光纤通信
- 格式:docx
- 大小:388.12 KB
- 文档页数:8
光纤通信名词解释-回复
光纤通信是一种利用光作为信息载体,通过光纤进行数据传输的通信方式。
光纤是一种能够传导光的纤细、柔软的介质,通常由玻璃或塑料制成,其内部结构设计使得光能够在其中以反射的方式传播很长的距离。
在光纤通信系统中,信息(如语音、图像或数据)首先被转换为光信号,然后通过光纤传输。
光信号在光纤中传播时,由于光纤材料的特殊性质,可以减少信号的衰减和失真,从而实现高速、大容量、长距离的通信。
光纤通信具有以下优点:传输速度快,通信容量大,传输损耗小,抗干扰能力强,保密性好,适合长途通信和宽带通信等。
因此,光纤通信在现代通信网络中得到了广泛应用,包括电话通信、互联网、有线电视、遥测遥控等领域。
光纤通信名词解释
光纤通信,也称为光纤通讯,是一种利用光与光纤传递资讯的方式,属于有线通信的一种。
光经过调变(modulation)后便能携带资讯,然后通过光纤传送至目的地。
光纤通信因其传输频带宽、容量大、损耗低、不受电磁干扰等优点而成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。
光纤即为光导纤维的简称,光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
第一张光纤通信1.光纤通信基本概念根据使用的电磁波频率范围,可将通信技术分为电通信和光通信两类。
电通信:使用的电磁波频率较低,通常分为有线通信和无线通信。
光通信:指一切运用光作为载体而传输信息的所有通信方式的总称。
光纤通信:指单纯的依赖光纤作为媒质来传送光波信息的通信方式。
光纤通信的基本特征:使用发光器件产生的光作为信息载体。
目前使用光导纤维(SiO2)作为传输光波信号的通信介质,它工作在近红外区,波长:0.8—1.8μm,频率:167—375THz。
2.光纤通信系统的组成由电发射机、光发射机、光接收机、电接收机和由光纤构成的光缆等组成。
电发射机输出的调制信号送入光发射机,光发射机主要有驱动电路和光源,其作用是用电发射机输入的电信号对光源进行调制,使光源产生出与电信号相对应的光信号进入光纤,由光纤构成的光缆实现光信号的传输。
光接收机主要有光电检测器和放大电路,当光信号通过光纤到达光接收机时,光电检测器把光信号转换为相应的电信号,经过放大和信号处理后进入电接收机。
在远距离光纤通信系统中,为了补偿光纤的损耗并消除信号失真与噪声的影响,光缆经过一定距离须加装光中继器。
光中继器由两种结构形式:一种是光-电-光-中继器,由光检测器、电信号放大器、判决再生电路、驱动器和光源等组成。
作用是:将光信号变成电信号,经过放大和再生,然后再变换成光信号送入下一段光纤中传输。
另一种是用光纤放大器实现在线光信号放大。
3.光纤通信的特点:1)通信容量大;2)中继距离远;3)抗电磁干扰能力强,无串话;4)光纤细,光缆轻;5)资源丰富,节约有色金属和能源。
4.纤通信的发展趋势1)时分复用(TDM)方式向超高速系统发展2)波分复用(WDM)方式向密集化方向发展3)新型光纤不断发展4)向宽带光纤接入网方向发展5)新型器件和高新技术在光纤通信系统的应用6)全光通信网络5.光纤:从材料上分为石英光纤、多组分玻璃光纤、氟化物光纤、塑料光纤等。
现代通信技术辅导6第六章光纤通信一、知识点∙光纤通信概述。
∙光纤与光缆。
∙光纤通信系统。
二、重点难点内容(一)光纤通信概述本节介绍光纤通信的概念、发展、实用工作窗日以及光纤通信的特点。
光纤即为光导纤维的简称。
光纤通信是以光纤为传输媒质,以光信号为信息载体的通信方式。
1. 光纤通信的发展史1966年,英籍华人高馄指出:如果能够减少玻璃中的杂质含量,就可以制造出损耗低于20dB/km 的光纤。
1970 年是使光纤通信发展出现跨越的一年,美国康宁公司研制出了损耗系数为20dB / km的光纤。
同年,美贝尔公司研制出使用寿命长达几小时的半导体激光器,光纤通信从此进入飞速发展。
通过以上的发展时期可以把光纤通信的发展归纳为三个阶段:1966~1976年:从基础研究到商业应用的开发时期;1976~1986 年:以提高传输速率和增加传输距离为目的和大力推广的发展阶段;1986~1996年:以实现超大容量超长距离为目标,全面深入开展新技术的援救阶段。
2.目前光纤通信的实用工作波长光纤通信传输的信号是光波信号,光波是人们熟悉的电磁波,其波长在微米级,频率为1014Hz ~1015Hz数量级。
根据电磁波潜可知,紫外线、可见光、红外线均属于光波的范畴,μm ~1.8μm。
可分为短波长目前光纤通信使用的波长范围是在近红外区,即波长为0.8μm,长波长波段是指波长为1.31μm和波段和长波长波段,短波长波段是指波长为0.85μm,这是目前光纤通信所采用的只个工作波长,也叫工作窗口。
1.553.光纤通信的特点目前光纤通信己经成为通信中的最主要的传输技术,以下优点。
( l ) 传输频带宽,通信容量大由信氨论知道,载波频率越高,通信容量越大。
它与其他通信传输系统相比,具有目前光纤通信使用的光载波频率在1014Hz ~1015Hz数量级,比常用的微波频率高104倍~105倍,因而,通信容量原则上比微披通信高104倍~105 倍。
( 2 ) 传输衰减小,传输距离长普通传输线的传输损耗,主要是由铜线的电阻以及导线间电容的漏电引起的,要想降低损耗,就得增大传输线的尺寸。
第一章习题•1.1什么是光纤通信?简述光纤通信的发展历程?•解:光纤通信是以光波作为传输信息的载波、以光纤作为传输介质的一种通信方式。
也就是说,光纤通信是将待传送的语音、图像和数据等信号调制在光载波上,然后通过光纤进行传输的一种通信方式。
光纤通信的发展粗略分为如下几个阶段(1)第一阶段(1966-1976年),从基础研究到商业应用的开发时期。
在这个时期,实现了短波长(0.85μm)低速率(45-140Mb/s)多模光纤通信系统,无中继传输距离约10km。
(2)第二阶段(1976-1986年),这是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。
在这个时期,光纤从多模发展到单模,工作波长从短波长发展到长波长(1.31μm和1.55μm),实现了工作波长为1.31μm、传输速率为140-565Mb/s的单模光纤通信系统,无中继传输距离为10-50km。
(3)第三阶段(1986-1996年),这是以超大容量超长距离为目标、全面深入开展新技术研究的时期。
在这个时期,实现了1.55μm色散移位单模光纤通信系统。
采用外调制技术,传输速率可达2.5-10Gb/s,无中继传输距离可达100-150km。
(4)第四阶段(1996年-至今),开展研究光纤通信新技术。
采用光放大器增加中继距离和采用波分复用增加传输容量。
现在10Gb/s、40Gb/s的系统也已商用化。
1.2 光纤通信为什么能够成为一种主要的通信方式?解:光纤通信能够成为现代的主要通信方式,是归因于光纤通信具有以下突出的优点:①通信速率高(单波长速率已达10Gb/s以上),传输容量大(光波具有很高的频率,约1014Hz,一根光纤可同时传输几十个波长) ;②损耗低(单模已低达0.2dB/km)、传输距离远(中继距离可达50-100Km);③抗干扰能力强(抗强电、雷电和核辐射干扰),保密性好(光纤由石英玻璃制成,由于是绝缘材料,不受电磁场干扰;在光纤中传输的光泄漏非常微弱);④质量轻(是传输相同信息量电缆重量的1/10-1/30),体积小(是相同容量电缆外径的1/3-1/4),敷设方便;⑤耐腐蚀,耐高温(石英玻璃熔点在2000 C以上),可在恶劣环境中工作,寿命长;⑥节约金属材料,有利于资源合理使用(制造同轴电缆和波导管的铜、铝、铅等金属材料,在地球上的储存量是有限的;而制造光纤的石英(SiO2)在地球上基本上是取之不尽的材料)1.3 光纤通信系统的组成主要包括哪些部分?试画出简图予以说明。
基于Optisystem的光纤通信仿真
选择一个你认为合适的方案
供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。
请选择你认为实际中可实现的通信性能最好的一组方案。
并给出相应的理由。
答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。
选择这个方案的理由是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。
具体理由分析如下:选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制和调解结构简单,在10G和一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理和终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。
选择直接调制,因为直接强度调制是用信号直接调制激光器的驱动电流,使其输出功率随信号变化.这种方式设备相对简单,研究较早,现已成熟并商品化.外调制则常用于要求较高的通信系统。
选择APD管,因为由书上的P264页的图8.3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。
选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。
在现实中,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。
而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。
实验过程:
本次实验中,由NRZ调制格式、直接调制、APD管和low pass gauss filter构成的光纤通信系统。
1).根据实验要求,连接实验电路。
同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。
因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。
通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果。
整个光纤通信系统的架构如下图1示:
2)设置相关参数。
整体参数:User Defined Bit Sequence Generator “1001011010010110”,系统1G,入纤功率10dBm。
APD管与PIN管的响应度设定为1A/W。
整体参数设置:系统传输速率1G. ,如下图2所示:
发送序列设置:1001011010010110 ,如下图3所示:
入纤功率设置:10dBm,如下图4所示:
APD管的响应度设置:1A/W,如下图5所示:
长度设置:80km,光纤损耗系数0.25dB/km,如图所示:
3)运行仿真结果
在OptiSystem软件中进行仿真,运行的结果如下:
(1)实际入纤光功率为3.874E-3 W,5.881dBm,如下图7所示:
(2)调制前信号时域波形,如下图8所示:
(3)调制后光信号时域波形,如下图9所示:
(4)调制后光信号频谱,如下图10所示:
(5)信号眼图,如下图11所示:
(6)误码率,如下图12所示:
2.观察入纤光功率,并对比调制前后的光信号频谱与时域波形,以及做相应的分析
答:由图1可知实际入纤光功率;根据图2、3、,通过对比调制前后的光信号时域波形;根据图4知调制后光信号频谱,调制后的光信号具有紧凑的频谱特性。
3.解调后的信号信号波形,信号眼图,及误码率等分析
答:调解后的信号信号波形为像眼图的波形(如图5),眼图分析,如下图:、
眼图的张开宽度决定了接收信号的抽样间隔,在此间隔内抽样能抵挡码间串扰不发生误码;接收波形的最佳抽样时间在眼睛张开的最大处。
由于数据信号的失真,眼睛张开的高度会降低,眼睛张开的顶端与信号电平的最大值之间的垂直距离表示了最大失真,眼睛越小,鉴别信号1和0就越难。
在抽样时间上,眼睛张开的高度表示噪声容限或抗噪声能力。
眼图斜边的斜率决定系统对定时误差的敏感程度,当斜率较小时,定时误差的可能性增加。
在光纤系统中由于接收机噪声和光纤的脉冲畸变,会产生时间抖动。
如果取样时间正好在信号与判断门限值相交的时刻的中点,判断门限值电平失真量T1,定时抖动=T1/Tb×100%,Tb为1bit的时间间隔。
误码率分析:实验误码率分析如图6;定时抖动越大,说明码间干扰所引起的
误码率越大。
上升、下降时间越长,说明色散严重,脉冲展宽明显,也更容易导致出现码间干扰。
4.测量你所选用系统的距离带宽积(BL),并解释滤波器作用
答:距离带宽积(BL):实验中光通信系统的距离为80Km,带宽为1G,因此距离带宽积=距离*带宽=80Km*1G=80Km.G。
系统接收端的low pass gauss filter(高斯低通滤波器)的作用是:滤除带外噪声,进一步提高信噪比,改善光通信系统的性能。
低通高斯响应滤波器采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。
通过使用Optisystem 软件成功地模拟出了光纤通信系统,让我更加了解了光纤系统,让我认识到了自己在专业知识上的不足。
因此,通过这次的仿真,让我学会了许多,在今后的学习之中,我会更加努力。