂的,它随着结构层次组合、结构层厚度、作用荷载类型及温度、湿度等因素变化。
由于不直观、检测困难,目前在我国沥青路面设计规范中,只是将沥青及基层底部拉应力作为验算指标[1]。
FWD测试利用弯沉盆代替贝克曼梁的单点弯沉,使结构性能评价细化到路面各结构层。
这样建立在弯沉盆特性基础上的路面结构反算方法,使以应变为基础的无破损评价得以实现[2]。
本文的重点在于如何根据FWD测试数据获取结构层模量、应力应变及结构状态,而对对设计及评价指标不进行深入研究。
利用应变进行剩余寿命计算⑴AI法计算剩余寿命美国地沥青协会(AI)基本认定公路沥青路面破坏的两大准则是车辙和疲劳裂缝率。
通过模量的反算,也可以采用美国地沥青协会退到的两个道路寿命评估模型来确定路面的使用寿命。
这两个模型属于纯力学方法建立的路面剩余寿命评定模型,其特点是求出、,最重要的是首先确定路面的各层弹性模量。
由力学法建立的模型有较成熟的理论基础,它是利用弹性理论模型或粘塑性模型通过结构分析得到路面在荷载作用下的应力应变[3~6]。
对于疲劳开裂,在沥青协会MS-1路面设计手册所用的传递函数为:式中,为全路面20%~25%或轮迹带上45%裂缝率时的容许重复轮载作用次数(ESAL);为沥青混凝土路面底部拉应变;为沥青混凝土面层模量。
对于永久变形(车辙),沥青协会给出的永久变形公式为:式中,为车辙13时的容许重复轮载作用次数(ESAL);为非胶结层顶面垂直压应变。
计算路面剩余寿命在用于路面补强设计中时,可取,若道路累计作用轴载次数为,则剩余寿命为:若剩余寿命不能满足要求,则需改变设计,重新计算加铺后路面的原沥青层底部的应力、应变和剩余寿命,直到达到要求为止。