七年级数学期末模拟试卷(三)
- 格式:doc
- 大小:98.50 KB
- 文档页数:2
福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列四个图形中,不能通过基本图形平移得到的是( )A.B.C.D.2.(4分)下列数中,3.14159,,0.121121112…,﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个3.(4分)为了完成下列任务,最适合采用全面调查的是( )A.了解问天实验舱各零部件的情况B.了解中央电视台春节联欢晚会的收视率C.了解全国中学生的节水意识D.了解一批电视机的使用寿命4.(4分)在平面直角坐标系中,点P(﹣2,3)在( )A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)已知a<b,下列式子不一定成立的是( )A.a﹣1<b﹣1B.﹣2a>﹣2b C.2a+1<2b+1D.m2a>m2b6.(4分)在中国传统数学著作《九章算术》中有这样一个问题:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价,问牛、马价各几何?”译文:“今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛、每匹马的价格各是多少?”设每匹马的价格为x钱,每头牛的价格为y钱,则依据条件可列方程组为( )A.B.C.D.7.(4分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为( )A.100°B.105°C.110°D.115°8.(4分)在平面直角坐标系xOy中,点A的坐标为(2,3),AB∥x轴,且AB=4,则点B的坐标为( )A.(2,﹣1)B.(﹣2,3)C.(2,﹣1)或(2,7)D.(﹣2,3)或(6,3)9.(4分)如果不等式组无解,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤110.(4分)将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( )A.16B.24C.30D.40二.填空题(共6小题,满分24分,每小题4分)11.(4分)由3x﹣y=1,可以得到用x表示y的式子是 .12.(4分)在平面直角坐标系中,将点A(﹣2,3)先向右平移1个单位长度,再向下平移4个单位长度得到点B ,则点B的坐标是 .13.(4分)如图,AC⊥BC,垂足为C,若BC=3cm,AC=4cm,AB=5cm,则点A到BC的距离为 cm.14.(4分)不等式x﹣2≤2的最大整数解是 .15.(4分)某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是 .16.(4分)如图.已知点C为两条相互平行的直线AB,ED之间一动点,∠ABC和∠CDE的角平分线相交于F,若,则∠BCD的度数为 .三.解答题(共9小题,满分86分)17.(6分)计算:||﹣||+||.18.(6分)解方程组:,19.(8分)解不等式组,并在数轴上表示此不等式组的解集.20.(8分)如图,三角形ABC上一点A(﹣3,2)经平移后对应点为D(﹣4,4),将三角形ABC作同样的平移得到三角形.(1)画出三角形DEF;(2)点P在三角形ABC内部,请写出点P(m,n)随三角形平移后的对应点P′的坐标 (用含有m,n的式子表示).21.(10分)如图,点E,F分别在AB和CD上,AF⊥CE于点G,∠AFC=∠D.求证:∠BED+∠AEC=90°.22.(10分)“学习金字塔”用数字的形式显示了采用不同的学习方式,学习者在两周以后还能记住的内容的多少.它告诉我们,把学会的知识讲给别人听是学习效果最好的一种方式.为此,某学校举办了一次主题为“我是小讲师”的讲题活动,组织全校学生参加.活动结束后,学校抽取部分学生的讲题成绩进行统计,将成绩x分为A ,B,C,D四个等级(A等级:90⩽x⩽100;B等级:80⩽x<90;C等级:60⩽x<80;D等级:0⩽x<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息,解答下列问题.(1)这次抽样调查共抽取 人;条形统计图中的a= .(2)将条形统计图补充完整;在扇形统计图中,求C等级所在扇形的圆心角的度数.(3)若80分及以上成绩为“优秀”,现该校共有3600名学生,估计该校学生讲题成绩为“优秀”的共有多少人.23.(12分)我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口说出答案,众人十分惊奇,忙问计算的奥妙,你知道他是怎样迅速准确地计算出结果的吗下面是小龙的探究过程,请补充完整:(1)口算并填空:753个位数字为 ;(2)求.①由103=1000,1003=1000000,可以确定是 位数;②由54872的个位上的数是2,可以确定的个位上的数是 ;③如果划去54872后面的三位872得到数54,而33=27,43=64,可以确定的十位上的数是 ,由此求得 .(3)已知:205379也是一个整数的立方,请用类似的方法求出和.24.(12分)请同学们根据以下表格中的素材一和素材二,自主探索完成任务一、任务二、任务三.如何合理搭配消费券?素材一为促进消费,某市人民政府决定,发放“双促双旺•你消费我助力”消费券,一人可领取的消费券有:A型消费券(满35减15元)2张,B型消费券(满68减25元)2张,c型消费券(满158减60元)1张.素材二在此次活动中,小明一家5人每人都领到了所有的消费券.某日小明一家在超市使用消费券,消费金额减了390元,请完成以下任务.任务一若小明一家用了5张A型消费券,3张B型的消费券,则用了 张C型的消费券,此时的实际消费最少为 元.任务二若小明一家用13张A、B、C型的消费券消费,已知A型比C型的消费券多1张,求A、B、C型的消费券各多少张?任务三若小明一家仅用两种不同类型的消费券消费,请问如何搭配使用消费券,使得使用付款最少,并求出此时消费券的搭配方案.25.(14分)如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足+|b﹣a+16|=0,将B向左平移18个单位得到点C.(1)求点A、B、C的坐标;(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A 以2个单位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).①当BM=ON时,求t的值;②是否存在一段时间,使得S四边形NACM<S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列四个图形中,不能通过基本图形平移得到的是( )A.B.C.D.【答案】C2.(4分)下列数中,3.14159,,0.121121112…,﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个【答案】B3.(4分)为了完成下列任务,最适合采用全面调查的是( )A.了解问天实验舱各零部件的情况B.了解中央电视台春节联欢晚会的收视率C.了解全国中学生的节水意识D.了解一批电视机的使用寿命【答案】A4.(4分)在平面直角坐标系中,点P(﹣2,3)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B5.(4分)已知a<b,下列式子不一定成立的是( )A.a﹣1<b﹣1B.﹣2a>﹣2b C.2a+1<2b+1D.m2a>m2b【答案】D6.(4分)在中国传统数学著作《九章算术》中有这样一个问题:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价,问牛、马价各几何?”译文:“今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛、每匹马的价格各是多少?”设每匹马的价格为x钱,每头牛的价格为y钱,则依据条件可列方程组为( )A.B.C.D.【答案】B7.(4分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为( )A.100°B.105°C.110°D.115°【答案】B8.(4分)在平面直角坐标系xOy中,点A的坐标为(2,3),AB∥x轴,且AB=4,则点B的坐标为( )A.(2,﹣1)B.(﹣2,3)C.(2,﹣1)或(2,7)D.(﹣2,3)或(6,3)【答案】D9.(4分)如果不等式组无解,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【答案】C10.(4分)将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( )A.16B.24C.30D.40【答案】见试题解答内容二.填空题(共6小题,满分24分,每小题4分)11.(4分)由3x﹣y=1,可以得到用x表示y的式子是 y=3x﹣1 .【答案】y=3x﹣1.12.(4分)在平面直角坐标系中,将点A(﹣2,3)先向右平移1个单位长度,再向下平移4个单位长度得到点B ,则点B的坐标是 (﹣1,﹣1) .【答案】(﹣1,﹣1).13.(4分)如图,AC⊥BC,垂足为C,若BC=3cm,AC=4cm,AB=5cm,则点A到BC的距离为 4 cm.【答案】4.14.(4分)不等式x﹣2≤2的最大整数解是 4 .【答案】4.15.(4分)某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是 ②③① .【答案】②③①.16.(4分)如图.已知点C为两条相互平行的直线AB,ED之间一动点,∠ABC和∠CDE的角平分线相交于F,若,则∠BCD的度数为 120° .【答案】120°.三.解答题(共9小题,满分86分)17.(6分)计算:||﹣||+||.【答案】2﹣3.18.(6分)解方程组:,【答案】.19.(8分)解不等式组,并在数轴上表示此不等式组的解集.【答案】2<x≤3,数轴表示见解答.20.(8分)如图,三角形ABC上一点A(﹣3,2)经平移后对应点为D(﹣4,4),将三角形ABC作同样的平移得到三角形.(1)画出三角形DEF;(2)点P在三角形ABC内部,请写出点P(m,n)随三角形平移后的对应点P′的坐标 (m﹣1,n+2) (用含有m,n的式子表示).【答案】(1)见解答.(2)(m﹣1,n+2).21.(10分)如图,点E,F分别在AB和CD上,AF⊥CE于点G,∠AFC=∠D.求证:∠BED+∠AEC=90°.【答案】见解析.22.(10分)“学习金字塔”用数字的形式显示了采用不同的学习方式,学习者在两周以后还能记住的内容的多少.它告诉我们,把学会的知识讲给别人听是学习效果最好的一种方式.为此,某学校举办了一次主题为“我是小讲师”的讲题活动,组织全校学生参加.活动结束后,学校抽取部分学生的讲题成绩进行统计,将成绩x分为A ,B,C,D四个等级(A等级:90⩽x⩽100;B等级:80⩽x<90;C等级:60⩽x<80;D等级:0⩽x<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息,解答下列问题.(1)这次抽样调查共抽取 200 人;条形统计图中的a= 40 .(2)将条形统计图补充完整;在扇形统计图中,求C等级所在扇形的圆心角的度数.(3)若80分及以上成绩为“优秀”,现该校共有3600名学生,估计该校学生讲题成绩为“优秀”的共有多少人.【答案】(1)200,40;(2)补全条形统计图详见解答,C等级所在扇形的圆心角的度数为72°;(3)2340人.23.(12分)我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口说出答案,众人十分惊奇,忙问计算的奥妙,你知道他是怎样迅速准确地计算出结果的吗下面是小龙的探究过程,请补充完整:(1)口算并填空:753个位数字为 5 ;(2)求.①由103=1000,1003=1000000,可以确定是 两 位数;②由54872的个位上的数是2,可以确定的个位上的数是 8 ;③如果划去54872后面的三位872得到数54,而33=27,43=64,可以确定的十位上的数是 3 ,由此求得 38 .(3)已知:205379也是一个整数的立方,请用类似的方法求出和.【答案】(1)5;(2)①两,②8;③3,38;(3)=59,=26.24.(12分)请同学们根据以下表格中的素材一和素材二,自主探索完成任务一、任务二、任务三.如何合理搭配消费券?素材一为促进消费,某市人民政府决定,发放“双促双旺•你消费我助力”消费券,一人可领取的消费券有:A型消费券(满35减15元)2张,B型消费券(满68减25元)2张,c型消费券(满158减60元)1张.素材二在此次活动中,小明一家5人每人都领到了所有的消费券.某日小明一家在超市使用消费券,消费金额减了390元,请完成以下任务.任务一若小明一家用了5张A型消费券,3张B型的消费券,则用了 4 张C型的消费券,此时的实际消费最少为 621 元.任务二若小明一家用13张A、B、C型的消费券消费,已知A型比C型的消费券多1张,求A、B、C型的消费券各多少张?任务三若小明一家仅用两种不同类型的消费券消费,请问如何搭配使用消费券,使得使用付款最少,并求出此时消费券的搭配方案.【答案】任务一:4,621;任务二:A型的消费券4张,B型的消费券6张,则C型的消费券3张;任务三:使用10张A型券,4张C型券.25.(14分)如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足+|b﹣a+16|=0,将B向左平移18个单位得到点C.(1)求点A、B、C的坐标;(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A 以2个单位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).①当BM=ON时,求t的值;②是否存在一段时间,使得S四边形NACM<S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.【答案】(1)C(-18,8);(2)t=8秒,0<t<3.。
初一数学期末模拟试卷(三)班级___________ 学号_____ 姓名_________一、填空题:(每空1分,共19分)1、(-2)0=_________,212-⎛⎫ ⎪⎝⎭=___________,(-3)-1=___________. 2、2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中胜利结束,全程11.8千米。
11.8千米用科学计数法表示是___________米。
3、为了解某地区初一年级7000名学生的体重情况,现从中抽测了500名学生的体重,其中总是 ,个体是 ,样本是 ,样本容量是4、一多边形内角和为2340°,若每一个内角都相等,则每个外角的度数是 .这个多边形是 边形。
5、如图AD ⊥BD ,AE 平分∠BAC ,∠ACD=70°,∠B=30°.则∠DAE 的度数为 °6、如图,AB =DB ,BC =BE ,欲证△ABE ≌△DBC ,则需增加的条是7、下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘积为正数;④异号两数相除,商为负数。
这4个事件中,必然事件是________,不可能事件是__________,随机事件是____________.(将事件的序号填上即可)8、如果 是方程组 的解,则m + n = .9、如图,小明从点A 向北偏东75°方向走到点B ,又从点B 向南偏西30°方向走到点C ,则∠ABC 的度数为________;10、在日常生活中如取款、上网等都需要密码。
有一种“因式分解”法产生的密码,方便记忆。
原理是:如对于多项式44y x -,因式分解的结果是))()((22y x y x y x ++-,若取9=x ,9=y 时,则各个因式的值是:0)(=-y x ,18)(=+y x ,162)(22=+y x ,于是,就可以把“018162”作为一个六位数的密码。
七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑.1.(3分)在、﹣π、﹣3、2这四个数中,最小的数是()A.B.﹣πC.﹣3D.22.(3分)如图,能判定AD∥BC的条件是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠43.(3分)如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bcB.a+c>bC.ac<bcD.a﹣c>b﹣c4.(3分)已知点P的坐标是(﹣2﹣,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)某医疗机构为了了解所在地区老年人参与新冠病毒核酸和抗体检测的比例,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园选择1000名老年人调查是否参与了新冠病毒核酸和抗体检测B.随意调查10名老年人是否参与了新冠病毒核酸和抗体检测C.在各医院、卫生院调查1000名老年人是否参与了新冠病毒核酸和抗体检测D.利用所辖派出所的户籍网随机调查10%老年人是否参与了新冠病毒核酸和抗体检测7.(3分)对于三个数字a,b,c,用max{a,b,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=.如果max{3,8﹣2x,2x﹣5}=3,则x的取值范围是()A.≤x≤B.≤x≤4C.<x<D.<x<48.(3分)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有()A.380粒B.400粒C.420粒D.500粒9.(3分)下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个10.(3分)已知关于x、y的方程组的解都为正数,且满足a+b=4,b>0,z=a﹣3b,则z的取值范围是()A.﹣8<z<4B.﹣7<z<8C.﹣7<z<4D.﹣8<z<8二、填空题(本大题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11.(3分)在平面直角坐标系中,点(﹣5,1)到y轴的距离等于.12.(3分)一个容量为90的样本,样本中最大值是176,最小值是150,取组距为3,则该样本可以分为组.13.(3分)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴原不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:直接写出不等式(2x+3)(5﹣x)≤0的解集.14.(3分)幻方(MagicSquare)是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y的值为.3 4 x﹣2 y a2y﹣x c b15.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为.16.(3分)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=.三、解答题(本大题共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解方程组:.18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)已知点M(3|a|﹣9,4﹣3a)在y轴的负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求点N的坐标.20.(8分)某校组织全体学生开展汉字听写大赛,从中抽取部分学生成绩(得分为正整数,满分为100分)进行统计,绘制了两幅不完整的统计图,直方图从左至右分别对应A、B、C、D、E组,其中C组图象缺失.已知A组的频数比B组小48.请你根据图中提供的信息解答下列问题:(1)求频数分布直方图中的a、b的值;(2)求扇形图中D部分所对的圆心角的度数,并补全频数分布直方图;(3)若80分以上为优秀,全校共有1000名学生,估计成绩优秀的学生有多少名?21.(8分)(1)请在如图所示的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(5,1),(2,﹣2);(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.①写出点M的坐标;②平移线段AB使点A移动到点C,画出平移后的线段CD,并直接写出点D的坐标.③若P为直线AB上一动点,请直接写出P点到x轴和到y轴的距离和的最小值,和此时P点横坐标的取值范围.22.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A 型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(10分)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=28°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=108°,求∠AME的度数(直接写出结果).24.(12分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.2021-2022学年湖北省武汉市洪山区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑.1.(3分)在、﹣π、﹣3、2这四个数中,最小的数是()A.B.﹣πC.﹣3D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵﹣π<﹣3<﹣<2,∴在、﹣π、﹣3、2这四个数中,最小的数是﹣π.故选:B.2.(3分)如图,能判定AD∥BC的条件是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】根据平行线的判定方法进行分析即可.【解答】解:A、∠1=∠2不能判定AD∥BC,故此选项错误;B、∠2=∠3能判定AD∥BC,故此选项正确;C、∠1=∠4可判定AB∥CD,不能判定AD∥BC,故此选项错误;D、∠3=∠4不能判定AD∥BC,故此选项错误;故选:B.3.(3分)如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bcB.a+c>bC.ac<bcD.a﹣c>b﹣c【分析】根据不等式的性质,可得答案.【解答】解:c是正是负无法确定,根据不等式的基本性质,A、C 无法判定;当c<0时,a+c<b,则B不一定成立;不等式a>b两边都减去同一个数c,不等号方向不改变,则D正确.故选:D.4.(3分)已知点P的坐标是(﹣2﹣,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:∵,∴,∴点P在第三象限.故选:C.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.【解答】解:,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.6.(3分)某医疗机构为了了解所在地区老年人参与新冠病毒核酸和抗体检测的比例,分别作出了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园选择1000名老年人调查是否参与了新冠病毒核酸和抗体检测B.随意调查10名老年人是否参与了新冠病毒核酸和抗体检测C.在各医院、卫生院调查1000名老年人是否参与了新冠病毒核酸和抗体检测D.利用所辖派出所的户籍网随机调查10%老年人是否参与了新冠病毒核酸和抗体检测【分析】根据随机抽样逐项判断得结论【解答】解:在公园、医院、卫生院选择老人调查,样本不具有代表性,故选项A、C抽样不合理;随机调查10人,样本容量太小,不具有代表性,故选项B抽样不合理;利用所辖派出所的户籍网随机调查10%老年人进行调查,抽样具有随机性和代表性,抽样合理.故选:D.7.(3分)对于三个数字a,b,c,用max{a,b,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=.如果max{3,8﹣2x,2x﹣5}=3,则x的取值范围是()A.≤x≤B.≤x≤4C.<x<D.<x<4【分析】根据max{a,b,c}表示这三个数中最大数,对于max{3,8﹣2x,2x﹣5}=3,可得不等式组,可得结论;【解答】解:∵max{3,8﹣2x,2x﹣5}=3,则,∴x的取值范围为:≤x≤4,故选:B.8.(3分)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有()A.380粒B.400粒C.420粒D.500粒【分析】用蓝色黄豆的数量除以所抽取样本中蓝色黄豆所占比例即可得.【解答】解:估计这袋黄豆约有25÷=500(粒),故选:D.9.(3分)下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【解答】解:①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题;④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C.10.(3分)已知关于x、y的方程组的解都为正数,且满足a+b=4,b>0,z=a﹣3b,则z的取值范围是()A.﹣8<z<4B.﹣7<z<8C.﹣7<z<4D.﹣8<z<8【分析】先把不等式组解出,再根据解为正数列关于a的不等式组解出即可得到a的范围;根据题意得出b=4﹣a>0,即可得到1<a<4,代入z=a﹣3b得到z=4a﹣12,根据a的取值可得结论.【解答】解:解这个方程组的解为:,由题意,得,则原不等式组的解集为a>1;∵a+b=4,b>0,∴b=4﹣a>0,∵a>1,∴1<a<4,∵a﹣3b=a﹣3(4﹣a)=4a﹣12,z=a﹣3b,故﹣8<z<4.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11.(3分)在平面直角坐标系中,点(﹣5,1)到y轴的距离等于5 .【分析】直接利用点的坐标特点得出答案.【解答】解:点(﹣5,1)到y轴的距离等于:|﹣5|=5.故答案为:5.12.(3分)一个容量为90的样本,样本中最大值是176,最小值是150,取组距为3,则该样本可以分为9 组.【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【解答】解:最大值与最小值的差是:176﹣150=26,则可以分成的组数是:26÷3≈9(组),故答案为:9.13.(3分)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴原不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:直接写出不等式(2x+3)(5﹣x)≤0的解集x≥5或x≤﹣.【分析】仿照阅读材料中的方法求出所求不等式的解集即可.【解答】解:根据“异号两数相乘,积为负”可得:①或②,解①得:x≥5;解②得:x≤﹣,∴原不等式的解集为x≥5或x≤﹣.故答案为:x≥5或x≤﹣.14.(3分)幻方(MagicSquare)是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y的值为 1 .3 4 x﹣2 y a2y﹣x c b【分析】根据“每行、每列和对角线上的数字和都相等”列出方程组并解答.【解答】解:根据题意,得.解得.所以x+y=﹣1+2=1.故答案是:1.15.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上.将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2021次后,点P的坐标为(6065,2).【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2021÷4=505余1,P2021的纵坐标与P1相同为2,横坐标为5+12×505=6065,∴P2021(6065,2),故答案为(6065,2).16.(3分)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=﹣.【分析】求出不等式的解集,根据已知得出3a+6<a≤3a+7,求出﹣3.5≤a<﹣3,设m=3a+6,则a=m﹣2,得出不等式组﹣3.5≤m﹣2<﹣3,求出m即可.【解答】解:解不等式x﹣a<0得:x<a,∵关于x的不等式x﹣a<0的最大整数解为3a+6,∴3a+6<a≤3a+7,解得:﹣3.5≤a<﹣3,∵3a+6为整数,设m=3a+6,则a=m﹣2,即﹣3.5≤m﹣2<﹣3,解得:﹣4.5≤m<﹣3,∵m为整数,∴m=﹣4,即a=(﹣4)﹣2=﹣,故答案为:﹣.三、解答题(本大题共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②×2得:11x=22,解得:x=2,把x=2代入①得:y=0,则方程组的解为.18.(8分)解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由①得:x≥3,由②得:x<8,∴不等式组的解集为3≤x<8,在数轴上表示如下:.19.(8分)已知点M(3|a|﹣9,4﹣3a)在y轴的负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求点N的坐标.【分析】(1)由点M在y轴负半轴上,可得点M的横坐标等于0,列出关于a的绝对值方程,可解得a的值,则点M的坐标可求得;(2)由直线MN∥x轴及点M的坐标,可设N(x,﹣5),结合线段MN长度为4,可得关于x的方程,解得x的值,则点N的坐标可得.【解答】解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣3a<0,∴a=±3,且a>,∴a=3.∴4﹣3a=﹣5,∴M(0,﹣5);(2)∵直线MN∥x轴,M(0,﹣5),∴设N(x,﹣5),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣5)或(﹣4,﹣5).20.(8分)某校组织全体学生开展汉字听写大赛,从中抽取部分学生成绩(得分为正整数,满分为100分)进行统计,绘制了两幅不完整的统计图,直方图从左至右分别对应A、B、C、D、E组,其中C组图象缺失.已知A组的频数比B组小48.请你根据图中提供的信息解答下列问题:(1)求频数分布直方图中的a、b的值;(2)求扇形图中D部分所对的圆心角的度数,并补全频数分布直方图;(3)若80分以上为优秀,全校共有1000名学生,估计成绩优秀的学生有多少名?【分析】(1)根据扇形统计图中的数据和A组的频数比B组小48,可以求得本次调查的人数,然后即可计算出a、b的值;(2)根据直方图中的数据,可以计算出扇形图中D部分所对的圆心角的度数和C组的人数,从而可以将频数分布直方图补充完整;(3)根据扇形统计图中的数据,可以计算出成绩优秀的学生有多少名.【解答】解:(1)本次调查的学生有:48÷(20%﹣8%)=400(人),a=400×8%=32,b=400×20%=80,即a的值是32,b的值是80;(2)扇形图中D部分所对的圆心角的度数:360°×=126°,C组的人数为:400×25%=100,补全的频数分布直方图如右图所示;(3)1000×(1﹣8%﹣20%﹣25%)=470(名),答:成绩优秀的学生有470名.21.(8分)(1)请在如图所示的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(5,1),(2,﹣2);(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.①写出点M的坐标;②平移线段AB使点A移动到点C,画出平移后的线段CD,并直接写出点D的坐标.③若P为直线AB上一动点,请直接写出P点到x轴和到y轴的距离和的最小值,和此时P点横坐标的取值范围.【分析】(1)利用点的坐标的确定x轴和y轴;(2)①M点的横坐标与B点的横坐标相同;②利用点A、C点的坐标变换规律写出D点坐标,然后描点即可;③点P在直线AB与坐标轴的两交点所得线段上时,P点到x轴和到y轴的距离和有最小值.【解答】解:(1)如图;(2)①M点的坐标为(2,0);②如图,CD为所作,D点坐标为(﹣1,﹣1);③P点到x轴和到y轴的距离和的最小值为4,此时P点横坐标的取值范围为0≤x≤4.22.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A 型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需280万元;A型公交车2辆,B型公交车1辆,共需260万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过900万元”和“10辆公交车在该线路的年均载客量总和不少于670万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型新能源公交车每辆需x万元,购买B 型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.23.(10分)已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=28°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=108°,求∠AME的度数(直接写出结果).【分析】(1)过点G作GE∥AB,根据平行线的性质得∠AMG+∠CNG=∠MGN,再由垂直的定义得答案;(2)过G作GE∥AB,过P作PH∥AB,通过平行线的性质,和角平分的定义及角的和差得∠MGN+∠MPN=3∠BMG,便可求得结果;(3)过E作EK∥AB,过G作GH∥AB,通过平行线的性质,和角平分的定义及角的和差,由2∠MEN+∠MGN=108°,得∠AMF 的方程,求得∠AMF,便可求得结果.【解答】解:(1)过点G作GE∥AB,如图1,∵AB∥CD,∴AB∥GE∥CD,∴∠AMG=∠MGE,∠CNG=∠NGE,∴∠AMG+∠CNG=∠MGE+∠NGE=∠MGN,∵GM⊥GN,∴∠AMG+∠CNG=∠MGN=90°;(2)过G作GE∥AB,过P作PH∥AB,如图2,∵AB∥CD,∴AB∥EG∥CD∥FP,∴∠BMG=∠MGE,∠DNG=∠NGE,∠BMP=∠FPM,∠FPN=∠DNP,∵MG平分∠BMP,ND平分∠PNG,∴∠BMP=2∠BMG=2∠PMG,∠PND=∠DNG=∠PNG,∴∠MGN+∠MPN=∠MGE+∠NGE+∠FPM﹣∠FPN=∠BMG+∠PND+2∠BMG﹣∠PND=3∠BMG,∵∠BMG=28°,∴∠MGN+∠MPN=84°;(3)∠AME=48°.理由如下:如图3,过E作EK∥AB,过G作GH∥AB,∵AB∥CD,∴∠KEM=∠AME,∠KEN=∠CNE,∠AMF=∠BMG=∠MGH,∠DNG=∠NGH,∵MF平分∠AME,NE平分∠CNG,∴∠AME=2∠AMF,∠CNE=∠ENG,∴∠DNG=180°﹣2∠CNE,∴∠MEN=∠KEN﹣∠KEM=∠CNE﹣2∠AMF,∠MGN=∠MGH+∠NGH=∠AMF+180°﹣2∠CNE,∵2∠MEN+∠MGN=108°,∴2(∠CNE﹣2∠AMF)+(∠AMF+180°﹣2∠CNE)=108°,即﹣3∠AMF+180°=108°,∴∠AMF=24°,∴∠AME=2∠AMF=48°.24.(12分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.【分析】(1)根据非负性得出n=4,m=5,即可得出点A的坐标;(2)根据三角形面积得出方程,解方程即可;(3)分情况讨论,根据图形的平移和图形面积解答即可.【解答】解:(1)∵,∴,∴n=4,∴=0,∴m=5,∴点A的坐标为(5,4);(2)如图1:∵A(5,4).B(1,2),M(2,b),∴S△ABM=(5﹣1)(b﹣2)﹣(2﹣1)(b﹣2)﹣×(5﹣2)(b﹣4)﹣(5﹣1)(4﹣2)=5,或S△ABM=(5﹣1)(4﹣b)﹣(2﹣1)(2﹣b)﹣(5﹣2)(4﹣b)﹣(5﹣1)(4﹣2)=5,解得:b=5,或b=0;(3)分两种情况:①当线段AB向上平移c个单位长度,如图2:则A′(5,4+c),B'(1,2+c),∵P点的坐标为(7,0),∴S△A′B′P=(4+c+2)×(7﹣1)﹣×2×(5﹣1)﹣×(4+c)×(7﹣5)=4,解得:c=﹣3<0,不合题意舍去;②当线段AB向下平移c个单位长度,如图3:则A′(5,4﹣c),B(1,2﹣c),则S△A′B′P=×(c﹣2)×(7﹣1)﹣×(5﹣1)×2﹣×(c ﹣4)×2﹣2×2=4,解得:b=10.综上所述,把线段AB向下平移10个单位,恰使△ABP的面积S△ABP=4.。
苏科版七年级下册数学期末模拟(3)一、选择题:(本大题共8小题.每小题3分,共24分.)1. 下列计算正确的是 ……………………………… ( )A .2223a a a +=B .824a a a ÷=C .326a a a ⋅=D .326()a a =2. 如果9-mx +x 2是一个完全平方式,则m 的值为 ……………… ( )A .3B .6C .±3D .±63. 为了了解我校七年级学生每天用于体育锻炼的时间,对其中200名学生进行了调查,则下列说法错误的是 ………………………………………………… ( )A .总体是我校七年级学生每天用于体育锻炼的时间B .其中200名学生每天用于体育锻炼的时间是总体的一个样本C .样本容量是200D .个体是其中1名学生用于体育锻炼的时间4. 如图,用8块全等的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积为( )A .200cm 2 B .300cm 2 C .600cm 2 D .2400cm 2第5题图 第7题图5. 火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x 、y 、z 的箱子按如图所示的方式打包,则打包带的长至少为 ……………………… ( )A .4x+4y+10zB .x+2y+3zC .2x+4y+6zD .6x+8y+6z6. 2010年南非世界杯比赛中,A 、B 、C 、D 四个队分在同一个小组进行单循环赛(每两个队之间赛一场),争夺出线权,比赛规定:胜一场得3分,平一场得1分,负一场0分,小组得分在前面的两个队出线,相同分数再参考其他情况定夺.小组比赛结束后,A 队得6分,则关于A 队的出线权问题,下列说法正确的是 ( ) A .随机事件 B .必然事件 C .不可能事件 D .以上均有可能7. 如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN .其中正确的结论是 …… ( )A .①②③B .①②④C .①③④D .②③④8. 若代数式2346x x -+的值为15,则6342+-x x 的值为 …………… ( ) A .12 B .15 C .27 D .9二、填空题 (本大题共12小题,每小题2分,共24分)9. 遗传物质脱氧核糖核酸(DNA)的分子直径为0.00000023cm ,用科学记数法表示为 cm.10. 已知123=-y x ,将y 用x 的代数式表示为_________________ 11. 将一副学生用三角板按如图所示的方式放置.若AE ∥BC ,则∠AFD 的度数是________.题12.如图,△ABC 中,∠A =30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB =82°,则原三角形的∠ABC =____________度.13. 在一个不透明的袋子中装有2个红球,3个白球和1个黄球,每个球除颜色外完全相同,将球搅匀,从中任取1球,记“恰好取出红球”的概率为P(1),“恰好取出白球”的概率为P(2),“恰好取出黄球”的概率为P(3),则P(1)、P(2)、P(3)的大、小关系是___________________________ (用“<”号连接). 第4题图F E DC B A 17题图14. 如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有__________个(不含△ABC).15. 如图,△AB D ≌△ACE ,点B 和点C 是对应顶点,AB=8cm ,BD=7cm ,AD=3cm ,则DC=____________cm .第14题16. 如图,在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,AC =14cm , 且CD ∶AD =3∶4,则点D 到AB 的距离为__________cm.17. 如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 个单位. 18. 在△ABC 和△A ′B ′C ′中,AB =A ′B ′,AC= A ′C ′, 高AD=A ′D ′,则∠C 与∠C ′的关系是____________________19. 若关于x ,y 的二元一次方程组210x y mx y -=⎧⎨+=⎩的解均为正整数,m 也是正整数,则满足条件的所有m值的和为_____________.20. 要使(x —a)(x 2+2x+3)的展开式中不含x 2的项, 则a 的值为_____________.三、解答题(本大题共小题,共52分,解答应写出必要的计算过程、推演步骤或文字说明)21.(本题4分) 计算: 201120110310)1.0()2()21(⨯-+-+--22.(本题4分) 解方程组:34221x y x y -=⎧⎨+=⎩23.(本题4分) 分解因式: 4x 2(x -y )+(y -x )24.(本题5分) 先化简,再求值.(2a+b)(2a -b)+3(2a -b) 2+(-3a)(4a -3b),其中a=-1,b=2第16题C D A B26. (本题6分) 5月1日起,我国对醉酒驾车违法行为从行政处罚上升到更加严厉的刑事处罚。
期末数学试卷一、选择题1.9的算术平方根是()A.±3 B.3 C.D.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣14.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>5.在图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠57.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=89.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=110.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.如图所示,由三角形ABC平移得到的三角形有个.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第象限.14.满足不等式的非正整数x共有个.15.如果的平方根是±3,则=.16.已知点A(﹣1,b+2)不在任何象限,则b=.17.不等式的解集是.18.已知x满足(x+3)3=27,则x等于.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=,b=.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.三、解答题21.解方程组:.22.计算:﹣|﹣3|+.23.解不等式组:并把解集在数轴上表示出来.24.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.25.如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.26.如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为;(2)把两幅统计图补充完整.27.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?28.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.29.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?参考答案与试题解析一、选择题(每小题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)【考点】D1:点的坐标.【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】92:二元一次方程的解.【专题】11 :计算题;521:一次方程(组)及应用.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>【考点】C2:不等式的性质.【分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.在图中,∠1和∠2是对顶角的是()A.B.C.D.【考点】J2:对顶角、邻补角.【分析】根据对顶角的定义对各图形判断即可.【解答】解:A、∠1和∠2不是对顶角;B、∠1和∠2是对顶角;C、∠1和∠2不是对顶角;D、∠1和∠2不是对顶角.故选:B.【点评】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】J9:平行线的判定.【专题】121:几何图形问题.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.7.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查【考点】V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对一批圆珠笔使用寿命的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;B、对全国九年级学生身高现状的调查,人数太多,不便于测量,应当采用抽样调查,故本选项错误;C、对某品牌烟花爆竹燃放安全的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;D、对一枚用于发射卫星的运载火箭各零部件的检查,只有做到全面调查才能做到准确无误,故必须全面调查,故此选项正确.故选:D.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】将x与y的值代入方程组即可求出a与b的值.【解答】解:将x=5,y=b代入方程组得:,解得:a=12,b=2,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=1【考点】CB:解一元一次不等式组.【分析】先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.【解答】解:,由①得,x>2﹣a,由②得,x<,故不等式组的解集为;2﹣a<x<,∵原不等式组的解集为0<x<1,∴2﹣a=0,=1,解得a=2,b=1.故选A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个【考点】26:无理数.【分析】根据无理数的三种形式求解.【解答】解:①带根号的数不一定是无理数,如;②不含根号的数不一定是有理数,如无限不循环小数;③开方开不尽的数是无理数;④无限不循环小数是无理数;⑤π是无理数,该说法正确.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.二、填空题(每小题3分,共30分)11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】C6:解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.如图所示,由三角形ABC平移得到的三角形有5个.【考点】Q2:平移的性质.【分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,据此判断出由三角形ABC平移得到的三角形有哪些即可.【解答】解:如图1,,由三角形ABC平移得到的三角形有5个:△DBE、△BHI、△EFG、△EIM、△IPN.故答案为:5.【点评】此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第二象限.【考点】D1:点的坐标;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质求出a、b,再根据各象限内点的坐标特征解答.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,点P(﹣a,﹣b)即(﹣2,3)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.满足不等式的非正整数x共有3个.【考点】2B:估算无理数的大小.【分析】根据﹣3<<﹣2和3<<4求出符合条件的非正整数,即可得出答案.【解答】解:不等式的非正整数有﹣2,﹣1,0,共3个,故答案为:3.【点评】本题考查了估算无理数大小,实数的大小比较的应用,关键是确定﹣和的范围.15.如果的平方根是±3,则=4.【考点】24:立方根;21:平方根;22:算术平方根.【分析】求出a的值,代入求出即可.【解答】解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.【点评】本题考查了平方根、算术平方根,立方根定义的应用,关键是求出a 的值.16.已知点A(﹣1,b+2)不在任何象限,则b=﹣2.【考点】D1:点的坐标.【分析】根据坐标轴上的点的坐标特征方程求解即可.【解答】解:∵点A(﹣1,b+2)不在任何象限,∴b+2=0,解得b=﹣2.故答案为:﹣2.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.17.不等式的解集是x<6.【考点】C6:解一元一次不等式.【分析】利用不等式的基本性质,先去分母,然后把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【解答】解:去分母得:2x﹣2﹣3x﹣4>﹣12,移项得:﹣x>﹣6,系数化为1得:x<6.故答案为:x<6.【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.已知x满足(x+3)3=27,则x等于0.【考点】24:立方根.【分析】首先根据立方根的定义可求出27的立方根,即可求得x的值.【解答】解:∵27的立方根为3,∴x+3=3,∴x=0.故答案为0.【点评】此题主要考查了立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=﹣2,b=1.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】把x与y的两对值代入y=kx+b,列出方程组,求出方程组的解得到k与b的值即可.【解答】解:把x=1,y=﹣1;x=3,y=﹣5代入y=kx+b中,得:,解得:k=﹣2,b=1.故答案为:﹣2;1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是130°.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.三、解答题(60分)21.解方程组:.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】解此题时先找出某个未知数系数的最小公倍数,用加减消元法进行解答.【解答】解:原方程组变形为:,(1)﹣(2)得:y=﹣,代入(1)得:x=6.所以原方程组的解为.【点评】此题较简单,只要明白二元一次方程及方程组的解法就可.22.计算:﹣|﹣3|+.【考点】2C:实数的运算.【分析】根据立方根、绝对值,算术平方根进行计算即可.【解答】解:原式=4+﹣3+6=7+.【点评】本题考查了实数的运算,用到的知识点为立方根、绝对值,算术平方根.23.(6分)解不等式组:并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:x>﹣2.5,由②得x≤4,∴不等式组的解集为﹣2.5<x≤4,在数轴表示为:.【点评】本题考查解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.24.(6分)已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.【考点】21:平方根.【分析】根据一个正数的两个平方根互为相反数,可知2m﹣3=4m﹣5或2m﹣3=﹣(4m﹣5),解得m的值,继而得出答案.【解答】解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.(6分)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.【考点】JA:平行线的性质.【分析】先根据补角的定义求出∠BAD的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=30°,∠BAC=90°,∴∠BAD=180°﹣90°﹣∠1=180°﹣90°﹣30°=60°,∵EF∥AD,∴∠2=∠BAD=60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.(7分)如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为500;(2)把两幅统计图补充完整.【考点】VC:条形统计图;VB:扇形统计图.【专题】27 :图表型.【分析】由统计图可知:(1)根据条形统计图可知电视机是175台,根据扇形图可知电视占总产品的35%,即可求得产品的总数;(2)冰箱的台数为500×10%=50台;电脑的台数为500×5%=25台;则热水器的台数为500﹣50﹣25﹣175﹣150=100台,占的百分比为100÷500=20%;洗衣机占百分比为150÷500=30%.据此即可把两幅统计图补充完整.【解答】解:(1)175÷35%=500(个);(2)图如下面.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(8分)去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?【考点】C9:一元一次不等式的应用.【分析】设今年比去年空气质量良好的天数增加了x天,根据“今年(365天)这样的比值要超过70%,”列出不等式解答即可.【解答】解:设今年比去年空气质量良好的天数增加了x天,依题意,得x+365×60%>365×70%解这个不等式,得x>36.56.由x应为正整数,得x≥37答:今年空气质量良好的天数比去年至少要增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【点评】此题考查一元一次不等式的实际运用,找出题目蕴含的不等关系是解决问题的关键.28.(9分)如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.【考点】PB:翻折变换(折叠问题).【分析】由平行线的性质知∠DEF=∠EFB=55°,由题意知∠GEF=∠DEF=55°,则可求得∠2=∠GED=110°.由邻补角的性质可求得∠1的值.【解答】解:∵AD∥BC∴∠DEF=∠EFB=55°(2分)由对称性知∠GEF=∠DEF∴∠GEF=55°∴∠GED=110°∴∠1=180°﹣110°=70°(4分)∴∠2=∠GED=110°(5分)【点评】本题考查了翻折的性质,对应角相等及平行线的性质、邻补角的性质.29.(12分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【考点】9A:二元一次方程组的应用.【分析】(1)设购买一个足球需要x元,购买一个篮球需要y元,根据购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元,列方程组求解;(2)设购买a个篮球,则购买(96﹣a)个足球,根据总费用不超过5720元,列不等式求出最大整数解.【解答】解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96﹣a)个足球,根据题意得:80a+50(96﹣a)≤5720,解得:a≤,∵a是整数,∴a≤30,答:最多可以购买30个篮球.【点评】本题考查了二元一次方程组的应用和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.。
湖北省崇阳县沙坪中学2021-2022学年七年级下学期期末模拟数学试卷一.选择题(每题3分,共24分)1.在平面直角坐标系中,位于第二象限的点的坐标可能是()A.(0,8)B.(3,﹣2)C.(﹣1,1)D.(﹣4,﹣4)2.下列变形或列式正确的是()A.由a>b,得b<aB.由a>b,得ac>bcC.由﹣x<9,得x>9D.“x的平方不小于7”可表示为x2>73.下列各数中,3.14159,﹣,0.131113…,﹣π,,其中无理数的个数是()A.1B.2C.3D.44.为了解某校七年级1000名学生学习中国海军史的情况,学校组织了中国海军史知识测试,并从中随机抽取了200名学生的成绩进行统计分析,下列说法正确的是()A.1000名学生是总体B.200名是样本容量C.被抽取的200名学生是总体的一个样本D.该校七年级每名学生的中国海军史知识测试的成绩是个体5.方程组的解为,则被遮盖的两个数▲和■分别为()A.1,2B.5,1C.2,3D.2,46.若不等式组的解集是x<3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<37.如图,直线a∥b,∠1=75°,∠3=45°,则∠2的度数是()A.25°B.30°C.35°D.45°8.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2022的坐标为()A.(1009,0)B.(1010,0)C.(1010,1)D.(1011,1)二.填空题(每题3分,共24分)9.已知二元一次方程2x+5y=14,请写出该方程的一组正整数解.10.全国第七次人口普查已经结束,请问在这次人口普查中采用的调查方式是.11.有一个数值转换器,原理如下:当输入的x为256时,输出的y是.12.已知点A(2x﹣9,6﹣2x)在第三象限.则x的取值范围是.13.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打折.14.如图,点F是长方形ABCD的边BC上一点,将长方形的一角沿AF折叠,点B的折叠点E落在长方形ABCD外侧,若AE∥BD,∠ADB=28°,则∠EAD=°,∠AFC=°.15.若记[x]表示任意实数的整数部分,例如:[4.2]=4、[]=1、…,则[]﹣[]+[]﹣[]+……+[]﹣[](其中“+”、“﹣”依次相间)的值为.16.如图,已知AB∥CD,点P、Q分别是直线AB,CD上两点,点G在两平行线之间,连接PG,QG,点E是直线CD下方一点,连接EP,EQ,且GQ的延长线平分∠CQE,PE平分∠APG,若2∠PEQ+∠PGQ=90°,则∠CQE的度数是.三.解答题(共72分)17.(8分)计算:(1);(2).18.(8分)解方程组:(1);(2).19.(8分)解不等式组(1);(2).20.(8分)如图,将△ABC向右平移3个单位长度,然后再向上平移2个单位长度,可以得到△A1B1C1.(1)画出平移后的△A1B1C1,并写出△A1B1C1三个顶点的坐标;A1(,);B1(,);C1(,).(2)计算△ABC的面积为;(3)已知点P在y轴上,以A、C、P为顶点的三角形面积为4,则P点的坐标为.21.(8分)某校开展课后延时服务,计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,由于师资等条件的限制,每人只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)求扇形统计图中,“摄影”对应扇形圆心角的度数;(4)若该校共有1200名学生参加课后延时服务,试估计该校选择“围棋”课外兴趣小组的学生有多少人?22.(10分)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=40°,求∠BDG的度数.23.(10分)我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜2个,乙种书柜1个,共需资金600元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,请为学校设计一种比较实惠的方案.24.(12分)已知,在平面直角坐标系中,AB⊥x轴于点B,A(a,b)满足,平移线段AB使点A与原点重合,点B的对应点为点C,OA∥CB.(1)填空:a=,b=,点C的坐标为;(2)如图1,点P(x,y)在线段BC上,求x,y满足的关系式;(3)如图2,点E是OB一动点,以OB为边作∠BOG=∠AOB交BC于点G,连CE交OG于点F,当点E在OB上运动时,的值是否发生变化?若变化,请说明理由;若不变,请求出其值.。
七年级(上)期末数学试卷(三)一、选择题:每小题3分,共30分1.2015的相反数是( )A .B .﹣2015C .2015D .﹣2.在﹣4,0,2.5,|﹣3|这四个数中,最大的数是( )A .﹣4B .0C .2.5D .|﹣3|3.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( )A .0.21×108B .21×106C .2.1×107D .2.1×1064.下列方程为一元一次方程的是( )A .y+3=0B .x+2y=3C .x 2=2xD . +y=25.已知∠A=65°,则∠A 的补角等于( )A .125°B .105°C .115°D .95°6.下列各式正确的是( )A .﹣8+5=3B .(﹣2)3=6C .﹣(a ﹣b )=﹣a+bD .2(a+b )=2a+b7.如图所示,有理数a 、b 在数轴上的位置如图,则下列说法错误的是( )A .b ﹣a >0B .a+b <0C .ab <0D .b <a8.下列说法正确的是( )A.22x 的次数是3B. 23xy 的系数是3 C. 8不是单项式 D. x 的系数是19.如图,下列能判定AB ∥CD 的条件有( )①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5A.1个B.2个C. 3个D.4个54321ED C B A10.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A .赚16元 B .赔16元 C .不赚不赔 D .无法确定二、填空题:每小题4分,共24分11.如果“节约10%”记作+10%,那么“浪费6%”记作: .12.若一个角的补角是这个角的余角的4倍,则这个角的度数是 .13.若﹣5x n y 2与12x 3y 2m 是同类项,则m= ,n= .14.已知x=5是关于x 的方程3x ﹣2a=7的解,则a 的值为 .15.如图,AB ,CD 相交于点O ,OE ⊥AB ,垂足为O ,∠COE=44°,则∠AOD= .16.若0621=---m x m )(是关于x 的一元一次方程,则m 的值是 .17.已知,22-=-y x 则y x 423+-的值是 .18.按一定规律排列的一列数依次为22-a ,55a ,810-a ,1117a ,…(0≠a ) .按此规律排列下去,这列书中的第n 个数是三、解答题:每小题6分,共18分19.计算:(1)225.0-411--41413-)(⨯⨯÷+. (2)311-4131-8148-4÷++⨯)()()(20.解方程:)1(9)14(3)22y y y -=--+(.21.已知(x+2)2+|y ﹣|=0,求5x 2y ﹣[2x 2y ﹣(xy 2﹣2x 2y )﹣4]﹣2xy 2的值.22.已知关于y x ,的式子)123(3222nx y x y mx x -+--+-+)(的值与字母x 的取值无关,求式子)2(32n m n m --+)(的值23.列方程解应用题:(1)一家商店在销售某种服装时,按这种服装每件标价的八折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等,求这种服装每件的标价?(2)某工厂工人在一定时间内加工一批零件。
2023-2024学年第一学期浙江省宁波市七年级期末数学模拟试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2023的倒数是( )A. B. 3202 C.D. 2. 5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上.用科学记数法表示1300000是( )A .B .C .D .3. 下列化简正确的是( )A. B. C. D. 4. 下列说法正确的是( )A .的平方根是B .没有立方根C .的立方根是D .的算术平方根是5.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或56. 已知a ,b 都是实数,若,则的值是()A .B .C .1D .20237. 若整数a ,则整数a 是( )A. 2B. 3C. 4D. 58. 如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD =2,则线段AB 的长是( )A .10B .15C .20D .259. 某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A .不赚不赔B .赚9元C .赔18元D .赚18元2023-12023-1202351310⨯51.310⨯61.310⨯71.310⨯87x y x y -=-222a b ab ab-=222945a b ba a b -=541m m -=428-82±42()2210a b ++-=()2023a b +2023-1-a <<10. 如图,在同一平面内,,,点为反向延长线上一点(图中所有角均指小于的角).下列结论:①;②;③;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有6个小题,每小题4分,共24分)11.如图是时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于 °.12 . 已知是方程的解,则m 的值是 .13. 如图放置一副三角板,若,则∠AOD 的度数是 °.14 .如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD =2,则线段AB 的长是_________15 .如图,已知线段,动点P 从点A 由发以每秒3cm 的速度向点B 运动,同时动点Q 从点B 出发以每秒2cm 的速度向点A运动,有一个点到达终点时另一点也随之停止运动.90AOB COD ∠=∠=︒AOF DOF ∠=∠E OF 180︒COE BOE ∠=∠180AOD BOC ∠+∠=︒90BOC AOD ∠-∠=︒180COE BOF ∠+∠=︒2x =423m x -=13BOC COD ∠=∠40cm AB =当时,则运动时间t = s .16 .有一个数值转换机,其原理如图所示,若第一次输入的x 的值是1,可发现第一次输出的结果是4,第二次输出的结果是2,,那么第100次输出的结果是 .三、解答题(第17-19题各6分,第20题7分,第21题8分,第22题9分,第23题10分,共52分)17.计算:(1);(2).18.先化简,再求值:,其中,.19. 解方程:(1)3(x -2)+8x =5(2)20.小桂和小依玩猜数游戏,他们的对话如图所示,请按照他们的对话内容解决下列问题:15cm PQ =⋯223-++-()12512236⎛⎫-+⨯- ⎪⎝⎭()()22223449a ab a ab +-+-12a =3b =-250.536x x --=(1)设小桂出生的月份为,人口数为,用含,的代数式表示小桂所说的结果.(2)若小桂所说的结果为123,求小桂出生的月份和他家的人口数.21 .学校举行迎新活动,需要购买A 种灯笼15盏,B 种灯笼20盏,已知A 种灯笼的单价比B 种灯笼的单价多9元,购买A 种灯笼所花费用与B 种灯笼所花费用相同.(1)请问A 、B 两种灯笼的单价分别是多少?总共需多少费用?(2)由于灯笼布置设计方案改变,在总经费不变的情况下,还需购买单价为20元/盏的C 种灯笼,因此需要减少A ,B 两种灯笼的购买数量,其中B 种灯笼的减少数量是A 种灯笼减少数量的2倍,若三种灯笼都要买,如何购买可以买到最多数量的灯笼?22.已知数轴上点A 表示的数为6,B 是数轴上在原点左侧的一点,且A ,B 两点间的距离为10。
七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列交通标志图案,是轴对称图形的是()A. B. C. D.2.下列运算结果正确的是()A. B.C. D.3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.冰柜里有四种饮料:2瓶可乐、3瓶咖啡、4瓶桔子水、6瓶汽水,其中可乐和咖啡是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是()A. B. C. D.5.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为()A. B. C. D.6.如图,要测量河两岸相对的两点A、B的距离,先过点B作BF⊥AB,在BF上找点D,过D作DE⊥BF,再取BD的中点C,连接AC并延长,与DE交点为E,此时测得DE的长度就是AB的长度.这里判定△ABC和△EDC全等的依据是()A. ASAB. SASC. SSSD. AAS7.甲、乙两位同学在一次频率估计概率的试验中,统计了某一结果出现的频率,给出的统计如图所示,则符合这一结果的试验可能是()8.A. 掷一枚正六面体的骰子,出现5点的概率B. 掷一枚硬币,出现正面朝上的概率C. 任意写出一个整数,能被2整除的概率D. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率9.如图,AD,CE为△ABC的角平分线交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A. B. C. D.10.一列货运火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是()A. B.C. D.11.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A. ①②B. ③④C. ①②③D. ①②③④二、填空题(本大题共4小题,共12.0分)12.如果x2+ax+9=(x+3)2,那么a的值为______.13.如图,已知AD=CB,若利用“SSS”来判定△ABC≌△CDA,则添加直接条件是______.14.某人购进一批苹果,到市场零售,已知卖出苹果数量x与售价y的关系如下表,写出用x表示y的关系式15.∠B=70°,∠DAE=18°,则∠C的度数是______.三、计算题(本大题共2小题,共13.0分)16.计算(1)(2x2y)3•(-3xy2)÷6xy(2)2a2(3a2-2a+1)+4a317.先化简,再求值:(m-n)(m+n)+(m+n)2-2m2,其中m=1,n=-2.四、解答题(本大题共7小题,共45.0分)18.如图,一块三角形模具的阴影部分已破损.回答下列问题:(1)只要从模具片中度量出哪些边、角,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具?请简要说明理由.(2)按尺规作图的要求,在框内正确作出△A′B′C′图形,保留作图痕迹,不写作法和证明.19.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形.在下面每个网格中画出一种符合要求的图形(画出三种即可).20.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(______),∴AB∥CD(______)∴∠B=∠DCE(______)又∵∠B=∠D(______),∴∠DCE=∠D(______)∴AD∥BE(______)∴∠E=∠DFE(______)21.如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.求:(1)转动转盘,转出的数字大于3的概率是多少;(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.①这三条线段能构成三角形的概率是多少?②这三条线段能构成等腰三角形的概率是多少?22.如图是小明的爸爸骑一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)小明的爸爸从出发到最后停止共经过了多少分钟?离家最远的距离是多少千米?(3)摩托车在哪一段时间内速度最快?最快速度是多少千米/小时?23.如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,(1)试说明△ABC与△MED全等;(2)若∠M=35°,求∠B的度数?24.某公交车每月的支出费用为4000元,票价为2元/人次,设每月有x人次乘坐该公交车,每月收入与支出的差额为y元.(1)请写出y与x之间的关系式;(2)列表表示当x的值分别是500,1000,1500,200,2500,3000,3500时,y 的值;并观察表格中的数值,直接写出,当每月乘客量达到多少人次以上时,该公交车才不会亏损?(3)如果该公交车每月的收入与支出的差额要达到8000元,则乘坐该公交车的人要达到多少人次?答案和解析1.【答案】D【解析】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称.本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.2.【答案】C【解析】解:A、原式=a4,不符合题意;B、原式=3a,不符合题意;C、原式=4a4,符合题意;D、原式=2x+1,不符合题意,故选:C.各项计算得到结果,即可作出判断.此题考查了整式的除法,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.3.【答案】B【解析】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.本题考查了余角和垂线的定义以及对顶角相等的性质.4.【答案】A【解析】解:2瓶可乐、3瓶咖啡、4瓶桔子水、6瓶汽水一共15瓶,2瓶可乐、3瓶咖啡共5瓶含有咖啡因,所以从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是=.故选:A.先求出饮料的总瓶数及含咖啡因的饮料的瓶数,再利用概率公式解答即可.此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】【分析】直接利用已知表示出新矩形的长,进而得出其面积.此题主要考查了函数关系式,正确表示出新矩形的长是解题关键.【解答】解:∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:s=6(8-x).故选:C.6.【答案】A【解析】解:∵C为BD中点,∴BC=CD,∵AB⊥BF,DE⊥BF,∴∠ABC=∠CDE=90°,且∠ACB=∠DCE,∴在△ABC和△EDC中,满足ASA的判定方法,故选:A.根据条件可得到BC=CD,∠ABD=∠EDC,∠ACB=∠DCE,可得出所用的判定方法.本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.7.【答案】D【解析】【分析】本题考查了折线统计图和利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A.掷一枚正六面体的骰子,出现5点的概率为,故本选项错误;B.掷一枚硬币,出现正面朝上的概率为,故本选项错误;C.任意写出一个整数,能被2整除的概率为,故本选项错误;D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为≈0.33,故本选项正确.故选D.8.【答案】A【解析】【分析】根据角平分线的定义可得出∠BAC=60°、∠ACB=70°,结合三角形内角和可得出∠ABC=50°,由三角形的三条角平分线交于一点,可得出BO平分∠ABC,进而可得出∠ABO的度数,此题得解.本题考查了三角形内角和定理、角平分线以及三角形的内心,利用角平分线的定义结合三角形内角和定理找出∠ABO的度数是解题的关键.【解答】解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°-∠BAC-∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∴∠ABO=∠ABC=25°.故选:A.9.【答案】B【解析】解:抓住关键词语:“匀加速行驶一段时间---匀速行驶---停下(速度为0)---匀加速---匀速”.故选:B.由于图象是速度随时间变化的图象,而火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,注意分析其中的“关键点”,由此得到答案.此题首先正确理解题意,然后根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势.10.【答案】D【解析】解:表示该长方形面积的多项式①(2a+b)(m+n)正确;②2a(m+n)+b(m+n)正确;③m(2a+b)+n(2a+b)正确;④2am+2an+bm+bn正确.故选:D.根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.11.【答案】6【解析】解:x2+ax+9=(x+3)2=x2+6x+9.故答案为:6.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.12.【答案】AB=CD【解析】解:要利用SSS判定两三角形全等,现有AD=CB,AC=CA,则再添加AB=CD 即满足条件.故填AB=CD.要使△ABC≌△CDA,已知AD=CB,且有公共边AC=CA,所以只要添加AB=CD即可.本题重点考查了三角形全等的判定;添加时要按题目的要求进行,必须是符合SSS,注意此点是解答本题的关键.13.【答案】y=8.1x【解析】解:易得1千克苹果的售价是16.2÷2=8.1元,那么x千克的苹果的售价:y=8.1x,故答案为:y=8.1x.应先得到1千克苹果的售价,总售价=单价×数量,把相关数值代入即可求得相关函数关系式.本题考查了函数关系式,解决本题的难点是得到每千克苹果的售价,关键是得到总售价的等量关系.14.【答案】34°【解析】解:∵△ABC中,AD是高,∠B=70°,∴∠BAD=20°,∴∠BAE=38°,∵AE是∠BAC的平分线,∴∠BAC=76°,∴∠C=180°-76°-70°=34°,故答案为:34°.根据三角形内角和定理求出∠BAD,根据角平分线的定义求出∠BAC,根据三角形内角和定理计算即可.本题考查的是三角形内角和定理、三角形的高和中线,掌握三角形内角和等于180°是解题的关键.15.【答案】解:(1)原式=8x6y3•(-3xy2)÷6xy=-4x6y4;(2)原式=6a4-4a3+2a2+4a3=6a4+2a2.【解析】(1)原式利用幂的乘方及积的乘方运算法则,以及单项式乘除单项式法则计算即可求出值;(2)原式利用单项式乘以多项式法则计算,合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:原式=m2-n2+m2+2mn+n2-2m2=2mn,当m=1,n=-2时,原式=-4.【解析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把m与n的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17.【答案】解:(1)要从模具片中度量出边BC的长度、∠B及∠C的大小,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具.因为两角及夹边对应相等的两个三角形全等;(2)如图:【解析】(1)根据全等三角形的判定定理,当已知两角及夹边对应相等时,两个三角形全等,据此求解即可.(2)根据角边角作△A′B′C′即可.本题考查全等三角形的应用,关键知道两角一夹边对应相等的两个三角形全等,根据此也可画出全等三角形.18.【答案】解:如图所示..【解析】根据轴对称的性质设计出图案即可.本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.19.【答案】已知同旁内角互补,两直线平行两直线平行,同位角相等已知等量代换内错角相等,两直线平行两直线平行,内错角相等【解析】证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等).根据平行线的判定和平行线的性质填空.本题利用平行线的判定和平行线的性质填空,主要在于训练证明题的解答过程.20.【答案】解:(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,∴转出的数字大于3的概率是=;(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,∴这三条线段能构成三角形的概率是;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,∴这三条线段能构成等腰三角形的概率是=.【解析】(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,由概率公式可得.本题主要考查概率公式的运用及三角形三边间的关系、等腰三角形的判定,熟练掌握三角形三边间的关系和等腰三角形的判定是解题的关键.21.【答案】解:(1)图象表示了小明的爸爸离家的距离和行驶时间之间的关系,行驶时间是自变量,小明的爸爸离家的距离是因变量;(2)由图可得,摩托车从出发到最后停止共经过:100分钟;离家最远的距离是:40千米.(3)摩托车在20~50分钟内速度最快;最快速度是:30÷=60(千米/小时).【解析】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.(1)根据题意“离家的距离(千米)随行驶时间(分)的变化而变化”,即可得到结论;(2)根据图象得出信息解答即可;(3)根据图象中的信息进行计算即可.22.【答案】解:(1)理由:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).(2)由(1)知△ABC≌△MED,∴∠A=∠M=35°,在Rt△ABC中,∠B=90°-35°=55°.【解析】(1)根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.(2)利用全等三角形的性质解答即可.此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.23.【答案】解:(1)依题意得,y=2x-4000;(2)当x分别为500,1000,1500,2000,2500,3000,3500时,y的值分别为-3000,-2000,-1000,0,1000,2000,3000;根据表格可知,每月的乘客量不少于2000人时,该公交车才不会亏损;(3)当y=8000时,8000=2x-4000,x=6000,答:该公交车每月的收入与支出的差额要达到8000元,则乘坐该公交车的人要达到6000人次.【解析】(1)由于公交车每月的支出费用为4000元,票价为2元/人次,设每月有x人次乘坐该公交车,每月的收入与支出的差额为y元,由此可以列出y与x之间的关系式;(2)分别把所给数据代入其中计算即可求解;根据计算结果可以直接得到结论;(3)把y=8100代入(1)的关系式计算即可求解.此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.。
七年级数学期末模拟试卷(三)
第Ⅰ卷(100分)
一、 细心选一选(本题有10个小题,每小题3分,满分30分,) 1.2-=( ) A .0 B . -2 C .+2 D .1 2.下列计算不.准确..
的是( ). A .2-5= -3 B .(-2)+(-5)= —7 C .2
(3)-=-9 D .(-2)-(-1)= -1 A .0.351×106 B .3.51×105 C .3.51×106 D .35.1×104 4.下列说法准确的是( ).
A .x 不是单项式
B .0不是单项式
C .-x 的系数是-1
D .
1
x
是单项式 5.下列各组式子中是同类项的是( ).
A .4x 与4y
B .2
44xy xy 与 C .2
2
44xy x y 与 D .2
2
44xy y x 与 6.下列计算中结果准确的是( ).
A .4+5ab=9ab
B .66xy x y -=
C .2
2
330a b ba -= D .3
4
7
12517x x x += 7.用算式表示“比-3℃低6℃的温度”准确的是( ).
A .-3+6=3
B .-3-6=-9
C .-3+6=-9
D .-3-6=-3 8.方程242+=-x x 的解是( ).
A .2
-
B .6
C .8
D .10
9.下列解方程过程中,变形准确的是( ).
A .由2x -1=3得2x =3-1
B .由 23(4)5x x -+= 得2345x x --=
C .由-75x =76得x =-76
75
D .由2x -(1)x -=1得2x -x =0 10.三个连续的奇数中,最大的一个是2n +3,那么最小的一个是( ).
A .21n -
B .21n +
C .2(1)n -
D .2(2)n -
二、耐心填一填(本题有6个小题,每小题3分, 满分18分) 11.若2
3m
a bc 为七次多项式,则m 的值为___________. 12.31()(12)46
-⨯-=____________.
13.数轴上表示数-3和2之间的所有整数(包括-3和2两个数)的和等于 .
14.观察下面的数的排列规律,在空格处填上恰当的数: -1,3,-9,27, ,243,… 15.代数式38x -与2互为相反数,则=x . 16.若313x +=,则6x 的值是 .
三、用心答一答(本大题有9小题, 共102分,解答要求写出文字说明, 证明过程或计算步骤) 17.计算(本题有2小题,每小题6分,满分12分)
(1)()()136243-÷-+⨯- (2)2
2
1
(3)602210
--÷⨯
+-
18.化简(本题有2小题,每小题6分,满分12分)
(1) 22
3524x x x x +---+ (2) 22
3(22)2(13)x x x x -+--+
19.解下列方程(本题有2小题,每小题6分,满分12分) (1) 2255x x x -+=-
(2)42(52)3()3
x x -=--
20.(本题满分8分)
先化简,再求值:2
2
2
2
2
2
2(23)2(2)x y y x y x ++---,其中1,2x y =-=
21.(本题满分8分)
有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:
(1)要想使弹簧伸长5厘米,应挂重物多少克?
(2)当所挂重物为x 克时,用代数式表示此时弹簧的总长度. (3)当x =30克时,求此时弹簧的总长度.
第Ⅱ卷(50分)
22.(本题满分12分)
(1)已知53,x -=求x 的值; (2)已知4n =,且520,x y n -+-=求8x y -+的值.
23.(本题满分12分)根据某手机收费标准,从甲地向乙地打长途电话,前3分钟收费1.8元,3分钟后
每分钟加收费0.8元.(1)若通话时间为x 分钟(x ≥3),则应收费多少元? (2)若小王按此标准打一个电话花了8.2元,则这个电话小王打了几分钟?
24.(本题满分12分)
小红做一道数学题“两个多项式A 、B ,B 为6542
--x x ,试求A+B 的值”。
小红误将A+B 看成A -B ,结果答案(计算准确)为121072
++-x x .
(1)试求A+B 的准确结果; (2)求出当x =3时A+B 的值.
25.(本题满分14分)
提示“用整体思想解题:为了简化问题,我们往往把一个式子看成一个数(整体).” 试按提示解答下面问题.
(1)若代数式2x 2+3y 的值为-5,求代数式6x 2+9 y +8的值.
(2)已知A +B =3x 2-5x +1,A -C =-2x +3x 2-5,求当x =2时B +C 的值.。