图形旋转与最值
- 格式:doc
- 大小:214.00 KB
- 文档页数:3
解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD中,点E,F分别在AB,BC上,沿EF翻折后,点B落在边CD上的G处,若EG⊥CD,BE=4,DG=3,则AE的长为.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D= 80°,则∠BCF的度数是.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD中,AB=8,∠A=120°,M是CD上,DM=3,N是点AB上一动点,四边形CMNB沿直线MN翻折,点C对应点为E,当AE最小时,AN=.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.5.(2024·云南曲靖·二模)如图,已知在△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E为AC上一点,连接BE,交CD于点G,△BFE是△BCE沿BE折叠所得,且点C的对应点F恰好落在AB上,连接FG.(1)求证:四边形CEFG为菱形;(2)若AC=8,BC=6,求DG的长.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.258.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.1929.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.2210.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD 中,∠ABC =60°,P 是直线BD 上一动点,以AP 为边向右侧作等边△APE ,(A 、P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是,BC 与CE 的位置关系是;(2)①如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE ,若AB =2,∠APD =75°,直接写出BE 的长;(3)当点P 在直线BD 上时,其他条件不变,连接BE .若AB =23,BE =219,请直接写出△APE 的面积.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O影部分的面积为cm2.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=23,则GH的最小值是.17.(23-24八年级下·安徽合肥·期末)菱形ABCD中,∠B=60°,E是BC中点,连接AE,DE,点F是DE上一动点,G为AF中点,连接CG.(1)∠BAE=;(2)若AB=2,则CG的最小值为.18.(2024八年级下·全国·专题练习)如图,菱形ABCD中,AB=4,∠ABC=60°,点P为AD边上任意一点(不包括端点),连结AC,过点P作PQ∥AC,交边CD于点Q,点R线段AC上的一点.(1)若点R为菱形ABCD对角线的交点,PQ为△ACD的中位线,求PR+QR的值;(2)当PR+QR的值最小时,请确定点R的位置,并求出PR+QR的最小值;(3)当PR+QR的值最小,且PR+QR+PQ的值最小时,在备用图中作出此时点P,Q的位置,写作法并写出PR+QR+PQ的最小值.【考点五利用菱形的性质与判定解决新定义型问题】19.(22-23八年级下·江苏苏州·期末)定义:如果三角形有两个内角的差为90°,那么称这样的三角形为“准直角三角形”.(1)已知△ABC是“准直角三角形”,∠C>90°,若∠A=40°,则∠B=°.(2)如图,在菱形ABCD中,∠B>90°,AB=5,连接AC,若△ABC正好为一个准直角三角形,求菱形ABCD的面积.【变式训练】20.(23-24九年级下·山东威海·期中)【理解新定义】若一个四边形具备一组对角互补和一组邻边相等,则称该四边形为“补等四边形”.如正方形和筝形,它们都具备这样的特征,所以称为补等四边形.【解决新问题】(1)如图Ⅰ,点E,F分别在菱形ABCD的边CD,AD上,CE=DF,∠A=60°.四边形BEDF是否为补等四边形?(填“是”或“否”)(2)如图Ⅱ,在△ABC中,∠B>90°.∠ACB的平分线和边AB的中垂线交于点D,中垂线交边AC于点G,连接DA,DB.四边形ADBC是否为补等四边形?若是,进行证明;若不是,说明理由.21.(22-23八年级下·浙江宁波·期末)我们定义:以已知菱形的对角线为边且有一条边与已知菱形的一条边共线的新菱形称为已知菱形的伴随菱形.如图1,在菱形ABCD中,连接AC,在AD的延长线上取点E 使得AC=AE,以CA、AE为边作菱形CAEF,我们称菱形CAEF是菱形ABCD的“伴随菱形”.(1)如图2,在菱形ABCD中,连接AC,在BC的延长线上作CA=CF,作∠ACF的平分线CE交AD的延长线于点E,连接FE.求证:四边形AEPC为菱形ABCD的“伴随菱形”.(2)①如图3,菱形AEFC为菱形ABCD的“伴随菱形”,过C作CH垂直AE于点H,对角线AC、BD相交于点O.连接EO若EO=2CH,试判断ED与BD的数量关系并加以证明.②在①的条件下请直接写出CHED的值.22.(22-23八年级下·安徽合肥·期末)定义:在三角形中,若有两条中线互相垂直,则称该三角形为中垂三角形.(1)如图(a),△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,且BD⊥AE于点O,若∠BAE=45°,求证:△ABC是等腰三角形.(2)如图(b),在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,求证:AC2+BC2=5AB2.(3)如图(c),四边形ABCD是菱形,对角线AC,BD交于点O,点M,N分别是OA,OD的中点,连接BM,CN并延长,交于点E.求证:△BCE是中垂三角形;解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD 中,点E ,F 分别在AB ,BC 上,沿EF 翻折后,点B 落在边CD 上的G 处,若EG ⊥CD ,BE =4,DG =3,则AE 的长为.【答案】914【分析】此题重点考查菱形的性质、轴对称的性质、平行四边形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.作BH ⊥CD 交DC 的延长线于点H ,因为EG ⊥CD ,所以BH ∥EG ,由四边形ABCD 是菱形,得AB ∥CD ,AB =BC =CD ,则四边形BEGH 是平行四边形,所以GH =BE =4,由折叠得GE =BE =4,则BH =GE =4,所以DH =DG +GH =3+4=7,由勾股定理得42+7-AB 2=AB 2,求得AB =6514,所以AE =AB -BE =6514-4=914,于是得到问题的答案.【详解】解:作BH ⊥CD 交DC 的延长线于点H ,则∠H =90°,∵EG ⊥CD ,∴BH ∥EG ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC =CD ,∴BE ∥GH ,∴四边形BEGH 是平行四边形,∴GH =BE =4,由折叠得GE =BE =4,∵DG =3,∴DH =DG +GH =3+4=7,∵BH 2+CH 2=BC 2,CH =7-CD =7-AB ,∴42+7-AB 2=AB 2,解得AB =6514,∴AE =AB -BE =6514-4=914,故答案为:914.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠BCF 的度数是.【答案】80°/80度【分析】此题考查了菱形的性质,折叠的性质,等边对等角和平行线的性质,首先根据平行的性质得到BC =CD ,由折叠得BC =CF ,然后求出CF =CD ,然后根据等边对等角和平行线的性质求解即可.【详解】∵四边形ABCD 是菱形∴BC =CD由折叠可得,BC =CF∴CF =CD∴∠CFD =∠D =80°∵四边形ABCD 是菱形∴AD ∥BC∴∠BCF =∠DFC =80°.故答案为:80°.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD 中,AB =8,∠A =120°,M 是CD 上,DM =3,N 是点AB 上一动点,四边形CMNB 沿直线MN 翻折,点C 对应点为E ,当AE 最小时,AN =.【答案】7【分析】本题考查了菱形的性质,折叠的性质,勾股定理等知识,解决本题的关键是确定点E在AM上时,AE的值最小.作AH⊥CD于H,如图,根据菱形的性质可求得AH=32AD=83,DH=CH=8,在Rt△AHM中,利用勾股定理计算出AM=7,再根据两点间线段最短得到当点E在AM上时,AE的值最小,然后证明AN=AM即可.【详解】解:作AH⊥CD于H,如图,∵菱形ABCD的边AB=8,∠A=120°,∴AD=AB=CD=8,AB∥CD,∴∠D=180°-∠BAD=60°,∴∠DAH=30°,∴DH=12AD=4,AH=AD2-DH2=43,∵DM=3,∴HM=1,MC=CD-DM=5,在Rt△AHM中,AM=AH2+HM2=7,∵四边形CMNB沿直线MN翻折,点C对应点为E,,∴ME=MC=10,∵AE+ME≥AM,∴AE≥AM-ME,∴当点E在AM上时,AE的值最小,由折叠的性质得∠AMN=∠CMN,而AB∥CD,∴∠ANM=∠CMN,∴∠AMN=∠ANM,∴AN=AM=7.故答案为:7.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.【答案】6075【分析】本题考查菱形的性质,垂直平分线的定义.(1)直接根据菱形的对角相等即可求解;(2)如图,由垂直平分线的定义得到∠1=90°,从而∠ADC =30°,由菱形的性质得到∠CDC =∠1=90°,从而由折叠有∠CDE=∠C DE=12∠CDC =45°,因此∠ADE=75°,再根据菱形的对边平行即可求解.【详解】解:(1)∵四边形ABCD是菱形,∴∠C=∠A=60°.故答案为:60(2)如图,∵C D 是AB 的垂直平分线,∴∠1=90°,∴∠ADC =90°-∠A =90°-60°=30°,∵在菱形ABCD 中,AB ∥CD ,∴∠CDC =∠1=90°,由折叠可得∠CDE =∠C DE =12∠CDC =12×90°=45°,∴∠ADE =∠ADC +∠C DE =30°+45°=75°,∵在菱形ABCD 中,AD ∥BC ,∴∠DEC =∠ADE =75°.故答案为:755.(2024·云南曲靖·二模)如图,已知在△ABC 中,∠ACB =90°,过点C 作CD ⊥AB 于点D ,点E 为AC 上一点,连接BE ,交CD 于点G ,△BFE 是△BCE 沿BE 折叠所得,且点C 的对应点F 恰好落在AB 上,连接FG .(1)求证:四边形CEFG 为菱形;(2)若AC =8,BC =6,求DG 的长.【答案】(1)见解析(2)GD =1.8.【分析】(1)推出CG =EF ,CG ∥EF ,进而推出四边形CEFG 是平行四边形,并根据EC =EF 证得四边形CEFG 是菱形;(2)首先利用勾股定理求出AB ,设CG =x ,然后用x 表示出AE 和EF ,再在Rt △AEF 中,利用勾股定理构建方程,求出x ,进一步计算即可求解.【详解】(1)证明:∵CD ⊥AB ,△BFE 是△BCE 沿BE 折叠所得,∴∠BFE =∠BCE =90°,∠CEG =∠FEG ,EC =EF ,∴CD ∥EF ,∴∠CGE =∠FEG ,∴∠CGE =∠CEG ,∴CE =CG ,∴CG =EF ,∵CG ∥EF ,∴四边形CEFG 是平行四边形,∵EC =EF ,∴平行四边形CEFG 是菱形;(2)解:∵AC =8,BC =6,∠ACB =90°,22∵四边形CEFG 是菱形,∴EF =FG =CE =CG =x ,∴AE =8-x ,∵△BFE 是△BCE 沿BE 折叠所得,∴BF =BC =6,∴AF =AB -BF =10-6=4,∵在Rt △AEF 中,EF 2+AF 2=AE 2,∴x 2+42=8-x 2,解得:x =3,即CG =3.∵CD ⊥AB ,∴S △ABC =12AC ×BC =12AB ×CD ,∴CD =4.8,∴GD =4.8-3=1.8.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,平行四边形的判定,菱形的判定和性质以及勾股定理的应用,灵活运用各性质进行推理论证是解题的关键.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【答案】C【分析】首先根据题意作图,然后由图象判断出点P 在对角线BD 上,BP =4,BP +AP =6,设AO =x ,则AB =2AO =2x ,利用勾股定理求解即可.【详解】如图所示,由图象可得,当x 从0到4时,MA MC=y =1∴MA =MC∵四边形ABCD 是菱形∴点P 在对角线BD 上∴由图象可得,BP =4,BP +AP =6∵在菱形ABCD 中,∠B =60°,∴∠ABD =30°,AC ⊥BD∴设AO =x ,则AB =2AO =2x∴PO =BP -BO =4-3x∴BO =AB 2-AO 2=3x∴在Rt △APO 中,AP 2=AO 2+PO 2∴22=x 2+4-3x 2解得x =3,负值舍去∴AB =2x =23∴菱形ABCD 的边长是23.故选:C .【点睛】此题考查了动点函数图象问题,菱形的性质,勾股定理,含30°角直角三角形的性质等知识,解题的关键是根据图象正确分析出点P 在对角线BD 上.【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.25【答案】A 【分析】根据图象可知,当x =0时,即点P 与点A 重合,此时S △ABE =12,进而求出菱形的面积,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,利用菱形的性质,求出边长,即可得出结果.本题考查菱形的性质和动点的函数图象.熟练掌握菱形的性质,从函数图象中有效的获取信息,是解题的关键.【详解】解:由图象可知:当x =0时,即点P 与点A 重合,此时S △ABE =12,∴S 菱形ABCD =2S △ABE =24,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,交AC 于点O ,则:BD ⊥AC ,OA =OC =4,OB =OD ,∴S 菱形ABCD =12AC ⋅BD =24,∴BD =6,∴OB =OD =3,∴AB =OA 2+OB 2=5,∴菱形ABCD 的边长为5;故选A .8.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.192【答案】B【分析】本题主要考查了菱形的性质,勾股定理,动点问题的函数图象,过点C 作CE ⊥AD ,根据函数图象求出菱形的边长为a ,再根据图像的三角形的面积可得CE =8,再利用菱形的性质和勾股定理列方程可求a 即可.【详解】解:如图所示,过点C 作CE ⊥AD 于E ,∵在菱形ABCD 中,AD ∥BC ,AD =BC ,∴当点P 在边BC 上运动时,y 的值不变,∴AD =BC =10+a -10=a ,即菱形的边长是a ,∴12⋅AD ⋅CE =4a ,即CE =8.当点P 在AC 上运动时,y 逐渐增大,∴AC =10,∴AE =AC 2-CE 2=102-82=6.在Rt △DCE 中,DC =a ,DE =a -6,CE =8,∴a 2=82+a -6 2,解得a =253.故选:B .9.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.22【答案】C 【分析】结合图象,得到当x =0时,PO =AO =4,当点P 运动到点B 时,PO =BO =2,根据菱形的性质,得∠AOB =∠BOC =90°,继而得到AB =BC =OA 2+OB 2=25,当点P 运动到BC 中点时,PO 的长为12BC=5,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当x=0时,PO=AO=4,当点P运动到点B时,PO=BO=2,根据菱形的性质,得∠AOB=∠BOC=90°,故AB=BC=OA2+OB2=25,当点P运动到BC中点时,PO的长为12BC=5,故选C.10.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APE,(A、P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)①如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE,若AB=2,∠APD=75°,直接写出BE的长;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=23,BE=219,请直接写出△APE的面积.【答案】(1)BP=CE,CE⊥BC;(2)①仍然成立,见解析;②20-83(3)73或313【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)①(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;②根据已知得出DP=AD,进而根据①可得BP=CE,根据CE⊥BC,勾股定理,即可求解;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】(1)解:如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∴AP=AE,∠P AE=60°,∴∠BAP=∠CAE=60°-∠P AC,∴△BAP≌△CAE SAS,∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE SAS,∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;②如图所示,∵△ABP≌△ACE SAS,∴CE=BP,∵∠APD=75°,∠ADB=30°∴∠DAP=75°=∠APD,∴DA=DP=2,∵BD=2BO=23AO=3AB=23∴BP=CE=BD-DP=23-2∵CE⊥AD,AD∥BC∴CE⊥BC∴BE=BC2+CE2=22+23-22=20-83故答案为:20-83.(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∵∠ABC =60°,AB =23,∴∠ABO =30°,∴AO =12AB =3,OB =3AO =3,∴BD =6,由(2)知CE ⊥AD ,∵AD ∥BC ,∴CE ⊥BC ,∵BE =219,BC =AB =23,∴CE =(219)2-(23)2=8,由(2)知BP =CE =8,∴DP =2,∴OP =5,∴AP =OA 2+OP 2=(3)2+52=27,∵△APE 是等边三角形,∴S △AEP =34×27 2=73,如图4中,当点P 在DB 的延长线上时,同法可得AP =OA 2+OP 2=(3)2+112=231,∴S △AEP =34×231 2=313.【点睛】此题考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【答案】D 【分析】本题考查了旋转的性质、菱形的性质,含30°直角三角形的性质,勾股定理,坐标与图形,根据题意得到旋转的规律是解题的关键.根据题意得到点C 2024与点C 重合,在菱形中算出C 点坐标,即可解答.【详解】解:作CD ⊥OA 于D ,则∠CDO =90°,∵四边形OABC 是菱形,O 0,0 ,A -1,0 ,∴∠AOC =∠B =60°,OC =OA =1∴∠OCD =30°∴OD =12OC =12,CD =3OD =32∴点C 的坐标为-12,32,若菱形绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,则菱形OABC 绕点O 连续旋转2024次,旋转4次为一周,旋转2024次为2024÷4=506(周),∴绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024与菱形OABC 重合,∴点C 2024与C 重合,∴点C 2024的坐标为-12,32,故选:D .【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O按顺时针方向分别旋转90°、180°、270°后,得到如图的图形,每相邻两个菱形有一个顶点重合,则图中阴影部分的面积为cm 2.【答案】12-43【分析】连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,S △AOD =12×AE ×OD =12×3×3-1 =3-32cm 2 ,计算即可.【详解】如图,连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,∴点D 在OB 上,由已知条件易得BE =DE =12AB =1cm ,AE =OE =3cm ,∴OD =3-1cm ,∴S =1×AE ×OD =1×3×3-1 =3-3cm 2 ,∴所求面积为8×3-32=12-43cm2.故答案为:12-43.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?【答案】(1)证明见解析(2)①33;②30°或90°【分析】(1)连接AF,根据菱形的性质,可得到△GAF≅△EAF,从而得到∠GAF=∠EAF,进而得到△DAF ≅△BAF,即可求证;(2)①连接AF,EG,BD,AC,BD与AC交于点O,AF交EG于点P,根据旋转的性质和菱形的性质可得AF∥OD,△ABD和△AEG是等边三角形,从而得到AF=OD,进而得到四边形AODF是平行四边形,即可求解;②分两种情况讨论:∠BDF=90°和∠BFD=90°,利用矩形的性质、等边三角形的判定与性质求解即可得.【详解】(1)证明:连接AF,∵四边形AEFG是菱形,∴AE=EF=FG=GA,在△GAF和△EAF中,AG=AEGF=EFAF=AF,∴△GAF≅△EAF SSS,∵四边形ABCD 是菱形,∴AD =AB ,在△DAF 和△BAF 中,AD =AB∠DAF =∠BAF AF =AF,∴△DAF ≅△BAF SAS ,∴DF =BF .(2)解:①如图,连接AF ,EG ,BD ,AC ,BD 与AC 交于点O ,AF 交EG 于点P ,由(1)得当菱形AEFG 没有旋转时,AC 平分∠BAD ,AF 平分∠EAG ,∴此时点A 、F 、C 三点共线,∴当菱形AEFG 绕点A 按逆时针方向旋转时,∠FAC =α,∴当α=90°时,∠FAC =∠BAE =90°,在菱形ABCD 中,AB =AD ,OD =12BD ,OA =12AC ,BD ⊥AC ,∠DAO =12∠BAD =30°,∴∠AOD =90°∴∠DOA +∠FAC =180°,∴AF ∥OD ,在菱形AEFG 中,∠EAF =12∠EAG =30°,AE =AG ,AP =12AF ,PE =12EG ,∵∠DAB =∠GAE =60°.∴△ABD 和△AEG 是等边三角形,∴BD =AB =6,EG =AE =3,∴OD =3,EP =32,∴AP =AE 2-EP 2=32,OA =AD 2-OD 2=33∴AF =3,∴AF =OD ,∴四边形AODF 是平行四边形,∴DF =OA =33;②由①得四边形AODF 是平行四边形,∵∠FAC =90°,∴四边形AODF 是矩形,∴∠BDF =90°,即△DFB 为直角三角形,∴此时旋转角α的度数为90°;如图,当点F 在AD 上时,由①得AF =3,∴AF=DF,∵△ABD为等边三角形,∴BF⊥AD,即∠BFD=90°,∴此时△DFB为直角三角形,∵∠EAF=1∠EAG=30°,2∴∠BAE=∠BAD-∠EAF=30°,即此时旋转角α的度数为30°;综上所述,当△DFB为直角三角形时,旋转角α的度数为30°或90°.【点睛】本题主要考查了菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,并利用分类讨论思想解答是解题的关键.14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【答案】(1)43(2)FD=3CG,证明见解析(3)OE=3OC,2≤OC≤4【分析】(1)连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,根据菱形的性质,证明B,F,D三点共线,求出BD,BF的长,用BD-BF即可求出DF的长度;(2)过点D作DM∥FG,过点G作GM∥DF,过点C作CN⊥MG,得到四边形DMGF为平行四边形,证明△CDM≌△CBG,得到CM=CG,∠DCM=∠BCG,进而求出∠MCG=∠BCG+∠BCM=∠DCM+∠BCM=∠DCB=120°,利用等腰三角形的性质结合30度角的直角三角形的性质,即可得出结论;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,先证明△DOC≌△GOH,推出四边形AHGB为平行四边形,再证明△HAC≌△EBC,推出△CHE为等边三角形,利用等边三角形的性质和含30度角的直角三角形的性质,即可得出结论;②三角形的三边关系,求出CE的范围,进而求出OC的范围即可.【详解】(1)解:连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,∵菱形ABCD ,菱形EBGF ,∴∠ABD =∠CBF =12∠ABC =30°,∠EBF =∠GBF =12∠EBG =30°,AC ⊥BD ,EG ⊥BF ,BD =2OB ,BF =2HB ,∵点E 、G 分别在边AB 、BC 上,∴∠ABD =∠ABF =30°,∴B ,F ,D 三点共线,∵BE =2,∠EBF =30°,∴HE =12BE =1,BH =3HE =3,∴BF =2BH =23,同理:BD =2OB =23OA =2×32AB =63,∴DF =BD -BF =43;故答案为:43;(2)FD =3CG ,证明如下:过点D 作DM ∥FG ,过点G 作GM ∥DF ,过点C 作CN ⊥MG ,则:四边形DMGF 为平行四边形,∴DF =MG ,DM =GF ,∵菱形ABCD ,菱形EBGF ,∠ABC =∠EBG =60°,∴AD ∥BC ,BE ∥GF ,∠ADB =∠ABC =∠EBG =60°,CD =BC ,BG =GF =DM∴BE ∥DM ,∠1=∠2,∠DCB =180°-∠ADC =120°,∴∠3=∠DMN ,∵∠1=∠ADM +∠DMN ,∠2=∠3+∠CBE∴∠ADM =∠CBE ,∴∠CDA +∠ADM =∠CBE +∠EBG ,即:∠CDM =∠CBG ,又∵CD =BC ,BG =DM ,∴△CDM ≌△CBG ,∴CM =CG ,∠DCM =∠BCG ,∴∠MCG =∠BCG +∠BCM =∠DCM +∠BCM =∠DCB =120°,∴∠CMG =∠CGM =12180°-120° =30°,∵CN ⊥MG ,∴DF =MG =2NG ,CN =12CG ,∴NG=CG2-CN2=3CG,2∴DF=3CG;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,∵O是DG的中点,∴OD=OG,又∵∠DOC=∠HOG,∴△DOC≌△GOH,∴GH=CD,∠OCD=∠OHG,∴CD∥HG,∵菱形ABCD,∴AB∥CD,AD∥BC,AB=BC=CD=DA,∠ADC=∠ABC=60°,∴AB∥HG,GH=CD=AB,△ABC为等边三角形,∴四边形AHGB为平行四边形,∠BAC=∠ACB=60°,AC=AB=BC,∴AH∥BG,AH=BG,∠CAQ=180°-∠CAB=120°,∴∠HAQ=∠ABG,∵BG=BE,∴AH=BE,∵∠CBE=∠ABC+∠ABG+∠EBG=120°+∠ABG,∠HAC=∠HAQ+∠CAQ=∠HAQ+120°,∴∠CBE=∠HAC,又∵AH=BE,AC=BC,∴△HAC≌△EBC,∴CH=CE,∠HCA=∠ECB,∴∠HCE=∠HCA+∠ACE=∠BCE+∠ACE=∠ACB=60°,∴△CHE为等边三角形,∵OC=OH,∠HEC=60°,∴OE⊥OC,∠CEO=30°,∴OC=1CE,2∴OE=3OC;②∵BC=AB=6,BE=2,∴BC-BE≤CE≤BC+BE,即:4≤CE≤8,∵OC=1CE,2∴2≤OC≤4.【点睛】本题考查菱形的性质,平行四边形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质,含30度角的直角三角形,勾股定理,三角形的三边关系等知识点,综合性强,难度大,属于压轴题,熟练掌握相关知识点,添加辅助线构造特殊图形和全等三角形,是解题的关键.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质连接BD ,DE ,根据菱形的性质可得,△ABD 是等边三角形,再证明△ADP ≌△ABP ,可得PD =PB ,从而得到PE +PB 的最小值为DE 的长,再由E 是AB 的中点,可得DE ⊥AB ,AE =12AB =1,然后根据勾股定理可得DE =3,即可求解.【详解】解:如图,连接BD ,DE ,∵四边形ABCD 是菱形,周长为8,∠DAC =30°,∴∠DAB =2∠DAC =60°,∠DAP =∠BAP ,AB =AD =2,∴△ABD 是等边三角形,在△ADP 和△ABP 中,∵AP =AP ,∠DAP =∠BAP ,AB =AD ,∴△ADP ≌△ABP ,∴PD =PB ,∴PE +PB =PE +PD ≥DE ,即PE +PB 的最小值为DE 的长,∵E 是AB 的中点,∴DE ⊥AB ,AE =12AB =1,∴DE =AD 2-AE 2=3,即PE +PB 的最小值为3.故答案为:3.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =23,则GH 的最小值是.【答案】62【分析】连接AF ,利用三角形中位线定理,可知GH =12AF ,当AF ⊥BC 时,AF 最小,求出AF 最小值即可求出.【详解】解:连接AF ,如图,∵四边形ABCD 是菱形,∵G ,H 分别为AE ,EF 的中点,∴GH 是△AEF 的中位线,∴GH =12AF ,当AF ⊥BC 时,则∠AFB =90°,AF 最小,GH 得到最小值,∵∠B =45°,∴△ABF 是等腰直角三角形,∴AF 2+BF 2=AB 2,即2AF 2=AB 2,∴AF =6,∴GH =62,故答案为:62.【点睛】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.(23-24八年级下·安徽合肥·期末)菱形ABCD 中,∠B =60°,E 是BC 中点,连接AE ,DE ,点F 是DE 上一动点,G 为AF 中点,连接CG .(1)∠BAE =;(2)若AB =2,则CG 的最小值为.【答案】30°2217【分析】(1)连接AC ,证明△ABC 为等边三角形,三线合一,即可得出结果;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI ,根据三角形的中位线定理,推出点G 在IH 上运动,当CG ⊥HG 时,CG 最小,进行求解即可.【详解】解:(1)连接AC ,∵菱形ABCD ,∴AB =BC ,∵∠B =60°,∴△ABC 为等边三角形,∴∠BAC =60°,∵E 是BC 中点,∴AE 平分∠BAC ,∴∠BAE =12∠BAC =30°;故答案为:30°;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI则:IG ∥DF ,HG ∥DF ,∴I ,G ,H 三点共线,。
专题08旋转中的最值问题考点一费马点问题求最值【方法点拨】费马点证明都長依据旋转思想.构造三角形全等.然后将三条线段之和转化到是否在一条直线上来决定最小值。
这个思路一走要掌握,因为它会应用在实际的考试题目中。
【典例剖析】1・(经典例题)已知:P是边长为1的正方形2ECD内的一点,求Rl+PB^PC的最小值.B ---------------------- C【点拨】顺时针旋转△EPC60度,可得为等边三角形,若R#PB-PC=AP+PE+EF要使最小只要AP, PE, EF在一条直线上,求岀.妒的值即可.【解析】解:顺时针旋转△BPC60度,可得恥为等边三角形.即得M+PB+PC=AP+PE+EF要使最小只要-IP, PE, M在一条直线上,即如下图:可得最小R1+PB-PC=.4F.此时ZEBC+ZCBP= ZFBE+ZEBC=6L = ZFBC.所以ZABF=90° +60° =150° ,ZMBF=3L ,/Q 1BW=BF・cos3(T =5C>cos30°=分MF=〒则务寺1在△zB/F中,勾股圧理得:3+仃=,护HF== J(坯2 + 2x 字x 尊+(坯 2 = J(学)2 =竿.2.(朝阳区二模)阅读下列材料:小华遇到这样一个问题,如图1,HABC中,ZACB=30° , BC=6, AC=5,在ZU5C内部有一点P,连接EL PB、PC,求R1+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为左点,这样依据“两点之间,线段最短”,就可以求岀这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将ZUPC绕点C顺时针旋转60°,得到连接PD、BE,则EE的长即为所求.(1)请你写出图2中,Ri+PB+PC的最小值为_质_;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,ZABC=60° ,在菱形.13CD内部有一点P,请在图3中画岀并指明长度等于R1+PB+PC最小值的线段(保留画图痕迹,画岀一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.图3【点拨】(1)先由旋转的性质得出△ APC^/XEDC.则ZACP=ZECD、AC=EC=5, ZPCD=60° , 再证明Z5CE=90° ,然后在RtABCF中,由勾股迫理求出恥的长度,即为PA+PB-rPC的最小值:(2)①将ZUPC绕点C顺时针旋转60。
中考数学复习:旋转之求线段最值用旋转思想解决线段最值问题的本质用三角形三边关系解决问题如图,线段OA,OB为定长,则A,B,O三点共线时,AB取得最值:当点B位于处B1时,AB取得最小值OA-OB;当点B位于B2处时,AB取得最大值OA+O B.最小值常见的题型有:1.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m,n 上滑动.m取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最大值OD+C D.Arraym2.如图,等边△ABC大小固定,点A,B分别在互相垂直的直线m,n上滑动.m取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最大值OD+C D.m3.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m,n 上滑动.取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最小值|CD –OD|.m例题讲解例1.已知Rt△ABC中,∠ACB=90°,tan∠BAC=12.若BC=6,点D在边AC的三等分点处,将线段AD绕A点旋转,E始终为BD的中点,求线段CE长度的最大值.解:在Rt△ABC中,AC=tan BCBAC=12,AB=①如图1,当AD=13AC时,取AB的中点F,连接EF和CF,则CF=12AB=,EF=12AD=2.所以当且仅当C,E,F三点共线且点F在线段CE上时,CE最大,此时CE=CF+EF=2+图1②如图2,当AD=23AC时,同理可得CE的最大值为4+.综上可得,当点D在靠近点C的三等分点处时,线段CE的长度的最大值为4+图2例2 以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO =30°.如图,若BO=N 在线段OD 上,且NO =2,P 是线段AB 上的一个动点,在将△AOB 绕点O 旋转的过程中,线段PN 长度的最小值为________,最大值为________.BCDPNO A-2;2. 过点O 作OE ⊥AB 于点E ,则OE =12OB.故当点P 在点E 处时,OP;当点P 在点B 处时,OP长度取最大值A O NPDBCE①当△AOB 绕点O 旋转到O ,E ,D 三点共线,且点E 在线段OD 上时,PN 取最小值,即OE -ON-2;D②当△AOB 绕点O 旋转到O ,B ,D 三点共线,且点B 在线段DO的延长线上时,PN 取最大值,OB +ON =2.所以线段PN 长度的最小值为-2,最大值为2.D进阶训练1. 已知△AOB 和△COD 是等腰三角形,其中BA =BO =2,CD =CO =3,∠ABO =∠DCO .连结AD ,BC ,M ,N 分别为OA ,BC 的中点.若固定△AOB ,将△COD 绕点O 旋转,求MN 的最大值.NMABCDO【答案】52. 【提示】如图,取OB 的中点E ,连结EM ,EN ,则EM ,EN 为定值,当点E 在线段MN 上时,MN 取最大值.EODCBAM N2. 已知:在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 旋转,得到等腰Rt △AD 1E 1,记直线BD 1与CE 1的交点为P . (1)设BC 的中点为M ,求线段PM 的长; (2)求点P 到AB 所在直线的距离的最大值.E 1D 1A BC DEP【答案】(1)2)1【提示】(1)易证△E 1AC ≌△D 1AB ,所以∠E 1CA =∠D 1BA ,从而可得∠BPC =∠BAC =90°,所以PM =12BC=MPEDC BA D 1E 1(2)由题意知,点D1,E1在以A为圆心、AD为半径的圆上,而点P在直线BD1上,所以当直线BD1与⊙A相切时,点P到AB的距离最大.此时四边形AD1PE1是正方形,即PD1=AD1=2.如图,作PG⊥AB于点G,解Rt△PGB即可.B3.已知:正方形ABCD的边长为1,P为正方形内的一个动点,若点M在AB延长线上,且满足△PBC∽△PAM,延长BP交AD的延长线于点N,连结CM,是否存在满足条件的点P,使得PC=12?请说明理由.ACDPN【答案】不存在满足条件的点P,使得PC=12.【提示】因为△PBC∽△PAM,可得∠ABP+∠PAM=∠ABP+∠PBC=90°,所以AP⊥BN.以AB为直径,作半圆O,连结OC,OP,则OP+PC≥OC,从而PC件的点P,使得PC=12.ONPD CA。
三角形旋转与极值问题1.如图所示,AM=3,BM=2,连AB,以AB为边长作等边三角形ABC,连MC,求MC的最大值。
解析:将三角形AMC绕点A顺时针旋转60°,M’、M、B共线MC=M’B最大值为52.如图所示:AM=3,BM=5,连AB,以AB为边长作正方形ABCD,连DM,求DM的最大值。
解析:将△AMD绕点A顺时针旋转90°,F、M、B共线MD=FB最大为83.如图,正方形ABCD的边长为4,点E为正方形外的一个动点,∠AED=45°,P为AB中点,线段PE的最小值是________,最大值是____________.解析:将△DEC绕点D顺时针旋转90°,可证∠AEC=90°,E、P、O共线PE=OE-OP,最小值为22-2,P、O、E共线PE=OE+OP,最大值为22+24.如图:正方形ABCD的边长是1,点P是边BC上任意一点(可以与B或C重合),分别过B、C、D作射线AP的垂线段BB´、CC´、DD´,①写出BB´、CC´、DD´的数量关系等式:并证明你的结论②BB´+CC´+DD´的最大值是()③BB´+CC´+DD´的最小值是()解析:(1)如图△ADD’≌△BCN,DD’=BN=BB’+CC’(2)P与B重合,BB´+CC´+DD´=2AD,最大值是2(3)P与C重合,BB´+CC´+DD´=BD,最小值是25..在直角平面坐标系中,C(0,4),A在第三象限,B在第四象限,ΔOAB是等腰直角三角形,AB=8,求SΔCAB最大值。
(有两种方法,)解析:AB长一定,当CM=OM+OC时,S△CAB最大为32.故需将△AOB旋转到C、O、M共线。
6、如图所示:两个等腰直角三角形没有重叠的部分, OA=6,OC=4,求 S ΔOBC+S ΔAOD 的最大值。
初中数学旋转最值解题技巧
一、旋转最值解题技巧概述在初中数学中,旋转最值是一个比较常
见的问题。
它涉及到了几何图形的变换和求解极值等知识点。
对于这
类问题,我们需要掌握一些解题技巧。
二、旋转最值解题技巧详细介
绍1. 理清思路:首先要理清思路,明确所求的是什么,并且确定使用
哪种方法来求解。
2. 画图分析:通过画图可以更加直观地看出几何图
形的特征和性质,从而有助于我们找到规律和推导结论。
3. 利用对称
性质:利用几何图形的对称性质进行计算可以简化运算过程并提高效率。
4. 使用三角函数公式:在某些情况下,可以使用三角函数公式来
计算旋转后坐标点的位置以及距离等相关参数。
5. 求导法求极值:如
果需要求取某个量在旋转后取得最大或者最小值时,可以采用求导法
来进行计算。
具体步骤为将原方程表示成关于一个变量(如x)的函数,在该区间内寻找其单调递增或递减区间,并判断端点处是否存在极值
即可。
6. 规范化处理数据:有时候为了便于计算和比较大小等操作,
需要将数据规范化处理成相同单位或者相同数量级之后再进行运算。
7. 注意精度误差:由于浮点数精度限制等因素可能会引起误差累积,在
实际应用中要注意避免这种情况发生,并尽可能保证结果正确性与稳
定性。
三、总结以上就是初中数学旋转最值解题技巧的详细介绍。
通
过掌握这些技能,在实际应用中能够更加熟练地处理各种复杂问题,
并获得更好的成果。
利⽤“旋转变换”解决三⾓形中的最值问题本⽂题⽬摘⾃'初中数学动点最值思路⽅法⼤汇总'本系列⽂章摘⾃“初中数学动点最值思路⽅法⼤汇总”PDF书,该书是《初中数学典型题思路分析》书的新增赠送内容之⼀!买全套典型题思路分析书赠送内容达300G.特⾊资料如下:1、《初中数学解题思路⽅法⼤汇总》2、《初中数学动点问题思路⽅法⼤汇总》3、《初中数学典型超级易错题》4、《初中⼏何典型解题模型》以上pdf⽂件均包含典型例题分析.qq群1:453495932(已满),qq群2:994823340群⽂件分享过该系列⽂章⽂档!点击⽂末左下⾓”阅读原⽂“进⼊微店查看!所谓“动点问题”是指图形中有⼀个或多个动点,在线段、射线或者弧线上运动的⼀类开放性题⽬,⽽解决这类题的关键是动中取静,让动点定下来,灵活地运⽤相关数学知识解决问题.在变化中找到不变的性质是解决数“动点”问题的基本思路.数学压轴题正逐步转向数形结合、动态⼏何、动⼿操作、实验探究等⽅向,加强了对⼏何图形运动变化的考核,从变化的⾓度来研究三⾓形、四边形、函数图象等,通过“对称”“翻折”“平移”“旋转”等研究⼿段和⽅法来探究图形性质及变化.让学⽣经历探索的过程,培养学⽣分析问题、解决问题的能⼒,把运动观点、⽅程思想、数形结合思想、分类思想、转化思想有机地结合起来.利⽤“三点共线”解决最值问题典型例题未完,更多内容见《初中数学典型题思路分析》的附赠资料《初中数学动点最值思路⽅法⼤汇总》.利⽤“旋转变换”解决最值问题【典型例题1】难度★★【思路分析】构造包含所求线段的三⾓形,通过三边关系求解;解直⾓三⾓形求出AB 、BC ,再求出CD ,连接CG ,根据直⾓三⾓形斜边上的中线等于斜边的⼀半求出CG ,然后根据三⾓形的任意两边之和⼤于第三边判断出DC 有最⼤值再代⼈数据进⾏计算即可得【答案解析】解:待续...《初中数学典型题思路分析》书,全套7册共14本书(七上—九下+综合);每册分解析版和原题版;有和教材同步的多个版本可选。
旋转中的最值问题方法一、三角形旋转中的最值问题。
题目1:在等腰直角三角形ABC中,∠ ACB = 90^∘,AC = BC=√(2),将ABC绕点C逆时针旋转角α(0^∘<α<90^∘)得到A'B'C,连接A'B。
求A'B的最小值。
解析:1. 因为ABC绕点C旋转得到A'B'C,所以CA = CA'=√(2)。
2. 在A'CB中,根据余弦定理:A'B^2=A'C^2+BC^2- 2A'C· BC·cos(∠ A'CB)。
3. 由于∠ A'CB=∠ ACB+α = 90^∘+α,A'C = AC=√(2),BC=√(2)。
4. 则A'B^2=2 + 2-2×√(2)×√(2)cos(90^∘+α)=4 + 4sinα。
5. 因为0^∘<α<90^∘,当sinα = 0(即α = 0^∘)时,A'B^2取得最小值4,所以A'B的最小值为2。
题目2:已知等边三角形ABC的边长为2,点D是边BC的中点,将ABD绕点A逆时针旋转得到ACE。
求线段DE的最大值。
解析:1. 因为ABD绕点A逆时针旋转得到ACE,所以AD = AE,∠ DAE=∠ BAC = 60^∘,所以ADE是等边三角形。
2. 点D是边BC的中点,在等边三角形ABC中,AD⊥ BC,根据勾股定理可得AD=√(3)。
3. 因为ADE是等边三角形,所以DE = AD=√(3),DE的最大值就是√(3)。
题目3:在ABC中,AB = 3,AC = 4,∠ BAC = 60^∘,将ABC绕点A旋转,得到AB'C'。
求BC'的最大值。
解析:1. 由余弦定理可得BC=√(AB^2)+AC^{2-2AB· AC·cos∠ BAC}- 把AB = 3,AC = 4,∠ BAC = 60^∘代入可得:BC=√(9 + 16-2×3×4×frac{1){2}}=√(13)。
旋转与最值一、配方法求最值1.如图,B(0,3),A为x轴上的一个动点,将线段AB绕A顺时针旋转90°得到AC,连OC 则OC的最小值为。
2.如图,在△ABC中,∠C=90°,BC=3,AC=5,点D为线段AC上的一动点,将线段BD绕点D逆时针旋转90°,点B对应点为E,连接AE,则AE长的最小值为。
3.如图,正方形ABCD边长为2,P为BC上一动点,将DP绕P逆时针旋转90°,得到PE,连接EA,则△PAE面积的最小值为。
二、三角形两边之和大于第三边与旋转4.如图△ABC中,AB=5,AC=3,以BC为斜边作等腰Rt△BCD,当BC长度变化时,请直接写出AD长取值范围。
5.如图,在△ABC中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值。
三、遇直角三角形考虑斜边中线6. 已知△ABC 中,∠ACB=90°,AC=4,BC=2,点A ,C 分别在x 、y 轴上,点A 在x 轴上运动时,点C 随之在y 轴上运动,求B 点到原点的最大距离。
7. 如图,∠BAC=∠BEF=90°,AB=AC=3,EB=EF ,BF=1,O 为FC 的中点,当△EBF 绕点B 旋转(在△ABC 所在平面内)时,AO 的最大值为 。
8. 如图,边长为4的正方形ABCD 外有一点E ,∠AEB=90°,F 为DE 的中点,连CF ,则CF 的最大值为 。
四、综合训练9. 如图1,△ABC 与△DEF 都是等腰直角三角形,∠ACB=∠EDF=90°,AB 、EF 中点均为G ,(1)求证CD=BF ;(2)如图2,把△DEF 绕点G 顺时针旋转,BF 、CD 交于点H 。
若AC=22,DF=23,∠BGE=21∠BHD 时,求CD 的长; (3)如图3,把△DEF 绕G 顺时针旋转,BF 、CD 交于点H ,若AC=22,求AH 的最小值。
初三旋转中的最值问题全文共四篇示例,供读者参考第一篇示例:初三旋转中的最值问题是中学数学中的一个重要知识点,通常涉及到函数的最值求解和图形的旋转等内容。
在初三阶段,学生常常会遇到类似于“求解函数f(x)=x^2在区间[a,b]上的最大值”或“求解旋转体的体积最大值”等问题。
本文将重点介绍初三阶段学生在旋转中的最值问题中常见的几种情形,并给出详细的解题方法和实例。
一、函数的最值问题在数学中,函数f(x)在区间[a,b]上的最值通常包括最大值和最小值两种情况。
最大值是函数在该区间上取得的最大函数值,而最小值是函数在该区间上取得的最小函数值。
初三阶段学生通常会被要求求解给定函数在给定区间上的最值,其中最常见的情形是二次函数在闭区间上的最值问题。
以函数f(x)=x^2为例,求解其在区间[-1,1]上的最大值。
我们需要求出函数f(x)=x^2在该区间端点和驻点处的函数值,即f(-1)=1,f(0)=0,f(1)=1。
然后,对函数f(x)=x^2求导得到f'(x)=2x,再令f'(x)=0解得驻点x=0。
比较端点和驻点处的函数值,即f(-1)=1,f(0)=0,f(1)=1,得知函数f(x)=x^2在区间[-1,1]上的最大值为1。
对于初三阶段的学生来说,很多函数的最值问题可以通过几何意义进行解释。
函数f(x)=x^2表示一个抛物线,函数在单调递增区间上取得最小值,而在单调递减区间上取得最大值。
初三阶段学生可以通过画出函数图像或利用函数基本性质进行推断,帮助他们更好地理解函数的最值问题。
二、图形的旋转中的最值问题在初三阶段,学生通常会遇到圆的旋转体体积最值问题。
圆的旋转体是指将一个形状为圆的二维图形绕某一条轴旋转一周所形成的立体图形。
求解圆的旋转体体积最值问题就是要找出使得旋转体体积最大或最小的情形。
以一个直径为2r的圆的旋转体体积为例,求解其体积最大值。
我们知道圆的周长为2πr,将其围绕直径旋转一周即可得到一个球体的体积。
旋转构造几何最值
上一篇文章介绍了利用平移和轴对称进行构造图形,证明几何最值问题。
下面一题则利用旋转来构造。
【典型例题】如图,锐角三角形ABC,在三角形所在的平面内求作一点O,使得OA+OB+OC的值最小。
【思路分析】形如下图,假设存在一点O,使得OA+OB+OC的值最小。
将三角形AOC绕点A逆时针旋转60°至三角形AO′C′,连接OO′,所以△AOC≌△AO′C′,易得△AOO′是等边三角形,则OA=OO′,
所以OA+OB+OC=BO+OO′+O′C′,易得,当B,O,O′,C′四点在同一直线上时,BO+OO′+O′C′最小,即此时
OA+OB+OC最小。
因此,∠AOB=∠AO′C′=120°,所以
∠AOC=∠BOC=120°。
【作法】如图,分别以BC,AC为边构造等边△BCD和△ACE,分别作△BCD和△ACE的外接圆,两圆交于点O,则点O即为所求的点。
怎么样,明白了吗?。
旋转综合之线段最值问题初三中考复习在即,在数学中考中,几何变换往往是中考中最令人头痛的题型,其辅助线的添加非常灵活,和其他几何知识的综合性也非常强。
在几何变换中,旋转是最为常见、也是最为重要的变换,本周我们集中讲解旋转综合中常见的模型、题型,这部分是本期内容的第五讲:旋转综合之利用旋转求线段最值,希望各位同学能从中收益。
利用旋转求线段最值的解题方法1. 使目标线段与定长线段放在三角形中,根据三角形三边关系,当三点共线时,取得最值;如图所示,当点 B 位于 B 1 时, AB 取得最小值| OA - OB | ;当点 B 位于 B 2 时, AB 取得最大值OA + OB .2. 把线段或线段和差放到同一条直线上,根据两点之间,线段最短来求最值.如图所示,定线段 OA = a , Rt △BOC 中直角边 OB = b ,锐角∠B = θ ,点 P 是斜边 BC 上的一个动点,Rt △BOC 在绕点O 旋转的过程中, AP 的最值如下:①如图,当OP ⊥ BC ,且O , A , P 三点共线时, AP 取得最小值| OB ⋅ sin θ - OA |;②如图,当 B , P 重合,且O , A , P 三点共线时, AP 取得最大值| OB + OA |例1 如图,在△ABC 中,∠C = 90︒,AC = 4 ,BC = 2 ,点A , C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是.答案 2 2 + 2 .解析作AC 的中点M ,连接OM , BM .由OB… OM +BM ,可得当O ,M ,B 三点共线且点M 在线段OB 上时,OB 取得最大值.此时OB =OM +BM = 2 + 2 2.例 2 已知,△A OB和△COD 是等腰三角形,其中BA=B O=2,CD =CO = 3 ,∠ABO=∠DCO.连接AD , BC,点M, N分别为OA, BC的中点.若固定△AOB,将△C O D绕点O 旋转,求MN 的最大值.解 取OB 的中点 E ,连接 EM , EN .则ME= 1 AB = 1,NE = 1 CO = 3.2 2 2当 M , E , N 三点共线,且点 E 在线段 MN 上时, MN 取最大值,最大值为 ME + NE = 5.2例 3 在Rt △ABC 中, ∠ACB = 90︒ , tan ∠BAC = 1.若2BC = 6 ,点 D 在边 AC 的三等分点处,将线段 AD 绕点 A 旋转,点 E 始终为 BD 中点,求线段CE 长度的最大值.解 在Rt △ABC 中,AC =BCtan ∠BAC= 12, AB = 6 5.①如图,当 AD = 1AC 时,取 AB 的中点 F ,连接 EF 和CF .3则CF =1AB = 3 5, EF =1AD = 2.2 2所以当且仅当C , E , F 三点共线且F 在线段CE 上时CE 最大,此时CE =CF +EF = 2 + 3 5.②如图,当时,同理可得CE 的最大值为4 + 3AD =2AC3.综合可得,当点D 在靠近点C 的三等分点时,线段CE 的长度取得最大值为4 + 3 .旋转变换是中考中非常重要的题型,本节课我们重点讲解了旋转中求线段最值问题,到此为止,本周我们共讲解了有关旋转的五种常见考题,希望各位同学多加体会、总结,平时遇到类似题目注意应用和练习。
利用旋转法解几何最值问题应用举例2020.8一、利用旋转转化为点到直线的距离垂线段最短求最值例1、在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC 的最小值为.MN解析:如图,将△ABO绕点A逆时针旋转60°得△AACM,并延长MC交x轴于点N.则点C在直线MN 上运动,当OC⊥MN时,OC最小,∴OC=AM=2,则OC的最小值为2.例2、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=4,HM⊥AD,∴EM=2,MH=EM=2,∴线段GD长度的最小值为2,例3、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,故答案为.二、利用旋转转化为三点共线求最值例4、如图,PA=2,PB=4,将线段PA绕P点旋转一周,以AB为边作正方形ABCD,则PD的最大值为.解析:将△PAD绕点A顺时针旋转90°得到△P'AB,PD的最大值即为P'B的最大值,∴PA=PA',∠PAP'=90°∴PP'=PA=2∵△P'PB中,P'B<PP'+PB,PP′=PA=2,PB=4,且P、D两点落在直线AB的两侧,∴当P'、P、B三点共线时,P'B取得最大值,此时P'B=PP'+PB=2+4,即P'B的最大值为2+4.例5、如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为.解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB 中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.例6、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF 绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为()A.3B.2C.4D.2+2解析:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH =DE=1,EH =,在Rt△ECH中,EC ==2,∴GB+GC ≥2,∴GB+GC的最小值为2.故选:B.例7、如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.NA BM解析:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴PA=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.三、利用旋转转化为四点共线求最值例8、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为.解析:如图,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE,∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD∵∠ABC=30°=∠ABP+∠PBC,∴∠DBE+∠PBC=30°,∴∠DBC=90°,∴CD==,例9、如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC 的最小值是()A.4+3B.2C.2+6D.4解:由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.四、利用旋转转化为圆外一定点与圆上的动点的关系求最值例10、如图,在四边形ABCD 中,AB =AD ,∠BAD =60°,BC =4,若BD ⊥CD ,垂足为点D ,则对角线AC 的长的最大值为 . B CD AEF 解析:如图,以BC 为边作等边三角形BCE ,过点E 作EF ⊥BC 于点F ,连接DE , ∵AB =BD ,∠ABC =∠DBE ,BC =BE ,∴△ABC ≌△DBE ,∴DE =AC ,∵在等边三角形BCE 中,EF ⊥BC ,∴BF =BC =2,∴EF =BF =×2=2, 以BC 为直径作⊙F ,则点D 在⊙F 上,连接DF ,∴DF =BC =×4=2, ∴AC =DE ≤DF +EF =2+2,即AC 的最大值为2+2.练习 1、已知x 轴上一点A (1,0),B 为y 轴上的一动点,连接AB ,以AB 为边作等边△ABC 如图所示,已知点C随着点B的运动形成的图形是一条直线,连接OC,则AC+OC的最小值是.解析:将△ABO绕点A逆时针旋转60°得△ACD,并作直线CD,延长AD交y轴于点A'.∵等边△ABC、等边△AOD,∴AB=AC,AO=AD,∠BAC=∠OAD=60°∴∠BAC﹣∠OAC=∠OAD﹣∠OAC,∴∠BAO=∠CAD在△BAO和△CAD中,∴△BAO≌△CAD(SAS),∴∠AOB=∠ADC∵∠AOB=90°∴∠ADC=90°,∴CD⊥AD,∴点C随着点B的运动形成的图形是直线CD∵∠AOA'=90°,∠OAD=60°∴∠AA'O=30°∴OA=AA' ∴AD=OA=AA'∴点D是AA'的中点,∵CD⊥AD,∴CD是AA'的中垂线∴AC=A'C,∴AC+OC=A'C+OC又∵点C在直线CD上运动,所以点O、C、A'三点共线时,A'C+OC的值最小,最小值为OA'的长.在R△AOA'中,∠AOA'=90°,∠OAD=60°,OA=1,O A'=OA=,∴AC+OC的最小值为.2、已知:AD=2,BD=4,以AB为一边作等边三角形ABC.使C、D两点落在直线AB的两侧.当∠ADB变化时,则CD的最大值.解析:把△ADC绕点A顺时针旋转60°得到△AEB,则AE=AD,BE=DC,∠EAD=60°,∴△ADE为等边三角形,∴DE=DA=2,∠ADE=60°,当E点在直线BD上时,BE最大,最大值为2+4=6,∴CD的最大值为6.3、如图,在等腰直角△ABC中,∠BAC=90°,点D是△ABC所在平面上一点,且满足DB=6,DA=10,则CD的最小值为E解析:将△ADC绕点A顺时针旋转90°,得到△ABE.则CD=BE,△ADE是等腰直角三角形,ED=10.∵AE、AD、BD都是定值,∴当E、B、D三点共线时,BE最小,即CD最小.此时BE最小值为DE﹣BD=10﹣5.故选:A.4、如图,平行四边形ABCD中,∠B=60°,BC=6,AB=5,点E在AD上,且AE=2,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=2,HM⊥AD,∴EM=1,MH=,∴线段GD长度的最小值为,5、如图,长方形ABCD 中,AB=3,BC=4,E 为BC 上一点,且BE=2,F 为AB 边上的一个动点,连接EF,将EF 绕着点 E 顺时针旋转45˚到EG 的位置,连接FG 和CG,则CG 的最小值为.CGHFMN解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB 绕点E 旋转45°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等腰直角三角形,点G 在垂直于HE 的直线HG 上,作CM ⊥HG ,则CM 即为CG 的最小值,作EN ⊥CM ,可知四边形HENM 为矩形,则CM =MN +CN =HE +12EC =3212 6、如图,菱形ABCD 的边长是6,∠A =60°,E 是AD 的中点,F 是AB 边上一个动点,EG =EF 且∠GEF =60°,则GB +GC 的最小值是A DBC GFE A D B CG F E H解析:取AB 的中点H ,连接HG 、HE 、HG 、BE 、CE ,则△AEF ≌△HEG ,∴∠GHE =∠A =60°,∴HG ∥AD ,可知△BHG ≌△EHG ,∴BG=GE ,∴CE 的长就是GB +GC 的最小值;在Rt △EBC 中,EB =3,BC =6,∴EC =3,∴GB +GC 的最小值3.7、如图,平行四边形ABCD 中,∠B =60°,BC =6,AB =5,点E 在AD 上,且AE =2,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120°得到EG ,连接GD ,则线段GD 长度的最小值为 .E A B C FG E A B CF G H N M解:将线段AE 绕点E 逆时针旋转120°得到EH ,连接HG ,过点H 作HM ⊥AD ,∵四边形ABCD 是平行四边形,∴∠A +∠B =180°,∴∠A =120°,∵将线段AE 绕点E 逆时针旋转120°得到EH ,将线段EF 绕点E 逆时针旋转120°得到EG ,∴EF =EG =4,AE =EH ,∠AEH =∠FEG =120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS )∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线,∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =2,HM ⊥AD ,∴EM =1,MH =,∴线段GD 长度的最小值为,8、如图,AB =8,点M 为线段AB 外一个动点,且AM =4,MB =MN ,∠BMN =90°,则线段AN 的最大值为 .解析:如图,连接BN ,∵将△AMN 绕着点M 顺时针旋转90°得到△PBM ,连接AP ,则△APM 是等腰直角三角形,∴MA =MP =4,BP =AN ,∴PA =4,∵AB =8,∴线段AN 长的最大值=线段BP 长的最大值,∴当P 在线段BA 的延长线时,线段BP 取得最大值最大值=AB +AP =8+4. 9、如图,在△ABC 中,∠ABC =60°,AB <AC ,点P 是△ABC 内一点,AB =6,BC =8,则PA +PB +PC的最小值是 .解析:如图,将△PBF 绕点B 逆时针旋转60°得到△BFE ,作EH ⊥CB 交CB 的延长线于H .∵∠ABC =60°,∠PBF =60°,∵∠ABP =∠EBF ,∴∠EBF +∠BC =60°,∴∠EBC =120°,∵PB =BF ,∠PBF =60°,∴△PBF 是等边三角形,∴PB =PF ,∵PA =EF ,∴PA +PB +PC =CP +PF +EF ,根据两点之间线段最短可知,当E ,F ,P ,C 共线时,PA +PB +PC 的值最小,最小值=EC 的长, 在Rt △EBH 中,∵∠EBH =60°,EB =6,∴BH =BE •cos60°=3,EH =EB •sin60°=3,∴CH =BH +CB =3+8=11, ∴EC ===2.10、如图,菱形ABCD 的边长为4,∠ABC =60°,在菱形ABCD 内部有一点P ,当PA+PB+PC 值最小时PB 的长为 .B C A DP解析:将△APC 绕点C 顺时针旋转60°,得到△DEC ,连接PE 、DE ,则当B 、P 、E 、D 四点共线时,PA +PB +PC 值最小,最小值为BD .∵将△APC绕点C顺时针旋转60°,得到△DEC,∴△APC≌△DEC,∴CP=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=CE=CP,∠EPC=∠CEP=60°.∵菱形ABCD中,∠ABP=∠CBP=∠ABC=30°,∴∠PCB=∠EPC﹣∠CBP=30°,∴∠PCB=∠CBP=30°,∴BP=CP,同理,DE=CE,∴BP=PE=ED.连接AC,交BD于点O,则AC⊥BD.在Rt△BOC中,∵∠BOC=90°,∠OBC=30°,BC=4,∴BO=BC•cos∠OBC=4×=2,∴BD=2BO=4,∴BP=BD=.即当PA+PB+PC值最小时PB的长为.11、如图,四边形ABCD中,AB=3,BC=2,AC=AD,∠ACD=60°,则对角线BD长的最大值为()A.5B.2C.2D.1解析:如图,在AB的左侧作等边三角形△ABK,连接DK.则AK=AB=BK=3,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS),∴DK=BC=2,∵DK+KB≥BD,DK=2,KB=AB=3,∴当D、K、B共线时,BD的值最大,最大值为DK+KB=5.故选:A.12、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若对角线BD⊥CD于点D,则对角线AC的最大值为.解:如图,将△ABC绕点B顺时针旋转90°得△DBM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4=定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2,∴AC的最大值为2+2.13、如图在四边形ABCD中,BC=CD,∠BCD=90°.若AB=4cm,AD=3cm,则对角线AC的最大值为cm.解析:如图,在直线AB的右侧作等腰直角三角形△ABE,使得,EB=EA,∠AEB=90°.∵AB=4cm,∴AE=BE=2,∵∠ABE=∠DBC=45°,∴∠ABD=∠EBC,∵==,∴△ABD ∽△EBC,∴=,∵AD=3cm,∴EC=cm,∵AC≤AE+EC ,∴AC≤.∴AC的最大值为cm.14、如图,已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.若∠ABC=30°,∠ACD =45°,AC=2,则B、D之间距离的最大值为.解:如图,在△ACD的外部作等边三角形△ACO,以O为圆心OA为半径作⊙O.∵∠ABC=∠AOC=30°,∴点B在⊙O上运动,作OE⊥DA交DA的延长线于E.在Rt△AOE中,OA=AC=2,∠EAO=30°,∴OE=OA=1,AE=,在Rt△ODE中,DE=AE+AD=2+,∴DO===+,11/ 12当B、O、D共线时,BD的值最大,最大值为OB+OD=2++.12/ 12。
2020中考数学旋转求线段最值题型一.利用旋转转化为三点或四点共线求最值1.如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为.2.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是 .3.如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有一点P,当PA+PB+PC值最小时PB的长为.4.如图,PA=2,PB=4,将线段PA绕P点旋转一周,以AB为边作正方形ABCD,则PD的最大值为.5.如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为.6.如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为 .7.如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.二.利用旋转转化为点到直线的距离垂线段最短求最值1.在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC的最小值为.2.如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.3.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.4.如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为 .5.图所示,已知点C随着点B的运动形成的图形是一条直线,连接OC,则AC+OC的最小值是.6.如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转45˚到 EG的位置,连接 FG 和 CG,则 CG 的最小值为.三.利用旋转转化为圆外一定点与圆上的动点的关系求最值1.如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.2.已知:AD=2,BD=4,以AB为一边作等边三角形ABC.使C、D两点落在直线AB的两侧.当∠ADB变化时,则CD的最大值.3.如图,在等腰直角△ABC中,∠BAC=90°,点D是△ABC所在平面上一点,且满足DB=6,DA=10,则CD的最小值为5.如图在四边形ABCD中,BC=CD,∠BCD=90°.若AB=4cm,AD=3cm,则对角线AC的最大值为cm.6.如图,已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.若∠ABC=30°,∠ACD=45°,AC=2,则B、D之间距离的最大值为.。
专题07 图形旋转之费马点最值模型全攻略如何找一点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?当B、P、Q、E四点共线时取得最小值费马点的定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。
它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
费马点的性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
费马点最小值快速求解:费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值类型一、基本费马点模型例题1.如图,P 是边长为1的等边ABC ∆内的任意一点,求t PA PB PC =++的取值范围.【变式训练1】已知正方形ABCD 内一动点E 到A 、B 、C的边长.【变式训练2】如图,ABCD 为矩形,AB=AD =4,EF 为ABCD 内两点,求(AF +DF +FE +CE +BE )的最小值.【变式训练3】如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.【变式训练4】如图,P 为正方形ABCD 对角线BD 上一动点,若AB =2,则AP +BP +CP 的最小值为( )ABCDMEA .+B .+C .4D .3类型二、加权费马点模型例:如图,在Rt ABC 中,30,6,5ACB BC AC ∠=︒==,在ABC 内部有一点P ,连接PA 、PB 、PC .(加权费马点)求:(1)PA PB PC ++的最小值;(2)PA PB ++的最小值(3)PA PB ++的最小值;(4)2PA PB ++的最小值。
“旋转”中的最值问题作者:***来源:《初中生世界·九年级》2020年第06期一、旋轉中线段的最值例1如图1,△ABC是等边三角形,点D为BC边上一点,BD=12DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE、AG。
若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为。
【解析】由△ABC是等边三角形,点D为BC边上一点,BD=1/2DC=2,我们可以知道等边三角形ABC的边长是6,所以正方形DEFG的边长也为6。
将正方形DEFG绕点D旋转一周,则点E在以点D为圆心,6为半径的圆上旋转一周,显然,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上(如图2,此时AD+AE=DE)时,AE取最小值,此时△ADG 是直角三角形。
要求AG的长,已经有了DG的长,则必须求出AD的长。
过点A作AM⊥BC 于M,由已知得DC=4,得BC=BD+DC=6,由等边三角形的性质得AB=AC=BC=6,BM=1/2BC=1/2×6=3,所以DM=BM-BD=1。
在Rt△ABM中,由勾股定理得出AM=33,进而Rt△ADM中,由勾股定理得AD=27,在Rt△ADG中,由勾股定理即可得AG=8。
故答案为8。
【点评】本题考查了旋转的性质。
正方形DEFG绕点D旋转一周,讨论AE的最小值,首先要能发现线段AE中端点A是定点,端点E是动点,而动点E是在以点D为圆心,6为半径的圆上运动一周。
发现了端点E的运动路径,则问题不难解决,运用相关的知识(正方形的性质、等边三角形的性质、勾股定理以及线段最小值问题等)即可解决。
由旋转发现圆,是解决问题的关键突破口。
二、旋转中角的最值例2如图3,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF、DE。
若△AEF绕点A旋转,当∠ABF最大时,S△ADE=。
【解析】我们先明确条件:正方形ABCD是确定的,△AEF是等腰直角三角形,它是绕直角顶点A旋转的。
中考专题 ----- 路径之瓜豆原理知识必备一、旋转及性质1.旋转的定义:一个图形绕点沿定方向旋转定的角度;2.旋转三要素:①旋转中心(绕哪个点转);②旋转方向(顺时针或逆时针);③旋转角度;3.旋转的性质:①旋转不改变图形的大小与形状,只改变图形的位置,即旋转前后图形全等;②对应点与旋转中心所连线段间的夹角等于旋转角.二、位似及性质1.位似的定义:若两个图形F和F的点之间可以建立一对应关系,并且满足:①每组对应点的连线所在的直线都经过同一点O;②每组对应点都在点O的同侧或异侧;③对每组对应点A 和OAA',有4 k(k为常数),则称图形F和F位似,k叫位似比;OA2.位似三要素:①位似中心(关于哪个点位似);②位似方向(同侧或异侧);③位似比(等于相似比);3.位似的性质:成位似的两个图形必相似:把一个几何图形变换成与之位似的图形,叫做位似变换;利用位似变换可把一个图形放大或缩小,若位似比大于1,则通过位似变换把原图形放大;若位似比小于1.则通过位似变换把原图形缩小。
方法提炼一.旋转作图问题1:在平面内有两点A.B.请将点B绕点人按顺时针方向旋转40°.二、位似作图1问题2:如图:.已知线段AB,请以点A为位似中心1为位似比,在同侧将线段AB进行位似3变换。
「三、模型建立1 / 13(一)旋转变换问题3:(1)如图14-2-5,已知等腰Rt^APQ.其中A为定点,根据旋转作图的经验,请你说说: 点Q可以看作点P经过怎样的变换得到?(2)如图14-2-6.若改为等边AAPQ呢?⑶如图1-27.若改为任意等腰4APQ(其顶角为o)呢?问题4:在问题3中,若点P在一条定直线l上运动,其他条件不变如图14-2-8至图14-2-10 所示,请问:点Q的运动路径是什么?它可以看作点P的路径如何而来?问题5:在问题4中,若将“定直线1”改为“定。
0〃 .其他条件不变,结果如何?反思:这里是“圆生圆”;注意:点Q所在的轨迹圆圆心0’也是原来的圆心0定点A经过相应的旋转而来;2 / 13总结:这里仅牵扯到“旋转变换”不妨称P 为主动点。
利用旋转法解几何最值问题应用举例解析一、利用旋转转化为点到直线的距离垂线段最短求最值例1、在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC的最小值为.例2、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.例3、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.二、利用旋转转化为三点共线求最值例4、如图,PA=2,PB=4,将线段PA绕P点旋转一周,以AB为边作正方形ABCD,则PD的最大值为.例5、如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为.例6、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF 绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为()A.3B.2C.4D.2+2例7、如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.三、利用旋转转化为四点共线求最值例8、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为.例9、如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC 的最小值是()A.4+3B.2C.2+6D.4四、利用旋转转化为圆外一定点与圆上的动点的关系求最值例10、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.练习1、已知x轴上一点A(1,0),B为y轴上的一动点,连接AB,以AB为边作等边△ABC如图所示,已知点C随着点B的运动形成的图形是一条直线,连接OC,则AC+OC的最小值是.2、已知:AD=2,BD=4,以AB为一边作等边三角形ABC.使C、D两点落在直线AB的两侧.当∠ADB变化时,则CD的最大值.3、如图,在等腰直角△ABC中,∠BAC=90°,点D是△ABC所在平面上一点,且满足DB=6,DA=10,则CD的最小值为4、如图,平行四边形ABCD中,∠B=60°,BC=6,AB=5,点E在AD上,且AE=2,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.5、如图,长方形ABCD 中,AB=3,BC=4,E 为BC 上一点,且BE=2,F 为AB 边上的一个动点,连接EF,将EF 绕着点 E 顺时针旋转45˚到EG 的位置,连接FG 和CG,则CG 的最小值为.6、如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF =60°,则GB+GC的最小值是ABG F7、如图,平行四边形ABCD中,∠B=60°,BC=6,AB=5,点E在AD上,且AE=2,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.A CFG8、如图,AB=8,点M为线段AB外一个动点,且AM=4,MB=MN,∠BMN=90°,则线段AN的最大值为.9、如图,在△ABC中,∠ABC=60°,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是.10、如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有一点P,当PA+PB+PC值最小时PB的长为.BA D P11、如图,四边形ABCD中,AB=3,BC=2,AC=AD,∠ACD=60°,则对角线BD长的最大值为()A.5B.2C.2D.112、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若对角线BD⊥CD于点D,则对角线AC的最大值为.13、如图在四边形ABCD中,BC=CD,∠BCD=90°.若AB=4cm,AD=3cm,则对角线AC的最大值为cm.14、如图,已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.若∠ABC=30°,∠ACD =45°,AC=2,则B、D之间距离的最大值为.。
中考数学难点旋转最值三点共线问题旋转最值三点共线问题是中考数学中的难点之一。
解决这个问题需要掌握旋转、最值和共线等概念,以及相应的解题方法。
本文将为大家详细介绍这个难点问题的解题思路和步骤,帮助大家更好地应对中考数学考试。
1. 问题描述假设平面上有三个点A(x1, y1)、B(x2, y2)、C(x3, y3),我们需要找到一个旋转中心O,使得当点A绕O旋转时,点B和C始终保持共线。
我们需要求解旋转中心O的坐标。
2. 解题思路为了求解旋转中心O的坐标,我们可以从两个方面入手,分别是旋转角度和旋转中心的坐标。
首先,我们可以假设旋转中心O的坐标为(x, y),然后通过计算旋转角度来确定旋转中心的位置。
接下来,我们根据最值和共线的概念,构建方程组,进而求解旋转中心的坐标。
3. 计算旋转角度为了构建方程组,我们需要先确定旋转角度。
根据题目要求,点B和C始终保持共线,说明它们的斜率相等。
我们可以求解点B和C的斜率,然后通过斜率之间的关系来确定旋转角度。
斜率的计算公式为:k = (y2 - y1) / (x2 - x1)设斜率k1 = (y2 - y1) / (x2 - x1),斜率k2 = (y3 - y1) / (x3 - x1)由于点B和C始终共线,则k1 = k2,即 (y2 - y1) / (x2 - x1) = (y3 -y1) / (x3 - x1)化简上述方程,得到:(y2 - y1) * (x3 - x1) = (y3 - y1) * (x2 - x1)4. 求解旋转中心坐标通过4.计算旋转角度中的方程,我们得到了一个等式,然后我们将旋转中心的坐标代入该等式,从而求解旋转中心坐标。
具体步骤如下:将旋转中心坐标(x, y)代入方程,得到:(y2 - y1) * (x3 - x1) = (y3 - y1) * (x2 - x1)展开并整理得到:(x2 - x1) * y + (y2 - y1) * x = (x2 * y1 - x1 * y2) + (x1 * y3 - x3 * y1)由上述方程可知,旋转中心的坐标可以通过求解线性方程组来获得。
第13讲 旋转中的最值、路径长【板块一】旋转最值题型一 运用垂线段最短求最值【例1】如图,等边△ABC 边长为6,点E 是中线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF ,在点E 运动过程中,DF 的最小值为 .BA CE FD【解析】取AC 的中点G ,连接EG ,在△DCF 和△GCE 中,CE =CF ,∠DCF =∠GCE ,∴△DCF ≌△GCE (SAS ),∴DF =EG .根据垂线段最短,EG ⊥AD 时,EG 最短,即DF 最短,∵︒=︒⨯=∠306021CAD ,362121=⨯==AC AG ,∴EG 的最小值为5.132121=⨯=AG , ∴DF 的最小值为1.5. 【例2】如图,点B (0,3),点A 为x 轴上一动点,将线段AB 绕点A 顺时针旋转90°得AC ,连接OC ,求OC 长的最小值.xx【解析】在x 轴正半轴上取点F ,使OF =OB =3,延长CF 交y 轴于点D ,在OB 上截取OE =O A .证△AFC ≌△BE A . ∴∠CF A =∠AEB =135°,得点C 在直线DF 上运动,△ODF 为等腰 直角三角形,当OC ⊥DF 时OC 最小为22323=.题型二 运用两边之和大于第三边求最值【例3】如图,在直角△ABC 中,∠ACB =90°,BC =AC =5,BP =2,将PC 绕点C 逆时针旋转90°得线段CD ,连接BD ,当BP 绕点B 旋转时,线段BD 的最小值为 .CB PDCABPD【解析】连接AP ,∴△DCB ≌△PCA (SAS ),∴AP =BD ,当点P 在AB 的延长线上时,AP 的最大值=AB +PB =25+2,∴BD 的最大值为225+.【例4】如图,△ABC 为等腰直角三角形,∠ACB =90°,BC =C A .若AC =52,点P 为BC 的中点,动点Q 满足PQ =3,将线段AQ 绕点A 逆时针旋转90°到线段AM ,连PM ,则线段PM 的最小值为 .CAMQ PN【解析】连接AP ,将AP 绕点A 逆时旋转90°到AN ,连接PN ,MN .易证△APQ ≌△ANM ,∴MN =PQ =3,AP =AN =522=+PC AC ,∴PN =2AP =25,325-=-≥MN PN PM ,∴PM 最小值为325-.题型三 运用中线,中位线求最值【例5】如图,边长为2的正方形ABCD 的对角线交于点O ,把边BA ,CD 分别绕点B ,C 以相同的速度同时逆时针旋转一周,四边形ABCD 的形状也随之发生改变,A 'C 与D 'B 交于点O ′,那么在旋转的过程中,求AO '的最大值.BADC OD'A'O'B ADCOD'A'O'G【解析】首先证A 'B ∥CD ',得四边形A 'BCD '为菱形,∴A 'C ⊥BD '.取BC 的中点G ,连接AG ,O ′G ,则O ′G =BC 21=1,AG =51222=+,在△AO ′G 中,15'15+≤≤-AO ,故AO ′的最大值为15+.针对练习11.如图,在△ABC 中,∠C =90°,BC =6,AC =10,D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°.点B 的对应点为点E ,连接AE ,求AE 长的最小值.ACBDE解:在AC 上取点F ,使CF =BC =6.在CB 上取点G ,使CG =CD ,可证△DEF ≌△BDG ,∴∠EFD =∠BGD =135°,∴∠AFE =45°,得点E 在直线FE 上运动,且AE ⊥FE 时,AE 的最小值为222610=-.2.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,将PB 绕点P 逆时针旋转90°得PM ,求AM 长的最大值.xx解:将△APM 绕点P 顺时针旋转90°得△NPB ,连接AN ,则BN =AM ,△ANP 为等腰直角三角形, ∴222==PA AN ,又3=AB .∴在△ANB 中,223223+≤≤-BN ,即AM 长的最大值为223+.3.如图,边长为4的正方形ABCD 外有点E ,∠AEB =90°,F 为DE 的中点,连接CF .求CF 的最大值.FEDC BA解:N M A BDE FG取AB 的中点G ,过点G 作GN ⊥CD 于点N ,延长DC 至点M ,使CM =CD ,则MN =6,GN =4,∴GM=又EG =12AB =2,∴在△EMG 中,EG 2,而FC =12EM ,故FC1,∴CF 1.【板块二】旋转图形中动点的路径与动线段的取值范围 题型一 旋转图形中点的运动路径【例1】在平面直角坐标系中,点C 沿某条路径运动,以点C 为旋转中心,将点A (0,4)逆时针旋转90°到点B (m ,1),若-5≤m ≤5,求点C 运动的路径长. 【解析】如图,过点C 作MN ∥y 轴,AN ⊥MN 于点N ,BM ⊥MN 于点M ,则△CAN ≌△BCM ,AN =CM ,CN =BM ,∵AN =x c ,CM =y C -1,CN =4- y C ,BM =x C -m ,解得x C =32m +,y C =52m +,∵-5≤m ≤5,∴-2≤m +3≤8,∴-1≤x C ≤4,y C =x C +1,当x C =-1时,C (-1,0);当x C =4时,C (4,5);点C 的运动路【例2】如图,在平面直角坐标系中,直线y =13x -1分别交x 轴,y 轴于点B ,点A ,点M 为直线AB 上一动点,连接OM ,将线段OM 绕点M 逆时针旋转90°,点O 的对应点为点N .当点M 运动时,判断点N 的运动路线是什么图形,并说明理由.【解析】点N 在直线y =-12x -32上运动,理由如下:设M (m ,13m -1),过点M 作MC ⊥OB 于点C ,过点N 作ND ⊥MC 于点D ,可证△OCM ≌△MDN ,OC =MD =m ,ND =CM =1-13m ,D (m ,-1-23m ),N (43m-1,-1-23m ),x N =43m -1①,y N =-1-23m ②,由①+②×2得:-2-43m +43m -1=x N +2y N ,∴x N +2y N =-3,y N = -12x -32·题型二 旋转图形中变量的取值范围 【例3】在Rt △ABC 中,∠ACB =90°,AC =BC ,D ,E 分别在AC ,BC 上,DE ∥AB ,CF ⊥DE 于点F ,AC =6,CF =4,G 是AE 中点.(1)如图1,直接写出FG ,BE 的数量关系和位置关系为 ;(2)如图2,将△CFE 绕点C 旋转,在旋转过程中,线段GF 的取值范围是 .图1ABC DEFG图2ABCEFG【解析】(1)FG =12BE ,且FG ⊥BE ;(2)延长EF 至点D ,使DF =EF ,连接AD ,易得FG =12AD ,在Rt △CDE 中,CD =由旋转得,当点D 在边AC 上时,AD 最小,最小值为AC -CD =6-,FG 最小=12AD =3-,当点D 在边AC 延长线时,AD 最大,AD 最大值为AC +CD =6+∴FG 最大=12AD =3+∴3-FG ≤3+针对练习21.如图,矩形ABCD 中,BC =2AB =8.点M ,N 分别为AD ,BC 的中点,连接MN ,点P 是BC 边上的动点,将PM 绕点P 顺时针方向旋转90°得PE ,当点P 从点B 运动到点C 的过程中,点E 运动的路径长为 .NMPABCDEF解:GFEDCBAPMNQ过点E 作EF ⊥BC 于点F ,是长MN ,CE 交于点G ,证△PMN ≌△EPF ,∴PF MN =NC ,可证 EF =F C .∴∠BCE =45°,即点E 在∠BCD 外角平分线上运动,运动径为GC +CQ =.2.如图,一副含30°角和45°角的三角板ABC 和DEF 叠E 在一起,边BC 与EF 重合,BC =EF =12cm ,点G 为边BC (EF )的中点,边FD 与AB 相交于点H ,将△DEF 绕点G 按顺时针方向旋转,旋转角度从0°到60°的变化过程中,点H 相应移动的路径长共为 .G FEDC BA解:H 1H 2H D 1E 1A B CDEF G如图,当旋转角从0°到30°时,H运动路径为HH1,当旋转角从30°到60°时,H运动路径为H1H2,所以H移动的路径长为HH1+H1H2=2HH1+HH2=15)+12)]=18.。
三角形旋转与极值问题
(全等三角形)
八年级思考题:(最大值问题)(常规模型的运用)
1、如图所示:AM=3,BM=2,连AB,
以AB为边长作等边ABC,连MC,
求MC的最大值。
解析:将△AMC绕点A顺时针旋转90°,M´、M、B共线MC=M´B最大为5.
2、如图所示:AM=3,BM=5,连AB,
以AB为边长作正方形ABCD,
连DM,求DM的最大值。
解析:将△AMD绕点A顺时针旋转90°,F、M、B共线MD=FB最大为8.
3.如图,正方形ABCD的边长为4,点E为正方形外一个动点,∠AED=45°,P为AB中点,线段PE的最小值是_______最大值是_______
解析:将△DEC绕点D顺时针旋转90°,可证∠AEC=90°,E、P、O共线PE=OE-OP 最小为22-2. P、O、E共线PE=OE+OP最大为22+2.
4.如图:正方形ABCD的边长是1,点P是边BC上任意一点(可以与B或C重合),分别过B、C、D作射线AP的垂线段BB´、CC´、DD´,
①、写出BB´、CC´、DD´的数量关系等式:
并证明你的结论
②、BB´+CC´+DD´的最大值是()
③、BB´+CC´+DD´的最小值是()
解析:(1)如图△ADD’≌△BCN,
DD’=BN=BB’+CC’
(2)P与B重合,BB´+CC´+DD´=2AD,
最大值是2
(3)P与C重合,BB´+CC´+DD´=BD,
最小值是2
5.在直角平面坐标系中,C(0,4),A在第三象限,B在第四象限,ΔOAB是等腰直角三角形,AB = 8,
求S
ΔCAB最大值。
(有两种方法,)
解析:AB长一定,当CM=
OM+OC时,S△CAB最大
为32.故需将△AOB旋转
到C、O、M共线。
5、如图所示:两个等腰直角三角形没有重叠的部分,
OA=6,OC=4,
求S
ΔOBC
+S
ΔAOD
的最大值。
解析:△AOM≌△BON,
∴S
△AOD
=S△BOC,∴当BN=BO
(如图)时,
S△AOD+S△BOC最大为24。
P
B
C
A D
E
6、已知如图:AB=8,点M 是线段AB 上一动点,作两个等边ΔAME 和ΔBMF , 求线段EF 长度的最小值(要有步骤)
解析:如图分别过E 、F 作AB 的垂线,作FG 垂直于EC ,由EF ≥GF 知EF=FG 时最小为21AB=4. 7、已知如图:AB=8,点M 是线段AB 上一动
点,作两个等腰 Rt ΔAME 和Rt ΔBMF ,求线
段EF 长度的最小值(要有步骤)
解析:方法一:(作辅助线)同上题。
方法二(作辅助线)延长AE 、BF 交
于N ,作NK 垂直于AB ,EF=MN=NK 时最小为
4.。