1.2.2同角的三角函数的基本关系 教案
- 格式:doc
- 大小:94.50 KB
- 文档页数:3
同角三角函数的基本关系麻城市第五中学数学组曾令洋各位专家、评委:大家下午好!我今天说课的题目是《同角三角函数的基本关系》,内容选自于高中教材新课程人教A版必修4第一章第1.2.2节,本节课内容为一课时。
下面我将从教材分析、学情分析、教法与学法分析、教学过程设计四个方面来阐述我对本节课的分析和设计。
一、教材分析1、教材的地位和作用本节课选自内容选自于高中教材新课程人教A版必修4第一章第1.2.2同角三角函数的基本关系,是在学生学习了任意角和弧度,并且理解了任意角三角函数的定义和三角函数线等知识的基础上,与圆的几何性质建立联系,来研究同角三角函数的基本关系,从而找到了同一个角的不同三角函数间的联系,渗透了数形结合等重要数学思想,培养学生的数学应用能力,为后续的三角函数的图像与性质的学习打下基础。
2、学情分析根据学生已有的知识,在教材“探究”的引导下,利用几何关系中的勾股定理及三角函数的定义,学生容易得出同角三角函数的基本关系,但灵活应用关系解题是学生感到困难的地方,特别是求三角函数值时符号的确定。
3、教学目标分析知识与技能目标:推导并理解同角三角函数的基本关系;已知某角的一个三角函数值,会求它其余的三角函数值;能初步应用同角三角函数的基本关系化简三角函数,证明三角函数恒等式。
过程与方法目标:牢固掌握同角三角函数的基本关系式,并能灵活运用于解题,提高学生分析、解决三角问题的思维能力;灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。
情感态度价值观目标:通过本节的学习,使同学们加深理解基本关系在本章中的地位,训练三角恒等变形的能力,培养学生良好的学习方法,进一步树立化归的数学思想方法。
重点:同角三角函数的基本关系推导及应用.难点:是同角三角函数基本关系式的几何推导,三角函数值符号的确定。
二、教法与学法分析.结合本节课的教学内容和学生的认知水平,在教法上,我借助多媒体和几何画板软件,采用“启发—合作探究—应用”式教学模式,充分发挥教师的主导作用,让学生真正成为教学活动的主体。
同角三角函数的基本关系教学设计一、教学目标1.理解同角三角函数的概念和性质。
2.掌握同角三角函数的基本关系。
3.能够运用同角三角函数的基本关系解决实际问题。
二、教学重点1.同角三角函数的定义和基本关系。
2.弧度和角度的换算。
三、教学难点1.弧度制和角度制的换算。
2.同角三角函数的基本关系的运用。
四、教学过程1.导入新知识(10分钟)通过提问和讨论,复习学生已掌握的角度制与弧度制的换算方法,以及三角函数的定义和性质。
2.概念解释和理解(10分钟)教师简要解释同角三角函数的概念,并引导学生理解同角三角函数的定义。
让学生思考同角三角函数的定义与普通三角函数的区别。
3.同角三角函数的基本关系的介绍(20分钟)引导学生自主探究同角三角函数的基本关系,包括正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数之间的关系。
鼓励学生在小组合作中发现规律,并在黑板上总结出同角三角函数之间的基本关系。
4.同角三角函数的基本关系的证明(30分钟)通过几何证明和代数证明的方法,引导学生证明同角三角函数之间的基本关系。
通过几何证明,让学生感受同角三角函数之间的几何含义,加深对基本关系的理解。
通过代数证明,让学生运用三角恒等式和函数关系式,推导出同角三角函数的基本关系。
5.基本关系的运用与实际问题解决(30分钟)提供一些简单的实际问题,让学生运用同角三角函数的基本关系进行计算和解决问题。
通过实际问题的解决,巩固同角三角函数的基本关系的运用能力。
6.总结与归纳(10分钟)对本节课的学习进行总结与归纳,帮助学生理清同角三角函数的基本关系。
五、教学方法和手段1.导入:通过提问与讨论,引导学生复习以前学习的知识,激发学生学习的兴趣。
2.自主探究:通过小组合作的形式,让学生自主发现和总结同角三角函数的基本关系。
3.示范演示:通过具体的实例和计算过程,演示同角三角函数的基本关系的运用方法。
4.互动讨论:鼓励学生提问和回答问题,促进学生思维的活跃和交流合作。
高中数学第1章三角函数1.2.2 同角三角函数关系教学设计苏教版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第1章三角函数1.2.2 同角三角函数关系教学设计苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第1章三角函数1.2.2 同角三角函数关系教学设计苏教版必修4的全部内容。
1。
2.2 同角三角函数关系错误!教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,按照一切从定义出发的原则进行,通过对基本关系的推导,培养学生重视对基本概念学习的良好习惯,并通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的三种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,如sin24π+cos24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+错误!,k∈Z。
通过联系,让学生了解到基本关系式具有等式的一切性质(正用、逆用、变形用),对公式不仅能牢固掌握,还能灵活运用,不仅掌握公式的标准形式,而且还应掌握它们的等价形式:sin2α=1-cos2α,1=sin2α+cos2α,cosα=±错误!,sinα=tanαcosα,cosα=错误!.熟练掌握这些等价形式,在应用上可更为方便,但在变形中要注意定义域从左到右的变化,如sinα=tanαcosα,这时定义域由α∈R变为α≠kπ+错误!,k∈Z,而tanαcosα=sinα,这时定义域由α≠kπ+错误!,k∈Z,变为α∈R.已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因:一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.掌握如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的两个公式的推导及应用.教学难点:课本的两个公式的推导及应用.课时安排1课时错误!导入新课思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin290°+cos290°;(2)sin230°+cos230°;(3)错误!;(4)错误!.思路2.既然角α的正弦、余弦、正切都是角α的函数,自然想到它们之间会有什么内在的联系呢?由此引导学生探究同角三角函数的关系式.推进新课错误!如图1,以正弦线MP、余弦线OM和半径OP三者的长构成直角三角形,而且OP=1。
1. 2.2同角的三角函数的基本关系一、教学目标:⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.【例题讲评】例1化简:ο440sin 12-解:原式οοοοο80cos 80cos 80sin 1)80360(sin 1222==-=+-=例2 已知αααααsin 1sin 1sin 1sin 1+---+是第三象限角,化简解:)sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+----+++=原式 0cos <∴αα是第三象限角,Θ αααααtan 2cos sin 1cos sin 1-=----+=∴原式 (注意象限、符号) 例3求证:ααααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.证法1:左边==+=⋅--=-⋅xxx x x x x x x cos sin 1cos )sin 1(sin 1cos )sin 1(cos cos 2右边, ∴原等式成立证法2:左边=)sin 1)(sin 1(cos )sin 1(x x xx -+⋅+=xx x 2sin 1cos )sin 1(-⋅+x x x 2cos cos )sin 1(⋅+===+xxcos sin 1右边证法3:证法4:∵cosx ≠0,∴1+sinx ≠0,∴xxcos sin 1+≠0,∴xx x xcos sin 1sin 1cos +-=()()x x x sin 1sin 1cos 2-+=x x 22sin 1cos -=1,,cos )sin 1(cos )sin 1(cos sin 1sin 1sin 1cos sin 1,cos )sin 1(cos cos cos sin 1cos :5222xx xx x x x x x x xx xx x x x -=--=--⋅+=⋅-=⋅-=右边左边证法∴左边=右边 ∴原等式成立.例4已知方程0)13(22=++-m x x 的两根分别是θθcos sin ,, 求的值。
数学《同角三角函数的基本关系》教案教案:同角三角函数的基本关系一、教学目标:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
3.能够在给定角度范围内计算同角三角函数的值。
二、教学重点与难点:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
三、教学准备:1.教材、课件、黑板、粉笔。
2.学生课前复习笔记。
四、教学过程:1.引入(10分钟)教师可通过提问的方式引导学生复习和回忆上节课所学的三角函数概念及性质,例如:“什么是三角函数?它们有什么特点?”2.概念讲解(10分钟)教师介绍同角三角函数的概念和意义,同角三角函数是以角度的大小和方向为自变量,以比值为因变量的一类函数。
其中,正弦函数、余弦函数和正切函数是最常用和基础的三角函数。
通过图示的方式向学生展示正弦函数、余弦函数和正切函数的形象及它们之间的关系。
3.基本关系的推导(15分钟)3.1正弦函数与余弦函数的基本关系:教师指导学生通过绘制各象限内角度相同的锐角三角形,并利用其定义推导出正弦函数和余弦函数的基本关系:sin^2θ + cos^2θ = 13.2正切函数与正弦函数、余弦函数的基本关系:教师指导学生通过绘制直角三角形,利用其定义推导出正切函数、正弦函数和余弦函数的基本关系:tanθ = sinθ / cosθ。
4.同角三角函数的计算及性质(25分钟)4.1计算角度对应的三角函数值:教师引导学生通过练习,掌握计算给定角度对应的正弦、余弦和正切函数值的方法和技巧。
4.2使用同角三角函数的性质:教师讲解同角三角函数的周期性和奇偶性,并指导学生根据这些性质简化计算,例如,sin(180° + θ) = -sinθ,cos(π + θ) = -cosθ,等等。
5.练习与巩固(20分钟)教师提供一系列基础练习题,让学生在课堂上进行计算和解答,以巩固所学的同角三角函数的基本关系和计算方法。
同角三角函数的基本关系教学设计教学设计:同角三角函数的基本关系一、教学目标:1.学生能够理解同角三角函数的概念及其在数学中的意义;2.学生能够掌握正弦函数、余弦函数和正切函数的基本关系;3.学生能够熟练运用同角三角函数的基本关系解题。
二、教学重点:1.同角三角函数的概念及基本关系;2.正弦函数、余弦函数和正切函数的图像特征。
三、教学难点:1.正弦函数、余弦函数和正切函数的图像特征;2.同角三角函数的应用解题。
四、教学准备:1.教师准备:教学课件、教学素材PPT;2.学生准备:教材、笔记、计算器。
五、教学过程:Step 1:导入新课1.教师打开课件,介绍本节课的主题:同角三角函数的基本关系;2.教师和学生一起回顾三角函数的概念,回顾正弦函数、余弦函数和正切函数的定义。
Step 2:正弦函数与余弦函数的关系1.教师让学生观察并比较正弦函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正弦函数与余弦函数的图像是否关于y轴对称?这两个函数的最大值和最小值又有怎样的关系?3. 教师讲解正弦函数与余弦函数的关系:sin(x) = cos(x - 90°);4.教师通过具体的数值计算和计算器演示,验证正弦函数与余弦函数的关系。
Step 3:正切函数与余弦函数的关系1.教师让学生观察并比较正切函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正切函数与余弦函数的图像之间是否有什么特殊的关系?它们的零点位置有什么规律?3. 教师讲解正切函数与余弦函数的关系:tan(x) = sin(x) /cos(x);4.教师通过具体的数值计算和计算器演示,验证正切函数与余弦函数的关系。
Step 4:同角三角函数的应用解题1.教师提供一些应用题,如角度的边长比例问题、太阳高度角问题等,并引导学生运用同角三角函数的基本关系解答;2.教师讲解解题思路和步骤,帮助学生理解问题的意义和解题的方法;3.教师与学生互动,共同解答一个或多个应用题;4.学生独立或小组合作解答剩下的应用题,教师巡视指导。
1.2.2 同角三角函数的基本关系(教案)吴川一中 陈亮 任教班级:高一47、48班一、教学目标:1. 知识与能力理解同角三角函数的基本关系式,会用同角三角函数的基本关系式进行化简、求值与证明.2. 过程与方法通过在单位圆中构造出以任意角的正弦线、余弦线为直角边的直角三角形得出三角函数基本关系式. 3. 情感、态度与价值观培养学生用数形结合思想方法解决问题的能力.二、教学重点:同角三角函数的基本关系式的推导及其应用(求值、化简、恒等式证明).三、教学难点:关系式在解题中的灵活运用和对学生思维灵活性的培养.四、教学方法与手段:本节主要涉及到两个公式,均由三角函数定义和勾股定理推出.在教学过程中,要注意引导学生理解每个公式,懂得公式的来龙去脉,并灵活运用.要给学生提供展示自己思路的平台,营造自主探究解决问题的环境,把鼓励带进课堂,把方法带进课堂,充分发挥学生的主体作用.五、教学过程: 【探究引入】 思考1:如图,设α是一个任意角,它的终边与单位圆交于点P ,那么,正弦线MP 和余弦线OM 的长度有什么内在联系?由此你能得到什么结论?分析:221MP OM +=22sin cos 1αα+=.思考2:上述关系反映了角α方关系.那么当角α的终边在坐标轴上时,上述关系成立吗? 分析:当角α的终边在坐标轴上时,上述关系也成立.思考3:设角α的终边与单位圆交于点 P (x ,y ),根据三角函数定义,有tan (0)yx xα=≠,由此可得sin α、cos α、tan α之间满足什么关系?分析:sin tan cos ααα=. 思考4:上述关系称为商数关系,那么商数关系成立的条件是什么?分析:()2a k k Z ππ≠+∈.【讲授新课】 1.同角三角函数基本关系: (1)平方关系:22sin cos 1αα+=;(2)商数关系:sin tan cos ααα=,()2a k k Z ππ≠+∈. Ⅰ、【新知理解训练】判断以下等式是否恒成立:①()22sin cos 1;αβαβ+=≠ ②22sin cos 122αα+=; ③sin 2tan 2.cos 2ααα=Ⅱ、说明:① 注意这里“同角”有两层含义,一是“角相同”;二是对“任意”一个角(在使得函数有意义的前提下)关系式都成立.② 2sin α是()2sin α的简写,读作“sin α的平方”,不能写成“2sin α或sin 2α”.③ 对这些关系式不仅要牢固掌握,还要能灵活运用(正用、逆用、变形用),如:22sin 1cos αα=-, cos α= ()212sin cos sin cos αααα±⋅=± sin cos tan ααα=, s i n c o s t a n ααα=⋅. 2、典型例题 题型一、化简 例1. 化简下列各式:(1) 2422sin cos sin cos ββββ++; (2 ) 222cos 112sin αα--.分析:(1)一提取公因式2cos β,便“柳暗花明”; (2)逆用平方关系:式子中的“1”用22"sin cos "αα+一代,结果不打自招.解:(1)原式=()222222sin cos cos sin sin cos 1.ββββββ++=+=(2)原式=()22222222222cos sin cos cos sin 1.sin cos 2sin cos sin αααααααααα-+-==+-- 【点评】灵活运用平方关系、商数关系及其变式是解决化简问题的灵丹妙药.变式训练:化简下列各式: (1) ()221tan cos αα+⋅ (2) 1sin cos 2sin cos 1sin cos αααααα+--⋅+-.答案:(1)1; (2)sin cos αα-. 题型二、已知一个三角函数值,求另外两个三角函数值(简称“知一求二”)例2.(1)已知12sin 13α=,并且α是第二象限角,求cos ,tan αα.(2)已知4cos 5α=-,求sin ,tan αα.分析:由已知条件和sin α的值可依平方关系求得cos α的值,再由商数关系可求得tan α的值,但不知α所在象限时要对α所在象限进行分类讨论.解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313αα=-=-=,又∵α是第二象限角,∴cos 0α<,即有5cos 13α=-,从而 sin 12tan cos 5ααα==-.(2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=,又∵4cos 05α=-<, ∴α在第二或三象限.① 当α在第二象限时,即有sin 0α>,从而3sin 5α=,sin 3tan cos 4ααα==-;② 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==.【点评】三角函数的结果都要用分情况叙述的形式表达出来,而不用cos a α=±或sin b α=±或tan c α=±的书写形式,因为三角函数值的符号受限制,不是无条件的,这不同于“由21x =可以推出1x =±”的情形.变式训练:《中》191P-变.(07全国Ⅰ)已知α是第四象限角,5tan12α=-,则s i nα等于( D )A.15B.15- C.513D.513-六、板书设计1.同角三角函数基本关系:(1)平方关系.(2)商数关系.2、题型一、化简例1.变式训练:3、题型二、知一求二例2.变式训练:七、小结1. 同角三角函数基本关系及其变式.2. 化简.3. 求值:①知一求二;②弦化切.八、作业课本第20页练习题第2题,22页B组第2、3题.九、教学后记本节真正体现“高、大、优”的课堂教学特色,但内容多、时间紧,要合理安排、讲练结合.。
1.2.2同角三角函数的基本关系教案教学目标:1. 通过三角函数定义,导出同角三角函数的基本关系,并能运用同角三角函数的基本关系进行三角函数的化简和证明2. 同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式,通过本节的学习,学生应明了如何进行三角函数式的化简于三角恒等式的证明。
3. 通过同角三角函数关系的应用是学生养成探究、分析的习惯,提高三角恒等式等变形的能力,树立转化与化归的思想方法。
重点难点:教学重点:课本的两个公式的推导及应用。
教学难点:三角恒等式的证明。
教学过程一、复习引入:填一填:想一想:你能根据上面的表格得出同一个角α的三个三角函数之间有一些什么关系?二、讲解新课:同角三角函数的基本关系式:(板书课题:同角的三角函数的基本关系) 1.由三角函数的定义,我们可以得到以下关系:(1)平方关系:22sin cos 1αα+= (2)商数关系:sin tan cos ααα=说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等;②注意这些关系式都是对于使它们有意义的角而言的,如sin tan (,)cos 2k k Z απααα=≠∈;③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α=22sin 1cos αα=-,sin cos tan ααα=等。
三、例题分析: (一)求值问题:例1.已知3sin 5α=-且α是第三象限角,求角α的余弦和正切值.变式: 已知3sin 5α=-,求角α的余弦和正切.小结:1.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。
在求值中,确定角的终边位置是关键和必要的。
有时,由于角的终边位置的不确定,因此解的情况不止一种。
2.解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。
同角三角函数的基本关系教学设计同角三角函数的基本关系教学设计引言在数学中,三角函数是非常重要的概念之一,广泛应用于各个领域,如物理、工程以及计算机图形学等。
同角三角函数是三角函数中的一类特殊函数,它们具有一些基本关系,如正切函数与余切函数、正弦函数与余弦函数等。
掌握同角三角函数的基本关系对于学生理解三角函数的性质以及解决实际问题具有重要意义。
本文将针对同角三角函数的基本关系进行教学设计,以帮助学生更好地掌握这一概念。
1. 教学目标同角三角函数的基本关系教学旨在帮助学生达到以下目标:1) 理解同角三角函数的定义及其关系;2) 掌握同角三角函数的性质和特点;3) 能够应用同角三角函数的基本关系解决实际问题;4) 培养学生的逻辑思维能力和数学建模能力。
2. 教学内容同角三角函数的基本关系教学内容包括以下几个方面:1) 同角三角函数的定义:正弦函数、余弦函数、正切函数、余切函数等;2) 同角三角函数的关系:正弦函数与余弦函数、正切函数与余切函数的关系;3) 同角三角函数的性质:周期性、对称性、奇偶性等;4) 同角三角函数的图像及其特点。
3. 教学方法为了帮助学生更好地理解和掌握同角三角函数的基本关系,我们将采用以下教学方法:1) 概念讲解与示例分析:通过讲解同角三角函数的定义及其关系,并结合具体的示例,帮助学生建立起对同角三角函数的基本认识;2) 图像展示与观察:展示同角三角函数的图像,帮助学生观察图像的特点,并与函数的性质进行联系;3) 练习与应用:提供大量的练习题和实际问题,让学生应用所学的同角三角函数的基本关系解决问题,培养学生的数学思维和解决问题的能力;4) 总结与回顾:总结同角三角函数的基本关系,并回顾相关的重要概念和性质,帮助学生对所学知识进行深度理解和灵活运用。
4. 教学步骤基于以上教学方法和内容,我们可以设计以下教学步骤来进行同角三角函数的基本关系教学:步骤1:介绍同角三角函数的定义及其关系。
《同角三角函数的基本关系》教学设计一、教学目标1.知识目标:了解同角三角函数的定义,掌握同角三角函数的基本关系。
2.技能目标:能够根据同角三角函数的定义计算出未知角的正弦、余弦和正切值,能够应用同角三角函数的基本关系解决问题。
3.情感目标:培养学生对数学知识的兴趣,提高学生的数学运算能力和问题解决能力。
二、教学重难点1.教学重点:同角三角函数的概念及其基本关系。
2.教学难点:利用同角三角函数的基本关系计算未知角的值。
三、教学准备1.教具准备:黑板、彩色粉笔、多媒体课件。
2.学具准备:尺子、直角三角板、相关教材。
3.材料准备:课堂练习题。
四、教学过程教学环节一:导入(10分钟)1.教师在黑板上写出同角三角函数的定义,并给出一个已知角度,要求学生根据定义计算出该角度的正弦、余弦和正切值。
2.学生根据题目计算,教师逐个询问学生的计算结果,并将学生的回答记录在黑板上。
3.教师根据学生的回答进行讲解和总结,引出同角三角函数的基本关系。
教学环节二:讲解(20分钟)1.教师利用多媒体课件给出同角三角函数的基本关系的图示,并对每个关系进行解释。
2.教师在黑板上讲解同角三角函数的基本关系的推导过程,并引导学生理解每个关系的几何意义。
3.学生在听讲的同时,可用尺子和直角三角板进行实验验证。
教学环节三:拓展(15分钟)1.教师给出一些例题,要求学生利用同角三角函数的基本关系计算未知角的值,并解决相关问题。
2.学生在黑板上解题,教师逐个引导学生进行讨论和解答。
3.教师根据学生的解答情况进行讲解和总结,巩固同角三角函数的基本关系及其应用。
教学环节四:练习(15分钟)1.教师发放课堂练习题,要求学生独立完成并逐题检查。
2.学生完成练习后,教师逐个核对答案,并解答学生可能存在的疑问。
3.教师根据学生的练习情况进行讲解和总结,培养学生的自主学习能力和问题解决能力。
教学环节五:归纳总结(10分钟)1.教师让学生自由发言,总结同角三角函数的基本关系及其应用。
1.2.2 同角三角函数的基本关系 学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.知识点 同角三角函数的基本关系式1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z 的变形公式 sin α=cos αtan α;cos α=sin αtan α.1.sin 2α+cos 2β=1.( × )提示 在同角三角函数的基本关系式中要注意是“同角”才成立,即sin 2α+cos 2α=1.2.sin 2θ2+cos 2θ2=1.( √ ) 提示 在sin 2α+cos 2α=1中,令α=θ2可得sin 2θ2+cos 2θ2=1. 3.对任意的角α,都有tan α=sin αcos α成立.( × ) 提示 当α=π2+k π,k ∈Z 时就不成立. 4.若cos α=0,则sin α=1.( × )题型一 利用同角三角函数的关系式求值命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值例1 (1)若sin α=-513,且α为第四象限角,则tan α的值为( )A.125 B .-125 C.512 D .-512考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213, ∴tan α=sin αcos α=-512,故选D. (2)已知sin α+cos α=713,α∈(0,π),则tan α= . 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 -125解析 ∵sin α+cos α=713, ∴(sin α+cos α)2=49169, 即2sin αcos α=-120169<0, 又α∈(0,π),则sin α>0,cos α<0,∴α∈⎝⎛⎭⎫π2,π,故sin α-cos α=(sin α+cos α)2-4sin αcos α=1713, 可得sin α=1213,cos α=-513,tan α=-125. 反思感悟 (1)同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin α,cos α,tan α三个值之间,知道其中一个可以求其余两个.解题时要注意角α的象限,从而判断三角函数值的正负.(2)已知三角函数值之间的关系式求其它三角函数值的问题,我们可利用平方关系或商数关系求解,其关键在于运用方程的思想及(sin α±cos α)2=1±2sin αcos α的等价转化,找到解决问题的突破口.跟踪训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值例2 已知cos α=-817,求sin α,tan α的值. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 ∵cos α=-817<0,且cos α≠-1, ∴α是第二或第三象限角.(1)当α是第二象限角时,则sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158. (2)当α是第三象限角时,则sin α=-1-cos 2α=-1517,tan α=158. 反思感悟 利用同角三角函数关系式求值时,若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解.跟踪训练2 已知cos α=-45,求sin α和tan α. 考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值解 sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=925, 因为cos α=-45<0, 所以α是第二或第三象限角,当α是第二象限角时,sin α=35, tan α=sin αcos α=-34;当α是第三象限角时,sin α=-35, tan α=sin αcos α=34. 题型二 齐次式求值问题例3 已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简、求值解 (1)原式=4tan α-25+3tan α=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 反思感悟 (1)关于sin α,cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(2)假如代数式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin 2α+cos 2α代换后,再同除以cos 2α,构造出关于tan α的代数式.跟踪训练3 已知sin α+cos αsin α-cos α=2,计算下列各式的值. (1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.考点 运用基本关系式化简和证明题点 运用基本关系式化简、求三角函数值解 由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α, 所以tan α=3.(1)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89. (2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1=tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.三角函数式的化简与证明典例 (1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 考点 运用基本关系式化简和证明题点 运用基本关系式化简解 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α =sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. 考点 运用基本关系式化简和证明题点 运用基本关系式证明证明 ∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.[素养评析] (1)三角函数式的化简技巧①化切为弦,即把正切函数都化为正弦、余弦函数,从而减少函数名称,达到化繁为简的目的.②对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:①证明一边等于另一边,一般是由繁到简.②证明左、右两边等于同一个式子(左、右归一).③比较法:即证左边-右边=0或左边右边=1(右边≠0). ④证明与已知等式等价的另一个式子成立,从而推出原式成立.(3)掌握逻辑推理的基本形式,学会有逻辑地思考问题;形成重论据、有条理、合乎逻辑的思维品质,提升逻辑推理的数学核心素养.1.若sin α=45,且α是第二象限角,则tan α的值为( ) A .-43 B.34 C .±34 D .±43考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 A解析 ∵α为第二象限角,sin α=45, ∴cos α=-35,tan α=-43. 2.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35 B .-15 C.15 D.35考点 运用基本关系式求三角函数值题点 运用基本关系式化简、求三角函数值答案 A解析 sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-(1-sin 2α)=2sin 2α-1 =2×⎝⎛⎭⎫552-1=-35. 3.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-1考点 运用基本关系式化简和证明题点 运用基本关系式化简答案 B解析 ∵α为第三象限角,∴cos α<0,sin α<0,∴原式=-cos αcos α-2sin αsin α=-3. 4.已知tan x =-12,则sin 2x +3sin x cos x -1的值为( ) A.13B .2C .-2或2D .-2考点 运用基本关系式求三角函数值题点 运用基本关系式求三角函数值答案 D5.已知:tan αtan α-1=-1,则sin α-3cos αsin α+cos α= . 答案 -53解析 由已知得:tan α=12, ∴sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.1.利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值.2.利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数名的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.。
4-1.2.2同角三角函数的基本关系(3)教学目的:知识目标:根据三角函数关系式进行三角式的化简和证明;能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。
(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力;德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;教学重点:同角三角函数的基本关系式教学难点:如何运用公式对三角式进行化简和证明。
授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:1.同角三角函数的基本关系式。
(1)商数关系:sin tan cos ααα=,. (2)平方关系:22sin cos 1αα+=,二、讲解新课:例α的集合。
|1sin ||1sin |cos ||cos |αααα+-- 0≠. }k Z ∈. (3)不含特殊角的三角函数值。
例9.求证:cos 1sin 1sin cos x x x x+=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.∴左边=2cos (1sin )cos (1sin )(1sin )(1sin )cos x x x x x x x ++=-+1sin cos x x +==右边. ∴原式成立.证法二:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.又∵22(1sin )(1sin )1sin cos cos cos x x x x x x -+=-==⋅,∴cos 1sin 1sin cos x x x x+=-. 证法三:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠. cos 1sin 1sin cos x x x x +--cos cos (1sin )(1sin )(1sin )cos x x x x x x ⋅-+-=-22cos 1sin 0(1sin )cos x x x x-+==-, ∴cos 1sin 1sin cos x x x x+=-.总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。
1.2.2 同角三角函数关系1.理解同角三角函数的两种基本关系.2.了解同角三角函数的基本关系的常见变形形式.3.学会应用同角三角函数的基本关系化简、求值与证明.同角三角函数的基本关系式1.判断(正确的打“√”,错误的打“×”)(1)对任意角α,sin 24α+cos 24α=1都成立.( ) (2)对任意角α,sinα2cosα2=tan α2都成立.( )(3)对任意的角α,β有sin 2α+cos 2β=1.( ) (4)sin 2α与sin α2所表达的意义相同.( )解析:(1)正确.当角α∈R 时,sin 24α+cos 24α=1都成立,所以正确.(2)错误.当α2=k π+π2,k ∈Z ,即α=2k π+π,k ∈Z 时,tan α2没意义,故sinα2cosα2=tanα2不成立,所以错误.(3)错误.当α=π2,β=0时,sin 2α+cos 2β≠1,故此说法是错误的.(4)错误.sin 2α是(sin α)2的缩写,表示角α的正弦的平方,sin α2表示角α2的正弦,故两者意义不同,此说法是错误的.答案:(1)√ (2)× (3)× (4)×2.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则cos α等于( )A .45B .-45C .-17D .35答案:B3.化简:(1+tan 2 α)·cos 2α等于( ) A .-1 B .0 C .1 D .2答案:C4.已知tan α=1,则2sin α-cos αsin α+cos α=________.解析:原式=2tan α-1tan α+1=2-11+1=12.答案:12已知一个三角函数值求其他三角函数值已知cos α=-35,求sin α,tan α的值.【解】 因为cos α<0且cos α≠-1, 所以α是第二或第三象限角. 所以当α为第二象限角时, sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-43.当α为第三象限角时, sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-352= -45,tan α=sin αcos α=43.已知角α的某一三角函数值,求角α的其余三角函数值时,要注意公式的合理选择;若角所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角所在的象限不确定,应分类讨论.1.(1)已知α是第二象限角,且tan α=-724,则cos α=________.(2)已知sin θ=a (a ≠0),且tan θ>0,求cos θ、tan θ. 解:(1)因为α是第二象限角, 故sin α>0,cos α<0, 又tan α=-724,所以sin αcos α=-724,又sin 2α+cos 2α=1,解得cos α=-2425.故填-2425.(2)因为tan θ>0,则θ在第一、三象限,所以a ≠±1. ①若θ在第一象限,sin θ=a >0,且a ≠1时, cos θ=1-sin 2θ=1-a 2. 所以tan θ=sin θcos θ=a1-a2. ②若θ在第三象限,sin θ=a <0,且a ≠-1时, cos θ=-1-sin 2θ=-1-a 2. 所以tan θ=sin θcos θ=-a1-a2. 利用同角三角函数关系化简化简下列各式: (1)1-2sin 10°cos 10°sin 10°-1-sin 210°; (2)1-sin α1+sin α+1+sin α1-sin α,其中sin αtan α<0.【解】 (1)1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1. (2)由于sin αtan α<0,则sin α,tan α异号, 所以α是第二、三象限角,所以cos α<0.所以1-sin α1+sin α+1+sin α1-sin α=(1-sin α)21-sin 2α+ (1+sin α)21-sin 2α=|1-sin α||cos α|+|1+sin α||cos α|=1-sin α+1+sin α-cos α=-2cos α.(1)三角函数式的化简过程中常用的方法①化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.②对于含有根号的,常把根号下式子化成完全平方式,然后去根号,达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)对三角函数式化简的原则 ①使三角函数式的次数尽量低. ②使式中的项数尽量少. ③使三角函数的种类尽量少. ④使式中的分母尽量不含有三角函数. ⑤使式中尽量不含有根号和绝对值符号.⑥能求值的要求出具体的值,否则就用三角函数式来表示.2.化简:1-sin 4x -cos 4x1-sin 6x -cos 6x.解:原式=1-[(sin 2x +cos 2x )2-2sin 2x cos 2x ]1-(sin 2x +cos 2x )(sin 4x +cos 4x -sin 2x cos 2x ) =1-1+2sin 2x cos 2x1-[(sin 2x +cos 2x )2-3sin 2x cos 2x ] =2sin 2x cos 2x 3sin 2x cos 2x =23. 利用同角三角函数关系式证明求证:(1)1+tan 2α=1cos 2α;(2)sin α1-cos α=1+cos αsin α. 【证明】 证明:(1)因为1+tan 2α=1+sin 2αcos 2α= cos 2α+sin 2αcos 2α=1cos 2α, 所以原式成立.(2)法一:由sin α≠0知,cos α≠-1, 所以1+cos α≠0.于是左边=sin α(1+cos α)(1-cos α)(1+cos α)=sin α(1+cos α)1-cos 2α=sin α(1+cos α)sin 2α=1+cos αsin α=右边. 所以原式成立.法二:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α, 即sin 2α=(1-cos α)(1+cos α). 因为1-cos α≠0,sin α≠0, 所以sin α1-cos α=1+cos αsin α.证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则. (2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.3.(1)求证:1-2sin x cos x cos 2x -sin 2x =1-tan x1+tan x. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明:(1)左边=sin 2x -2sin x cos x +cos 2xcos 2x -sin 2x=tan 2x -2tan x +11-tan 2x=(tan x -1)2(1-tan x )(1+tan x )=1-tan x1+tan x =右边. 所以原式成立.(2)因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α =左边, 所以原等式成立.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin 23α+cos 23α=1.2.在使用同角三角函数关系式时要注意使式子有意义,如式子tan 90°=sin 90°cos 90°不成立.3.注意公式的变形,如sin 2α=1-cos 2α,cos 2α=1-sin 2α,sin α=cos αtan α,cosα=sin αtan α等. 4.在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定的,不可凭空想象.已知sin α+cos α=13,其中0<α<π,求sin α-cos α的值.【解】 因为sin α+cos α=13,所以(sin α+cos α)2=19,可得:sin α·cos α=-49.因为0<α<π,且sin α·cos α<0,所以sin α>0,cos α<0.所以sin α-cos α>0, 又(sin α-cos α)2=1-2sin αcos α=179,所以sin α-cos α=173.(1)在处得到sin α·cos α<0,为判断sin α,cos α的具体符号提供了条件,是解答本题的关键;若没有判断出处的关系式,则下一步利用平方关系求解sin α-cos α的值时,可能会出现两个,是解答本题的易失分点;若前边的符号问题都正确,但在处书写不正确,没有考虑前面的符号而出现sin α-cos α=±173,则是解答本题的又一易失分点. (2)在解题过程中要充分利用题中的条件,判断出所求的三角函数式的符号.1.已知sin α=23,tan α=255,则cos α=( )A .13 B .53 C .73D .55解析:选B .因为tan α=sin αcos α,所以cos α=sin αtan α=23255=53.2.化简:⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=( )A .sin αB .cos αC .1+sin αD .1+cos α解析:选A .⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=⎝ ⎛⎭⎪⎫1sin α+cos αsin α(1-cos α)=1-cos 2αsin α=sin α. 3.已知cos θ=35,且3π2<θ<2π,那么tan θ的值为________.解析:因为θ为第四象限角, 所以tan θ<0,sin θ<0,sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.答案:-434.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解:由tan α=sin αcos α=43,得sin α=43cos α,①又sin 2α+cos 2α=1,② 由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,所以cos α=-35,sin α=-45.[学生用书P83(单独成册)])[A 基础达标]1.若cos α=13,则(1+sin α)(1-sin α)等于( )A .13B .19C .223D .89解析:选B .原式=1-sin 2α=cos 2α=19,故选B .2.若α是第四象限角,tan α=-512,则sin α=( )A .15B .-14C .513D .-513解析:选D .因为tan α=sin αcos α=-512,sin 2α+cos 2α=1,所以sin α=±513.因为α是第四象限角,所以sin α=-513.3.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为( )A .23B .-23C .13D .-13解析:选A .由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin 2θcos 2θ=29.因为θ是第三象限角,所以sin θ<0,cos θ<0,所以sin θcos θ=23. 4.如果tan θ=2,那么1+sin θcos θ=( ) A .73 B .75 C .54D .53解析:选B .法一:1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ =tan 2θ+tan θ+1tan 2θ+1, 又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.法二:tan θ=2,即sin θ=2cos θ, 又sin 2θ+cos 2θ=1, 所以(2cos θ)2+cos 2θ=1, 所以cos 2θ=15.又tan θ=2>0,所以θ为第一或第三象限角. 当θ为第一象限角时,cos θ=55,此时sin θ=1-cos 2θ=255,则1+sin θcos θ=1+255×55=75;当θ为第三象限角时,cos θ=-55, 此时sin θ=-1-cos 2θ=-255,则1+sin θcos θ=1+(-255)×(-55)=75.5.若cos α+2sin α=-5,则tan α=( ) A .12 B .2C .-12D .-2解析:选B .由⎩⎨⎧cos α+2sin α=-5,sin 2α+cos 2α=1得(5sin α+2)2=0. 所以sin α=-255,cos α=-55.所以tan α=2.6.已知tan α=m ⎝⎛⎭⎪⎫π<α<3π2,则sin α=________.解析:因为tan α=m ,所以sin 2αcos 2α=m 2,又sin 2α+cos 2α=1,所以cos 2α=1m 2+1,sin 2α=m 2m 2+1.又因为π<α<3π2,所以tan α>0,即m >0.因而sin α=-mm 2+1. 答案:-m1+m27.已知sin α-cos αsin α+cos α=2,则sin αcos α的值为________.解析:由sin α-cos αsin α+cos α=2,等式左边的分子分母同除以cos α,得tan α-1tan α+1=2,所以tanα=-3,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-310. 答案:-310 8.已知α是第二象限角,则sin α1-cos 2 α+21-sin 2 αcos α=________. 解析:因为α是第二象限角,所以sin α>0,cos α<0,所以sin α1-cos 2α+21-sin 2αcos α=sin αsin α+-2cos αcos α=-1. 答案:-19.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1. 解:原式=sin 2x sin x -cos x -sin x +cos x sin 2xcos 2x-1 =sin 2x sin x -cos x -cos 2x (sin x +cos x )sin 2x -cos 2x=sin 2x -cos 2x sin x -cos x=sin x +cos x . 10.已知tan α=2,求下列各式的值:(1)2sin 2α-3cos 2α4sin 2α-9cos 2α; (2)sin 2α-3sin αcos α+1.解:(1)因为tan α=2,所以cos α≠0.所以2sin 2α-3cos 2α4sin 2α-9cos 2α=2tan 2α-34tan 2α-9 =2×22-34×22-9=57. (2)因为tan α=2,所以cos α≠0.所以sin 2α-3sin αcos α+1=sin 2α-3sin αcos α+(sin 2α+cos 2α)=2sin 2α-3sin αcos α+cos 2α=2sin 2α-3sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-3tan α+1tan 2α+1=2×22-3×2+122+1=35. [B 能力提升]1.若△ABC 的内角A 满足sin A cos A =13,则sin A +cos A 的值为( ) A .153 B .-153 C .53 D .-53解析:选A .因为A 为△ABC 的内角,且sin A cos A =13>0,所以A 为锐角,所以sin A +cos A >0.又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =153. 2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.解析:因为tan θ=2,所以cos θ≠0,则原式可化为sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2cos 2θcos 2θsin 2θcos 2θ+cos 2θcos 2θ=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45. 答案:453.已知2sin θ-cos θ=1,3cos θ-2sin θ=a ,记数a 形成的集合为A ,若x ∈A ,y ∈A ,则以点P (x ,y )为顶点的平面图形是什么图形?解:联立⎩⎪⎨⎪⎧2sin θ-cos θ=1,sin 2θ+cos 2θ=1,解得⎩⎪⎨⎪⎧sin θ=0,cos θ=-1,或⎩⎪⎨⎪⎧sin θ=45,cos θ=35.所以a =3cos θ-2sin θ=-3或15,即A =⎩⎨⎧⎭⎬⎫-3,15.因此,点P (x ,y )可以是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3,15,P 3⎝ ⎛⎭⎪⎫15,15,P 4⎝ ⎛⎭⎪⎫15,-3.经分析知,这四个点构成一个正方形.4.(选做题)已知关于x 的方程2x 2-(3+1)x +m =0的两根分别为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cosθ1-tan θ的值;(2)m 的值;(3)方程的两根及此时θ的值.解:由根与系数的关系,可得⎩⎪⎨⎪⎧sin θ+cos θ=3+12,①sin θ·cos θ=m2,②Δ=4+23-8m ≥0.③(1)sin θ1-1tan θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.(2)由①平方,得1+2sin θcos θ=2+32,所以sin θcos θ=34.又由②,得m 2=34,所以m =32,由③,得m ≤2+34, 所以m =32符合题意; (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧cos θ=32,sin θ=12. 又因为θ∈(0,2π),所以θ=π3或π6.。
同角三角函数的基本关系教案中职一、教学目标:1.掌握同角三角函数的定义和基本关系。
2.能够应用同角三角函数的基本关系解决有关三角函数的数学问题。
二、教学重难点:1.同角三角函数的基本关系2.应用同角三角函数的基本关系解决有关三角函数的问题三、教学内容:1.同角三角函数定义①正弦函数sina,余弦函数cosa,正切函数tana,余切函数cota②割函数seca,余割函数cotca2.同角三角函数的基本关系①正弦函数与余弦函数的关系sina=cosa(90°-α)cosa=sina(90°-α)②正切函数与余切函数的关系tana=1/cota,cota=1/tana ③割函数与余割函数的关系seca=1/cosa,cotca=1/sina ④正切函数与正弦函数的关系tana=sina/cosa⑤正切函数与余弦函数的关系tana=1/sqrt((1/cosa)²-1)⑥余切函数与正弦函数的关系cota=1/sqrt((1/sina)²-1)四、教学过程:1.引入回顾角的概念和三角函数的定义,为同角三角函数定义打下基础。
2.讲解同角三角函数定义讲解同角三角函数的概念,包括正弦函数sina,余弦函数cosa,正切函数tana,余切函数cota,割函数seca,余割函数cotca,强调同角性质。
3.讲解同角三角函数的基本关系在讲解同角三角函数的基本关系时,教师可利用具体图形进行解释,让学生更好地理解。
可以分情况介绍,并提供相应的例子,使学生能够灵活运用。
4.小结通过复习和讲解,学生理解了同角三角函数的定义和基本关系,并掌握了应用同角三角函数的基本关系解决有关三角函数的数学问题。
五、教学方法:1.演示法2.综合使用法3.巩固法六、贯彻落实:布置相关的作业,巩固所学知识,并在下一节课进行检查。
在学习过程中,老师要及时给予学生相关的反馈,鼓励他们积极思考,提出问题,使学生产生学习兴趣。
同角三角函数的基本关系教案教案标题:同角三角函数的基本关系教学目标:1. 理解同角三角函数的定义及其基本关系。
2. 掌握同角三角函数之间的基本关系公式。
3. 能够运用同角三角函数的基本关系解决相关问题。
教学准备:1. 教师:黑板、白板、彩色粉笔/白板笔、教学投影仪。
2. 学生:教科书、笔记本、计算器。
教学过程:步骤一:导入新知1. 引入同角三角函数的概念,解释其在几何图形中的应用。
2. 提问学生是否了解正弦、余弦和正切函数,以及它们之间的关系。
步骤二:同角三角函数的定义及基本关系1. 介绍正弦、余弦和正切函数的定义,并在黑板上绘制三角函数的单位圆图。
2. 解释同角三角函数之间的基本关系:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边3. 强调同角三角函数之间的关系:sinθ/cosθ = tanθ,以及1 + tan²θ = sec²θ 和1 + cot²θ = csc²θ。
步骤三:同角三角函数的基本关系公式1. 教师在黑板上列出同角三角函数之间的基本关系公式,并解释每个公式的意义。
2. 提供示例问题,引导学生使用基本关系公式计算同角三角函数的值。
步骤四:解决相关问题1. 提供一些与同角三角函数相关的问题,要求学生运用所学知识解决问题。
2. 学生独立或合作完成问题,并在黑板上展示解题过程。
步骤五:总结和拓展1. 总结同角三角函数的基本关系及其应用。
2. 引导学生思考其他可能的应用场景,并展示相关例子。
教学延伸:1. 提供更多的练习题,巩固学生对同角三角函数基本关系的理解和运用能力。
2. 引导学生探索其他三角函数的基本关系,如余切、正割和余割函数。
评估方法:1. 教师观察学生在课堂上的参与度和理解程度。
2. 批改学生完成的问题解答,并提供反馈。
拓展阅读:1. 探索三角函数的周期性和图像变换。
1. 2.2同角的三角函数的基本关系
一、教学目标:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
二、教学重、难点
重点:公式1cos sin 2
2=+αα及
αα
α
tan cos sin =的推导及运用:
(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.
难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具
利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 2
2
=+αα及
αα
α
tan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从
圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?
如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由2
2
1MP OM +=,
因此2
2
1x y +=,即22
sin cos 1αα+=.
根据三角函数的定义,当()2a k k Z π
π≠+
∈时,有
sin tan cos α
αα
=.
这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.
【例题讲评】
例1化简: 440sin 12-
解:原式
80cos 80cos 80sin 1)80360(sin 122
2
==-=+-=
例2 已知α
α
αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简
解:)
sin 1)(sin 1()
sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+---
-+++=
原式 0cos <∴αα是第三象限角, αα
α
ααtan 2cos sin 1cos sin 1-=----+=
∴原式 (注意
象限、符号) 例3求证:
α
α
ααcos sin 1sin 1cos +=
- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、
分母同乘以(1+sinx )先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.
证法1:左边=
=+=⋅--=-⋅x
x
x x x x x x x cos sin 1cos )sin 1(sin 1cos )sin 1(cos cos 2右边, ∴原等式成立
证法2:左边=
)sin 1)(sin 1(cos )sin 1(x x x
x -+⋅+=x
x x 2sin 1cos )sin 1(-⋅+
x x x 2cos cos )sin 1(⋅+=
==+x
x
cos sin 1右边
证法3:
证法4:∵cosx ≠0,∴1+sinx ≠0,∴
x
x
cos sin 1+≠0,
∴x
x x x
cos sin 1sin 1cos +-=()()x x x sin 1sin 1cos 2-+=x x 22sin 1cos -=1,
,
cos )sin 1(cos )sin 1(cos sin 1sin 1sin 1cos sin 1,
cos )sin 1(cos cos cos sin 1cos :52
2
2x
x x
x x x x x x x x
x x
x x x x -=
--=--⋅+=
⋅-=
⋅-=右边左边证法
∴左边=右边 ∴原等式成立.
例4已知方程0)13(22
=++-m x x 的两根分别是θθcos sin ,
, 求
的值。
θ
θ
θθtan 1cos cot 1sin -+-
解:θθθ
θθ
θθθθθθθcos sin cos sin cos sin sin cos cos cos sin sin 2222+=--=-+-=
原式
2
1
3+=
∴由韦达定理知:原式 (化弦法) 例5已知ααcos 2sin =,
求
的值。
及αααα
αα
αcos sin 2sin cos 2sin 5cos 4sin 2++- 解:2tan cos 2sin =∴=ααα
【课堂练习】 化简下列各式
3.θθθ
θ
cos cos 1sin 1sin 22-+- 练习答案:
解:(1)原式=θ
θθθ2
2
22sin )cos 1(sin )cos 1(++- (2)原式=x x
x
x
x x
x x sin cos sin sin cos sin cos 1sin +-⋅- 【学习小结】
(1)同角三角函数的关系式的前提是“同角”,因此1cos sin 2
2≠+βα,
γ
β
αcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.
(1) 作业:习题1.2A 组第10,13题.
(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤. 【课后作业】见学案 【板书设计】略 【教学反思】。