结晶裂纹的产生机理及防止措施
- 格式:doc
- 大小:75.50 KB
- 文档页数:4
焊接的六大缺陷及其产生原因、危害、预防措施一、外观缺陷外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。
常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。
单面焊的根部未焊透等。
A、咬边是指沿着焊趾,在母材部份形成的凹陷或者沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。
产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。
焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。
直流焊时电弧的磁偏吹也是产生咬边的一个原因。
某些焊接位置( 立、横、仰 )会加剧咬边。
咬边减小了母材的有效截面积,降低构造的承载能力,同时还会造成应力集中,发展为裂纹源。
咬边的预防:矫正操作姿式,选用合理的规范,采用良好的运条方式都会有利于消除咬边。
焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。
B、焊瘤焊缝中的液态金属流到加热缺陷未熔化的母材上或者从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。
焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿式不当等都容易带来焊瘤。
在横、立、仰位置更易形成焊瘤。
焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。
同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。
管子内部的焊瘤减小了它的内径,可能造成流动物阻塞。
防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。
C、凹坑凹坑指焊缝表面或者反面局部的低于母材的部份。
凹坑多是由于收弧时焊条(焊丝)未作短期停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝反面根部产生内凹。
凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。
防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短期停留或者环形摆动,填满弧坑。
D、未焊满未焊满是指焊缝表面上连续的或者断续的沟槽。
一、名词解释1、粘度-表面上平行于表面切线方向且各方向大小相等的张力。
或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。
2、液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。
液态金属的流动性越强,其充型能力越好。
3、液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。
稳定温度场通常是指温度不变的温度场。
4、均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。
非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。
金属结晶过程中,过冷度越大,则形核率越高。
实际液态金属(合金)凝固过程中的形核方式多为异质形核。
5、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。
粗糙界面在有些文献中也称为“非小晶面”。
光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。
也称为“小晶面”或“小平面”。
6、“成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。
这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。
7、共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。
8、离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。
焊接中的常见缺陷的成因和防止措施焊接是保证结构强度的关键,是保证质量的关键,是保证安全和作业的重要条件。
如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起事故。
据对脆断事故调查表明,40%脆断事故是从焊缝缺陷处开始的。
在进行检验的过程中,对焊缝的检验尤为重要。
因此,应及早发现缺陷,把焊接缺陷限制在一定范围内,以确保安全。
焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。
常见缺陷有气孔、夹渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等。
一、气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。
产生气孔的主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
此外,低氢型焊条焊接时,电弧过长,焊接速度过快;埋弧自动焊电压过高等,都易在焊接过程中产生气孔。
由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。
预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。
严格按规定保管、清理和焙烘焊接材料。
不使用变质焊条,当发现焊条药皮变质、剥落或焊芯锈蚀时,应严格控制使用范围。
埋弧焊时,应选用合适的焊接工艺参数,特别是薄板自动焊,焊接速度应尽可能小些。
二、夹渣夹渣就是残留在焊缝中的熔渣。
夹渣也会降低焊缝的强度和致密性。
产生夹渣的原因主要是焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
进行埋弧焊封底时,焊丝偏离焊缝中心,也易形成夹渣。
防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。
多层焊时,应仔细观察坡口两侧熔化情况,每一焊层都要认真清理焊渣。
封底焊渣应彻底清除,埋弧焊要注意防止焊偏。
浅析钢结构焊接裂纹的产生原因及防止措施引言随着科学技术不断发展,科学技术不断提高,为了跟上社会的发展脚步,建筑钢结构得到了广泛的运用。
目前我国的建筑钢结构的造型越来越新颖,空间结构也越来越复杂,所以在选择材料的时候对钢材料的要求也是很高的,但是这些要求很高的钢材料运用到实际工作中,会给钢结构焊接技术造成很大的难度,相应的焊接缺陷发生可能性就会增加。
1、钢结构焊接的难点在钢材料的选材方面大多数采用的低合金高强钢作为材料,这类钢具有强度大,硬度大等特点,但是由于钢结构连接点之间形状复杂,焊缝密集,所以焊接接头的钢约束性大,使焊缝无法自由收缩[1]。
加上在焊接的过程中由于操作不当产生就会双向力或者三向力,可能刚开始力的作用不大,但是在钢结构持续的焊接过程中,很多的力集中在一起,就会行成一个很强的力,增加了焊接接头产生裂纹、层状撕裂的可能性。
另外低合金高强钢中的碳含量非常高,使钢的硬度非常大,焊接性能差,在焊接过程中很容易出现延迟性的裂纹,由于高空操作更加增强了焊接的难度。
2、裂纹的种类和产生原因在建筑钢结构中焊接裂纹的产生通常會有三种形式,其中冷裂纹和热裂纹主要出现在复杂钢结构中,还有一种层状撕裂主要在厚板工程中出现。
2.1冷裂纹冷裂纹一般是在焊接过程后的冷却过程中产生的,有些在焊接后很快就会出现,有的则要过一段时间才会出现。
冷裂纹大多数为延迟裂纹主要发生在低合金高强钢的焊接热影响区,很少出现在焊缝上,由于冷裂纹不是焊后立即出现,而是经过一段时间的冷却之后才出现,所以这类裂纹出现后具有很大的隐蔽性。
冷裂纹出现的原因主要有三个因素(1)钢材淬硬倾向,低合金高强钢的淬硬倾向主要取决于钢材的化学成分、焊接工艺、冷却条件。
钢材的淬硬倾向越大就越容易产生裂纹,由于焊接是一个加热--冷却的过程,对钢结构加热之后冷却就会使钢变得硬度高、脆性大,很容易产生裂纹。
(2)焊接接头含氢量,在焊接的过程中大量的溶解于熔池中,焊接结束之后进入冷却的环节,氢就会极力的逸出,但是由于冷却速度较快有些氢不能很快的逸出而保留在金属中,是钢内部出现中空的现象,也会导致钢结构脆性很大。
1.焊接热源有哪些共同要求描述焊接热源主要用什么指标(简)答:能量密度高、快速实现焊接过程、得到高质量的焊缝和最小的焊接热影响区。
主要指标:最小加热面积、最大功率密度和正常焊接规范条件下的温度。
2.试述焊接接头的形成过程及对焊接质量的影响。
答:(1)预压阶段;(2)通电加热阶段;(3)冷却结晶阶段。
对焊接质量的影响:3.溶滴比表面积的概念及对焊接化学冶金过程的影响答:熔滴的表面积Ag与其质量之比称为熔滴的比表面积S。
熔滴的比表面积越大,熔滴与周围介质的平均相互作用时间越长,熔滴温度越高,越有利于加强冶金反应。
4.焊条熔化系数、熔敷系数的物理意义及表达式真正反映焊接生产率的指标是什么答:焊条金属的平均融化速度:在单位时间内熔化的焊芯质量或长度;损失系数:在焊接过程中由于飞溅、氧化和蒸发而损失的金属质量与熔化的焊芯质量之比;平均熔敷系数(真正反映焊接生产率的指标),由于损失系数不等于零,单位时间内真正进入焊接熔池的金属质量称为平均熔敷速度。
5.试简述不锈钢焊条药皮发红的原因有什么解决措施(简)答:药皮发红的原因:不锈钢焊芯电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。
解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。
6.熔合比的表达式和影响因素多层焊时,如果各层间的熔合比是恒定的,试推导第n层焊缝金属的成分答:表达式:影响因素:焊接方法、焊接工艺参数、接头尺寸形状、坡口形状、焊道数目、母材热物理性能等。
7.从传热学角度说明临界板厚δcr的概念某16Mn钢焊件,采用手工电弧焊,能量E=15KJ/cm 求δcr答:由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc和t8/5不再变化,此时板厚即为临界板厚δcr。
δ==1.95cr cm8.手工电弧焊接厚12mm的MnMoNbB钢,焊接线能量E=2kj/cm,预热温度为50度,求t8/5附λ=(cms℃) CP= J/(cms℃)85000.731.20.750.55,0.982-T 800-T cr cr cm cm cm E t s δδδπλ===>==11(+)=5009.直流正接为何比直流反接时焊缝金属熔氢量高答:(1)直流正接:工件接正极。
Q235A厚钢板焊接裂纹分析及预防措施我厂矿用隔爆型移动变电站箱体法兰及出线盒法兰分别如图1、2所示,材料为Q235A例,焊缝为多层多道焊。
生产中经常出现裂纹现象,有时一个法兰的四条焊缝中,有三条以上裂纹,裂纹长度10—25mm,主要发生在第一道焊缝上,探伤检查裂纹率达95%以上。
众所周知,裂纹是焊缝中最危险的缺陷,大部分结构的破坏原因是由裂纹造成的。
因此,如何预防裂纹的产生,是摆在我们面前的重要课题。
一、裂纹产生原因分析1、裂纹形成的特征现场观察:焊接裂纹主要产生在第一道裂缝中心柱状结晶汇合处,垂直于焊缝鱼鳞波纹。
既有中间裂纹,也有终端裂纹,呈不明显的锯齿形,是由液态转变成固态时高温结晶形成的,属于结晶裂变。
这种裂纹表面有发蓝、发黑的氧化色彩,开裂时无金属拉裂的声响,属于热裂纹。
2、引起裂纹产生的因素(1)工程材质的影响工程材质为Q235A钢,其化学成分不稳定,含碳量的偏高及磷、硫等杂质的增加,是产生裂纹的因素之一。
另外用碳弧气刨开破口,使焊接区局部增碳严重,甚至夹碳,因此易产生裂纹。
(2)焊接规范的影响生产中采用强规范:焊条为E4303(结422)、直径4mm,电流200A施焊。
由于焊接电流过高、温升高,焊接区与周围金属温差大,因此冷却速度快,焊缝金属结晶受到周围金属的牵制,产生热反应二造成裂纹。
(3)工件结构的影响工件钢板厚度均在32mm以上,刚性大,变形困难。
在焊接过程中,焊缝区产生焊接变形,而工件因其刚性大,不易随之应变而产生内应力,因其焊缝裂纹。
(4)熔池形状的影响不同熔池形状对焊缝裂纹也有明显的影响。
窄而深的熔池及焊缝终端收弧过快会形成凹陷弧坑,使得一些低熔点杂质易集中在焊缝中心处,当焊缝结晶产生横向收缩时,焊缝承受拉应力,而中心处强度差,易产生裂纹。
二、防止裂纹产生的措施1、选择适宜的焊条E5016(结506)焊条具有良好的力学性能和抗裂性能,但工艺性比E4303(结422)稍差。
焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。
下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。
1.热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。
目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。
1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si 缝偏高)和单相奥氏体钢、镍基合金以及某些铝合金焊缝中。
这种裂纹是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。
防治措施:在冶金因素方面,适当调整焊缝金属成分,缩短脆性温度区的范围控制焊缝中硫、磷、碳等有害杂质的含量;细化焊缝金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。
2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。
它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。
这一种裂纹的防治措施与结晶裂纹基本上是一致的。
特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。
3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。
这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。
2、再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。
钢结构裂纹成因分析及防范措施摘要:根据工程实践经验,对钢结构裂纹产生的内在原因和外在原因进行了分析,提出了有针对性的解决措施,取得了较好的效果。
关键词:钢结构;裂纹;安装;防治措施Abstract: according to the practical engineering experience, the steel structure crack the internal cause and external causes are analyzed, and the corresponding solutions, and good results have been achieved.Keywords: steel structure; Crack; Installation; Prevention and control measures 引言:焊接裂纹是钢结构制作过程中经常发生且危害较大的质量通病。
近儿年来,安钢集团1 2 0 T转炉及1 5 0 T转炉一1 7 8 0 mm 热连轧主厂房均为钢结构,厂房柱子为焊接H型钢,公辅外网管道为卷焊管,总制作量多达一万多吨,在初期制作过程中,不时发现焊接裂纹,如某分公司管道制作过程中出现纵向裂纹,降低焊接接头的承载能力,最终导致焊接结构的破坏,缩短结构寿命,间接延误工程工期,增加工程施工成本。
焊接裂纹是钢结构制作过程中危害最大的缺陷,一旦发现必须进行返修焊接。
下面结合工程实践,对钢结构制作过程中裂纹产生的原因及防治措施进行简要分析。
1、裂纹产生某工程钢结构加工任务由我司承制,工地由某地施工单位安装,2012 年1月18日,施工人员在安装现场巡检中,发现工程23m标高处外取热器下支座梁与框架梁连接节点腹板处出现裂纹,接报后,承制与安装双方进行了现场调查,平台钢结构主次梁焊接接头部位存在裂纹缺陷,拿出补修方案并100%探伤,并委托专业单位对裂纹梁主材进行硬度检测和现场取样分析。
钢结构焊接裂纹的原因及防治措施本文基于焊接产生裂纹的理论知识,通过实践经验,对钢结构裂纹产生的内外在原因进行了深入分析。
焊接裂纹是钢结构在制造过程出现的危害最严重的缺陷,我司主要承担为安阳钢铁备件制造、安装及系统检测、修理,在钢结构的制造过程当中,有时焊缝会出现焊接裂纹,给工程施工带来一定的影响,具体表现在:裂纹能引起严重的应力集中,降低焊接接头的承载能力,任其发展的话最终会导致焊接结构的破坏,降低工程质量,缩短结构寿命,严重时可能造成安全事故,间接延误工期并增加施工成本,影响公司的形象,所以说裂纹在钢结构的制造过程当中一经发现必须彻底清除,进行修补,确保产品质量.以下对钢结构制造过程当中裂纹产生的原因及其防治措施进行分析。
1.内在原因分析及相应的预防措施一般焊接裂纹按其产生的温度和时间分为热裂纹、冷裂纹和再热裂纹。
1.1.热裂纹热裂纹是指在焊接过程当中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹,故又称为高温裂纹.其产生的原因是由于焊接熔池在结晶过程当中存在偏析现象,偏析出的物质多为低熔点共晶和杂质.它们在结晶过程当中以液态间层形式存在,凝固以后的强度也较低,当焊接应力足够大时就会将液态间层或刚凝固不久的固态金属拉开形成裂纹.此外如果母材的晶界上也存在低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,在一定条件下,焊接应力足够大时也会被拉开形成所谓热影响区液化裂纹.总之,热裂纹的产生是冶金因素和力学因素共同作用的结果.热裂纹特征是:多贯穿在焊缝表面,且断口被氧化成氧化色.它主要的表现形式:纵向裂纹、横向裂纹、根部裂纹、弧坑裂纹及热影响区裂纹.针对其产生的原因采取以下预防措施:a)限制钢材和焊材中的硫、磷元素的质量分数.b)改善熔池金属的一次结晶,细化晶粒提高焊缝金属的抗裂性:广泛采用的方法是向焊缝金属中加入细化晶粒的元素.c)控制焊接工艺参数,适当提高焊缝成型系数:可采用多层多道焊法,避免中心线偏析,可防止中心线裂纹。
钢筋焊接六大焊接缺陷的原因及预防一、外观缺陷外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。
常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。
单面焊的根部未焊透等。
A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。
产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。
焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。
直流焊时电弧的磁偏吹也是产生咬边的一个原因。
某些焊接位置(立、横、仰)会加剧咬边。
咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。
咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。
焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。
B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。
焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。
在横、立、仰位置更易形成焊瘤。
焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。
同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。
管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。
防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。
C、凹坑凹坑指焊缝表面或背面局部的低于母材的部分。
凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。
凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。
防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。
D、未焊满未焊满是指焊缝表面上连续的或断续的沟槽。
铝合金焊接裂纹产生的原因和预防措施摘要:我国是全球最大的钢铁和铝材生产国。
铝合金是现代工业生产中不可缺少的原材料,在工业生产中起着举足轻重的作用。
铝合金是一种广泛应用于生活中的金属,也是一种广泛应用于工业生产的金属原料,对人类社会的发展起着举足轻重的作用。
铝合金作为一种常用的机械加工材料广泛应用于生活中,很多管道和容器等都是用铝合金制作而成。
但因其较高的导热系数和较快的冷却速率,导致其在焊接时极易产生裂纹。
要想更好地进行铝合金的生产和加工,就必须不断地对生产和加工工艺进行优化,从而生产出高质量的铝合金产品。
关键词:铝合金;焊接裂纹;原因措施1铝合金焊缝裂纹类型与成因分析铝合金焊接时,因其材质、性能及焊接组织的差异,会产生多种形式的裂纹。
裂纹不仅会影响到结构的强度,还会导致结构的突然失效。
所以,在焊接的时候,是不能有裂缝的。
1.1热裂机理分析为了对铝合金焊接热裂纹的形成机制进行精确的研究,将其焊接熔池的结晶过程划分为3个阶段。
①液固阶段。
在熔化过程中,由于熔化温度较高,在熔化过程中,只有少量的晶核。
在较低的温度下,较长的降温时间下,结晶核不断生长,形成新的结晶核。
但在此过程中,液相所占比例很大,而且颗粒间并无直接接触,因此,不会影响尚未凝固的液态铝的自由流动。
这样的话,即便是在拉应力的作用下,这些裂口也会很快被液态金属所填充。
所以,在液固相中,几乎没有开裂的可能。
②固液阶段。
随着熔池的不断结晶,熔池中的固体越来越多,之前的结晶也越来越大,等到温度降到一定程度后,这些结晶便会开始接触,然后相互挤压。
此时,液体铝的流动受阻,也就意味着,液体铝变成了固体和液体。
此时,因为只有少量的液态铝,其自身的形变可以得到很大的发展,残余的液相在晶粒之间难以流动,甚至不能填补因拉应力而形成的细小空隙。
在这种情况下,只要有一点点的张应力,就会出现裂缝。
所以,这一阶段也被称为“脆温度区”。
③完全凝固阶段。
熔池中的金属完全固化后,焊接接头在受拉状态下仍具有很高的力学性能,因此,焊接接头断裂的概率很低。
1.焊条金属的平均熔化速度:单位时间内熔化的焊芯的质量或长度。
2.焊条金属的平均熔敷速度:单位时间内真正进入焊缝的质量或者长度。
3.熔滴以及其过渡特性熔滴:焊条端部熔化形成的滴状液态金属。
过渡形式:短路过渡,颗粒状过渡,附壁过渡。
4.熔滴的比表面积:R 下降S 上升冶金反应越充分。
5.熔池:由局部熔化的母材和熔化的焊接金属所组成的具有一定几何形状的液态金属。
6.熔池的形状和尺寸:形状是半椭球形。
7.焊接化学冶金的反应区以及反应条件,特点。
1)药皮反应区反应温度:100—药皮的熔点。
主要反应有1:水分蒸发2:某些物质的分解如碳酸盐3:铁合金的氧化产生气体的作用:保护作用与使得铁合金氧化。
2)熔滴反应区反应温度:最高温度达到2800 平均温度为1800 —2400。
熔滴与气体和熔渣接触面积大。
反应时间短。
冶金反应最激烈,对焊缝的质量影响最大。
主要反应:气体分解溶解。
3)熔池反应区。
物理条件:温度低600 —1900 S小反应时间长,有时达到几十秒。
温度分布不均匀:前部熔化,后部凝固,易于排出气体和浃渣。
8.药皮的重量系数:单位长度上药皮与焊芯的质量比。
9.熔合比:母材在焊缝中所占的比例。
10.氢对金属的作用:1)氢在金属中的溶解:a)能形成氢化物,在低温下形成大量的氢化物,如Ti V No Zr Ta 等b)不能形成氢化物,但能溶解H 如Fe Al Ni Cu等进入金属中的形式:气相中的氢原子和氢离子接触液相界面,向内扩散,或着通过渣层向内扩散。
2)溶解度:a)T 上升S 上升所以温度达到最大值以后继续增加T S 下降。
在沸点时S等于0 在凝固点(相变点)S 很小。
b)合金元素:如Ti Zr Nb O 使得S增加。
Mn Ni Cr Mo 无影响。
C Si Al 使得S下降。
c)晶格结构的影响:面心立方大于体心立方。
3)氢在焊缝中的扩散行为:扩散氢:在钢的焊缝中,大部分以氢原子或者氢离子形成存在与焊缝金属形成间隙固溶体,半径小,可在晶格中自由扩散,残余氢:小部分氢扩散聚集在金属的晶格缺陷,以及空隙中,并且结合成为氢分子,所以半径大不能扩散。
图1 黑细线条裂纹特征 图2 直线细纹裂纹特征
常见裂纹形成机理及特征
裂纹是在焊接应力及其他因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏,形成新的界面而产生的缝隙。
按照裂纹发生的条件和时机,常见裂纹可以分为:热裂纹、冷裂纹、再热裂纹等。
(1)热裂纹又称结晶裂纹,一般是沿晶界开裂,发生在杂质较多的低碳钢、低合金钢和奥氏体不锈钢中。
热裂纹往往形成于焊缝金属凝固末期,敏感温度区在固相线附近的高温区。
在焊缝金属凝固的过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成“液态薄膜”,在特定敏感温度区间,强度极小,由于焊缝收缩而受到拉应力,最终开裂形成裂纹。
热力管道焊接裂纹产生原因分析及修复工艺摘要:随着北方城镇集中供热模式的发展,城镇供热管网的建设规模得到大力发展。
由于供热管道安装多为地下埋管,对其安装质量提出更高的要求。
而在供热管网安装工程中,管道组对焊接是关键技术,也是确保管道安装质量的关键工序,因此,确保管道焊接质量成为工程的重中之重。
鉴于此,文章对热力管道焊接中存在的裂纹类型和形成原因进行了分析,然后介绍了相应的裂纹修复工艺,并提出了防止焊接裂纹出现的措施,以供参考。
关键词:热力管道;焊接裂纹;修复工艺1热力管道焊接裂纹类型1.1冷裂纹热力管道的冷裂纹,主要产生于熔合线部位。
由于管道焊接接头处存在淬硬组织,导致熔合线处的性能脆化。
此外,在热影响区域内存在大量的氢气分子。
这些氢气分子也会降低焊接处的韧性,并聚集在钢管焊接的缺陷部位,给缺陷部位造成局部化的压力,进而产生冷裂纹。
在冷裂纹类型中,最常见的要属延迟裂纹。
这种裂纹也是在钢管焊接后的一段时间内发生的,在氢元素的扩散下,诱导发生裂纹。
1.2热裂纹热裂纹,就是指管道在高温的环境下产生的裂纹。
这种裂纹一般发生在焊缝内部,有的裂纹会分布在热力天然气钢管的热影响区域。
热裂纹的表现形式是多样的,比如纵向裂纹、横向裂纹、根部裂纹等,每种裂纹的形式都离不开结晶的影响。
在焊接工艺中,若管道材质中存在一些杂质,会形成裂纹现象。
另外,熔池结晶过程中会存在偏析情况,在较大的焊接应力作用下,熔池产生的结晶将被拉开,进而形成裂纹。
1.3再热裂纹热力管道的再热裂纹,就是指在焊接好的焊件中,在恒定的温度环境下,再次给予加热条件。
在再次受热的环境下,管道裂纹得以产生。
再热裂纹一般发生在焊接的融合线处,并且在其附近的粗晶区域内。
从焊趾到结晶区域范围内,管道及其焊接部位,会受到温度服役及预应力的影响,在热处理的晶体发展中产生裂纹。
1.4层状撕裂裂纹层状撕裂裂纹的产生,主要是源于钢管材料内部掺入了杂物。
因此,在热力管道进行焊接的同时,在轧制的垂直方向,会产生一定的应力。
结晶裂纹的成因分析及预防措施澄西船厂高云中摘要:影响结晶裂纹生成的因素主要有冶金和工艺两方面的原因,对原材料的冶金因素影响,作为材料的用户单位,可调整余地很少,但工艺因素可以影响到焊缝的冶金状态及应变增长率。
根据这一原理,通过采取工艺措施,在风塔法兰、船舶大合拢打底焊道的裂纹处理和预防上获得了满意结果,保障了风塔及船舶正常的生产和经营。
关键词:结晶裂纹;分析;工艺措施前言进入21世纪以来,随着我厂技术、管理的快步提升,与以往相比,我厂产品结构和生产方式上发生了较大变化。
在修造船、钢结构产品中,所有产品出现了大型化现象;产品由以前的单件制作,转为批量化生产;以前的结构件大多采用薄板低碳钢,现在大多采用厚板低合金高强钢;焊接方式由以前的手工焊条焊为主,变成为采用CO气保护焊、埋弧焊等高能量、高效率的焊接方法。
在这些构件制作中,经常会在焊缝中心出现结晶裂纹,如船台大合拢CO打底焊、风塔法兰T型角接缝的埋弧焊、钢管桩工程中的埋弧焊终端裂纹等,这些裂纹的出现,严重影响了我厂正常的生产。
因此,为保障我厂产品经营和生产,研究预防发生结晶裂纹的控制措施,具有十分的紧迫性。
1裂纹的产生情况结晶裂纹在我厂各产品中均发现过,较典型的是船台大合拢CQ打底焊道的焊缝中心,风塔法兰T型焊缝的埋弧焊打底层焊缝中心,本文以我厂制造的某公司64.7M风塔为例,对结晶裂纹的产生原因进行分析。
裂纹产生的情况如下图1。
图1中仅仅是裂纹的一种形式,实际施工过程中,在焊道1、甚至焊道2 上也有裂纹发生,而且可以肯定地说,焊道1也很易产生裂纹,只是有的观察到了,有的不易察觉,在反面清根时,因受热而进一步扩展,所以感觉裂纹越刨越深。
这些裂纹的普遍特征是均在焊缝中纵向出现,而且是在焊缝凝固后期产生,因此属于典型的结晶裂纹。
裂纹图1风塔法兰裂纹产生过程2结晶裂纹的形成机理及影响因素2.1结晶裂纹的形成机理焊缝金属在凝固过程中,最后凝固的存在于固相晶体间的低熔点液态金属已成薄膜,碳钢和低合金高强钢中的硫、磷、硅、镍都能形成低熔点共晶,在结晶过程中形成液态薄膜。
结晶裂纹的成因分析及预防措施澄西船厂高云中摘要:影响结晶裂纹生成的因素主要有冶金和工艺两方面的原因,对原材料的冶金因素影响,作为材料的用户单位,可调整余地很少,但工艺因素可以影响到焊缝的冶金状态及应变增长率。
根据这一原理,通过采取工艺措施,在风塔法兰、船舶大合拢打底焊道的裂纹处理和预防上获得了满意结果,保障了风塔及船舶正常的生产和经营。
关键词:结晶裂纹;分析;工艺措施前言进入21世纪以来,随着我厂技术、管理的快步提升,与以往相比,我厂产品结构和生产方式上发生了较大变化。
在修造船、钢结构产品中,所有产品出现了大型化现象;产品由以前的单件制作,转为批量化生产;以前的结构件大多采用薄板低碳钢,现在大多采用厚板低合金高强钢;焊接方式由以前的手工焊条焊为主,变成为采用CO2气保护焊、埋弧焊等高能量、高效率的焊接方法。
在这些构件制作中,经常会在焊缝中心出现结晶裂纹,如船台大合拢CO2打底焊、风塔法兰T型角接缝的埋弧焊、钢管桩工程中的埋弧焊终端裂纹等,这些裂纹的出现,严重影响了我厂正常的生产。
因此,为保障我厂产品经营和生产,研究预防发生结晶裂纹的控制措施,具有十分的紧迫性。
1 裂纹的产生情况结晶裂纹在我厂各产品中均发现过,较典型的是船台大合拢CO2打底焊道的焊缝中心,风塔法兰T型焊缝的埋弧焊打底层焊缝中心,本文以我厂制造的某公司64.7M风塔为例,对结晶裂纹的产生原因进行分析。
裂纹产生的情况如下图1。
图1 中仅仅是裂纹的一种形式,实际施工过程中,在焊道1、甚至焊道2上也有裂纹发生,而且可以肯定地说,焊道1也很易产生裂纹,只是有的观察到了,有的不易察觉,在反面清根时,因受热而进一步扩展,所以感觉裂纹越刨越深。
这些裂纹的普遍特征是均在焊缝中纵向出现,而且是在焊缝凝固后期产生,因此属于典型的结晶裂纹。
图1 风塔法兰裂纹产生过程2 结晶裂纹的形成机理及影响因素2.1 结晶裂纹的形成机理焊缝金属在凝固过程中,最后凝固的存在于固相晶体间的低熔点液态金属已成薄膜,碳钢和低合金高强钢中的硫、磷、硅、镍都能形成低熔点共晶,在结晶过程中形成液态薄膜。
由于液态薄膜强度低而使应变集中,但同时其变形能力很差,塑性很低,在拉应力作用下而开裂。
2.2 影响结晶裂纹生成的因素影响结晶裂纹的因素可归纳为冶金和工艺因素两方面。
在冶金方面,一般情况下,各种合金元素及杂质增大了脆性温度区,而尤其是形成低熔点薄膜的杂质是影响裂纹产生的最重要的因素。
工艺因素主要是影响有害杂质偏析的情况及应变增长率的大小,因此对结晶裂纹的产生也有很大的影响。
3 风塔法兰T型接头裂纹分析64.7M法兰焊接的裂纹,一开始以为是偶然性造成的,后来通过几次试验,仍然发生裂纹。
经过现场调研,发现工艺执行全部合乎要求,因此从冶金方面进行分析。
根据文献介绍,在低合金高强钢的多层多道埋弧焊焊缝根部焊道或靠近坡口边缘的焊道中易出现热裂纹,这种热裂纹产生的原因与根部焊缝基材的稀释率大(亦即焊缝区熔入了较多的母材金属)及焊接速度较快有关。
母材是通过熔炼、热处理等环节来保证机械性能的,而焊缝金属仅通过熔池冶金来获得化学和力学性能,因此单纯的焊缝金属的化学纯净度比母材的要求要高得多。
如果焊缝金属得到母材金属的稀释而带入有害杂质元素,形成了较多的低熔共晶,扩大了脆性温度区,焊缝凝固时就会产生结晶裂纹。
这种初步的判断主要是建立在相关产品的横向比较上。
依据为:在低温GE塔和Vestas风塔施工中,未出现此种裂纹,而在这批风塔中出现了。
GE低温塔法兰及筒体均为Q345E, Vestas风塔法兰Q345E/筒体Q235D,两者基本一致。
而64.7M风塔法兰Q345D/筒体Q345C,与低温塔相比,法兰材料差了一个质量等级,筒体材料差了两个级别,参考GB/T 1591-94就会发现(见表1),Q345C、Q345D与Q345E钢材的化学成分中杂质元素S、P会有很大的差异,而且Q345C钢中的含碳量上限也较高,据此认为此批风塔容易产生热裂纹,在随后的化学分析中证实了这一点,母材分析结果见表2。
同的,这些元素的影响作用如下:a. 硫和磷在各类钢中都会增加结晶裂纹倾向。
S和P增大了脆性温度区间,因此增大了裂纹倾向;S 和P是钢中极易偏析的元素,而且能形成多种低熔点共晶,使结晶过程中极易形成液态薄膜。
因此,S和P是最为有害的杂质。
b. 碳在钢中是影响结晶裂纹的主要元素,并能加剧S、P及其它元素的有害作用。
若焊缝含C量超过0.16%,热裂倾向骤然增大。
c. 锰具有脱硫作用,同时也能改善硫化物的分布状态,从而提高了抗裂性。
为了防止硫引起的结晶裂纹,应提高Mn/S比值。
但是,当含C量超过0.16%时,P的危害将超过S,再增加Mn/S比值也没有作用,所以必须严格控制焊缝中P含量。
由各元素作用,再结合表2中化学元素分析结果都证实,64.7M风塔法兰焊缝的热裂倾向比其它工程要大得多,所以出现结晶裂纹不是偶然现象。
4 结晶裂纹的控制由结晶裂纹的成因及影响因素可以知道,要控制结晶裂纹,仍然只能从焊缝金属成分和调整焊接工艺两方面着手。
4.1 控制焊缝金属成分焊缝金属的成分主要由焊接材料决定,同时受钢材化学成分的影响。
在64.7M风塔施工中,焊接工艺完全照搬低温塔的要求,焊接材料是通过系列试验而选用的,就国内市场情况来说,选配已属最优化,所以更改焊材是不切实际的,至于钢材冶金方面,不是我们用户可以左右的,因为钢材理化指标均远远超过GB标准。
因此,控制结晶裂纹,只能靠焊接工艺调整。
4.2 调整焊接工艺4.2.1 改变焊接方法图1中的1、3打底焊道原来采用埋弧焊工艺,改为采用CO2气保护焊打底,由于CO2焊电流较小,所以减小了熔合比亦即降低了焊缝基材的稀释率,减少杂质元素S、P及碳元素对焊缝金属的影响,这是解决根部焊道结晶裂纹最重要方法,不足之处是打底焊效率有所降低。
4.2.2 控制焊接线能量由于实际生产中,焊接电流总是偏上限,造成线能量过大,但大线能量对结晶组织的形态有害,因此无论是打底CO2焊,还是其它焊道的埋弧焊,都必须采用较小的焊接电流。
这样可以通过减小晶粒度和降低应变量,减小结晶裂纹倾向。
4.2.3 控制成形系数成形系数φ是指焊缝熔宽B与熔深H之比,通常认为φ之倒数即H/W≥1时,最易产生结晶裂纹。
打底焊道改用CO2焊后,由于电流较小,可以使H/W明显下降;另一途径是适当增加坡口角度,以提高φ值。
实际产品施工时,要求防止碳刨清根后出现上小下大的U形坡口。
4.2.4 做好预热工作预热主要是为了防止冷裂纹,但预热降低了冷却速度,也即减小了热应变的速率,对防止结晶裂纹有利,因此在施工时进一步严格预热工艺。
综上所述,实际上,所有的工艺因素均对熔池冶金产生了影响,目的都是改善熔池冶金条件(化学和物理方面)来降低裂纹倾向。
通过采取这些措施,在随后的风塔施工中,不再有结晶裂纹的出现,保证了工程的质量和进度。
5 船台大合拢打底焊道结晶裂纹的控制CO2单面焊道打底焊道结晶裂纹主要出现在平焊位置,如内底板、甲板的环向大合拢焊缝。
这种裂纹与风塔法兰结晶裂纹基本成因是一致的,但裂纹的形态和控制、处理上有所不同。
5.1 裂纹的形态和处理方式单面焊打底道结晶裂纹也都发生焊缝中纵向,裂纹间断,长短不一。
经现场碳刨观察,裂纹深度很浅,大部分情况下,可以通过二次重熔消除,为了确保焊缝质量,要求采用角向砂轮清除裂纹后才能进行第二道的焊接。
5.2 控制焊接电流焊接电流的大小直接决定焊接线能量大小,线能量大,影响焊缝晶粒度,增大焊接内应力,同时如果电流过大的话,焊缝金属的稀释率也大,故结晶裂纹倾向增大。
实际生产中,CO2焊接电流均是偏大的,因此控制电流尤为重要,根据我厂的经验及相关文献报道,要求打底焊道电流控制在200A以下。
5.3 控制焊接速度研究表明,焊接速度过快时形成的结晶组织对裂纹敏感性大。
但从现场看,由于坡口间隙控制不好、焊工操作因素等,往往焊接速度不是过快,而是过慢,过慢的焊速和较大的焊接电流结合在一起,造成线能量很大,其结果一是焊缝晶粒粗大,焊缝内应力增大;二是根部母材及衬垫中杂质熔入过多,焊缝成形系数减小,从而增大了结晶裂纹倾向。
然而,这并不是说焊接速度就不要控制,研究证明,150mm/min的焊接速度有利于防止裂纹的产生。
5.4 用预热控制焊缝结晶速度当焊件较厚或环境温度较低时,熔池结晶过快,造成较大的热应变,容易产生结晶裂纹。
实践证明,在低温天气时,大合拢打底焊道最易出现结晶裂纹。
我厂施工文件中明确规定当环境温度低于0℃或厚度大于30mm 要求预热措施。
从厚度上看,内底和甲板虽未达到这样的厚度,但也往往接近于临界状态。
对于气温方面,在冬季施工时,因温度过低而采取预热措施,而在冬春、秋冬转换时节,气温仅仅是接近临界状态,往往就会忽视预热工序,但因厚度和温度均接近临界点,反而在这两个季节最易发生裂纹。
因此为防止结晶裂纹的产生,在气温接近0℃就要做好预热工作。
5.5 焊接材料的控制打底焊道采用TWE-711Ni焊丝。
必须指出的是,Ni的加入是为了改善低温韧性,但Ni易与S形成低熔共晶,增加了裂纹倾向。
TWE-711Ni并不是在TWE-711的基础上简单地加入合金元素Ni,TWE-711Ni焊丝合金系与TWE-711焊丝是不同的,而且在S、P及其它杂质元素上控制更严格,因此,焊缝金属的总体性能比TWE-711要好得多,所以具有更好的抗裂性。
此外,焊接坡口角度、装配间隙等对裂纹也有影响,只有在各方面采取措施,才能避免结晶裂纹的出现。
6 结论杂质元素S、P及合金元素C对焊缝金属的结晶裂纹有最直接的影响,是产生结晶裂纹的内因,在焊接时,母材对焊缝的熔池冶金会产生不利的影响,因此应降低焊缝金属的稀释率。
通过改变焊接方法,防止了法兰角接缝结晶裂纹倾向,但伴随的是打底焊效率受到了影响,下一步工作是研究如何在埋弧焊打底时,完全防止裂纹的发生。
通过一系列的焊接工艺措施的改进,使大合拢CO2焊打底焊道结晶裂纹的发生机率大为降低,但为了焊接杜绝结晶裂纹,应在施工中更加规范地严格执行焊接工艺,包括焊接前道工序的质量必须得到提高。
个人简介:高云中(1964-),江苏常州人,焊接高工,澄西船厂副主任工程师,焊接试验室主任。
采集于《现代焊接》。