参数方程和 直线的参数方程
- 格式:ppt
- 大小:1.29 MB
- 文档页数:26
直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。
直线l上的点与对应的参数t是一一对应关系。
若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。
若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。
若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。
直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。
直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。
对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。
如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。
直线的参数方程(1)直线的标准参数方程:经过定点,倾斜角为的直线的参数方程为:(为参数);性质:(2)直线的一般参数方程:过定点,且其斜率为的直线的参数方程为: 性质:(为参数,为为常数,)例1.把y=2x+3化为参数方程。
变式:直线l 的方程:1sin 252cos 25x t y t ì=-ïí=+ïî(t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°例2. 已知直线l:15x t y ì=+ïíï=-î (t 为参数)与直线m:0x y --=交于P 点, 求点M(1,-5)到点P 的距离.例3:已知直线L过点M(1,1),且倾斜角的余弦值为35,L与圆229x y+=交与A,B,且AB中点为C(1)求L的参数方程(2)求中点C所对应的参数t及C点坐标(3)求|CM|(4)求|AM|(5)求|AB|(6)求|MA|+|MB|(7)求|MA||MB|二、根据t的式子求解1.在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(Ⅰ)写出圆的标准方程和直线的参数方程;(Ⅱ)设与圆相交于、两点,求的值.2.在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线交于点.若点的坐标为(3,),求.3.在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(Ⅰ)将圆的极坐标方程化为直角坐标方程;(Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.4.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为 (为参数),与分别交于. (Ⅰ)写出的平面直角坐标系方程和的普通方程; (Ⅱ)若成等比数列,求的值.5.已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求直线的直角坐标方程; (2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.6.在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,AB =求l 的斜率.圆的参数方程已知圆心为,半径为的圆的参数方程为:(是参数,);1.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos r q =,0,2p q 轾Î犏臌. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.椭圆的参数方程椭圆()的参数方程(为参数)。
直线的参数方程直线是平面上最简单的几何图形之一,在数学中直线可以用多种方式来表示,其中一种常用的表示方式是参数方程。
本文将介绍直线的参数方程及其相关概念和性质。
什么是参数方程?参数方程是用参数表示的方程,其中参数是一个变量,可以取不同的值。
对于直线来说,参数方程可以用来描述直线上各点的坐标。
直线的参数方程表示设直线上一点的坐标为(x, y),参数方程可以表示为:x = x0 + aty = y0 + bt其中 (x0, y0) 是直线上一点的坐标,a 和 b 是常数,t 是参数。
直线的参数方程的意义直线的参数方程的意义在于,通过改变参数 t 的取值,我们可以得到直线上不同点的坐标。
参数方程使我们能够更加灵活地描述直线,并进行计算和分析。
值得注意的是,直线的参数方程在某些特殊情况下可能并不唯一。
例如,在平行于坐标轴的直线上,参数方程可以有多种不同的表示方式。
直线的参数方程的性质直线的参数方程具有以下性质:1.直线上的任意两点,都可以通过参数方程表示。
2.参数方程中的参数 t 是一个实数,可以取任意值,因此可以描述出直线上的每一个点。
3.相同的直线可以有不同的参数方程表示,但所有的参数方程都会描述出同一条直线。
直线参数方程的应用直线的参数方程在数学和物理中有广泛应用。
例如,在几何学中,我们可以利用参数方程求直线的长度、直线与其他几何图形的交点等问题。
在物理学中,直线的参数方程可以用来描述物体的运动轨迹。
通过改变参数的取值,我们可以得到物体在不同时刻的位置坐标,从而研究其运动规律。
直线的参数方程是一种常见的表示直线的方法。
通过参数方程,我们可以更加灵活地描述直线上的各个点,进行计算和分析。
直线的参数方程具有多种性质,可以在几何学和物理学等领域中得到广泛的应用。
希望通过本文的介绍,读者对直线的参数方程有了更加深入的理解,能够灵活应用于实际问题的解决中。
直线参数方程标准形式直线是平面几何中的基本概念,而直线的参数方程标准形式是描述直线的一种重要方式。
在学习直线参数方程标准形式之前,我们首先要了解直线的一般方程和点斜式方程,这样才能更好地理解参数方程标准形式的概念和应用。
一、直线的一般方程和点斜式方程。
1. 直线的一般方程。
直线的一般方程通常表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不全为零。
这种形式的方程可以表示任意一条直线,但并不直观,不利于直线的直观理解和运用。
2. 直线的点斜式方程。
直线的点斜式方程通常表示为y y1 = k(x x1),其中(x1, y1)为直线上的一点,k 为直线的斜率。
点斜式方程直观地表示了直线的斜率和一点坐标,更容易理解和使用。
二、直线参数方程标准形式。
直线的参数方程标准形式是另一种描述直线的方式,它的形式为:x = x1 + at。
y = y1 + bt。
其中(x1, y1)为直线上的一点,a和b为参数。
直线的参数方程标准形式比点斜式方程更加灵活,可以更直观地描述直线的方向和位置。
三、直线参数方程标准形式的应用。
1. 直线的平行和垂直关系。
通过直线的参数方程标准形式,我们可以很容易地判断两条直线是否平行或垂直。
如果两条直线的参数a和b分别成比例,那么它们平行;如果两条直线的参数a和b的乘积为-1,那么它们垂直。
2. 直线的交点。
两条直线的交点可以通过它们的参数方程标准形式求解。
将两条直线的参数方程联立,解出交点的坐标,即可得到它们的交点。
3. 直线的平移和旋转。
直线的参数方程标准形式可以很方便地描述直线的平移和旋转。
对参数a和b进行变换,即可得到平移或旋转后的直线方程。
四、总结。
直线的参数方程标准形式是描述直线的一种重要方式,它比一般方程和点斜式方程更加灵活和直观。
通过参数方程标准形式,我们可以更方便地判断直线的性质、求解直线的交点,以及描述直线的平移和旋转。
因此,掌握直线参数方程标准形式对于理解和运用直线的性质具有重要意义。
高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)(2)一般式过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 不参数)②在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时,|t|表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t|.直线参数方程的应用设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是(x 0+t 1cosα,y 0+t 1sinα)(x 0+t 2cosα,y 0+t 2sinα);(2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t,则t=221t t +中点P 到定点P 0的距离|PP 0|=|t|=|221t t +|(4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆12222=+b y a x (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x y tg y x θρ三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x 2+y 2-4x-2y-20=0上求两点A 和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数)则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=θθcos sin 321++所确定的图形是()A.直线B.椭圆C.双曲D.抛物线解:ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析例3椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.例4参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x>0)即y=21x 2(x>0).∴应选B.例5在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32) C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2将x=21代入,得y=21∴应选C.例6下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是()A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty tx 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t ty tgt x 2cos 12cos 1解:普通方程x 2-y 中的x∈R,y≥0,A.中x=|t|≥0,B.中x=cost∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C.∴应选D.例7曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sinθ=22y x y +代入ρ=4sinθ,得x 2+y 2=4y,即x 2+(y-2)2=4.∴应选B.例8极坐标ρ=cos(θπ-4)表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y,表示圆.应选D.例9在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2 D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO⊥OX,OA 为直径,|OA|=4,l 和圆相切,l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例104ρsin 22θ=5表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x +ρcosθ=x,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线.∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线 B.两条相交直线 C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3x 2,y=±x 3,它表示两相交直线.∴应选B.四、能力训练(一)选择题1.极坐标方程ρcosθ=34表示()A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ=3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为()A.1 B.2 C.3 D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0,θ1+θ2=0,则M,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是()A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab≠0)化为普通方程是()A.)(12222a xb y a x ≠=+ B.)(12222a x b y a x -≠=+C.)(12222a x by a x ≠=- D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为()A.(1,3π),r=2 B.(1,6π),r=1 C.(1,3π),r=1D.(1,-3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是()A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方程为()A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±x D.y+1=)2(2-±x 11.若直线⎩⎨⎧=+=bty at x 4((t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为()A.3π B.32π C.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M,N 间的距离为()A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│D.2p(t 1-t 2)213.若点P(x,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是()A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是()A.θθρsin cos 23-=B.θθρcos cos 23-=C.θθρsin 2cos 3-=D.θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为.18.极坐标方程ρ=tgθsecθ表示的曲线是.19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为;直线上一点P(x ,y)与点M(-1,2)的距离为.(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数)上一点P,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p>0,t 为参数),当t∈[-1,2]时,曲线C 的端点为A,B,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD,与椭圆的左半部分交于C、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由.(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离.24.A,B 为椭圆2222by a x +=1,(a>b>0)上的两点,且OA⊥OB,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l∶812yx +=1,P 是l 上一点,射线OP 交椭圆于点R,又点Q 在OP 上且满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D3.C4.C5.B6.A7.A8.C9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。
三维空间中直线的方程式在三维空间中,直线的方程可以用参数方程和一般方程两种形式表示。
参数方程是将直线上的每一个点都表示为一个参数所确定的向量,而一般方程则是通过直线上两个点的坐标来表示的。
1.参数方程:直线的参数方程可以表示为:x = x0 + aty = y0 + btz = z0 + ct其中(x0,y0,z0)为直线上的已知点,而(a,b,c)为直线的方向向量,t为参数。
2.一般方程:首先,我们需要确定直线的方向向量。
假设直线上的两个点分别为P(x1,y1,z1)和Q(x2,y2,z2),则直线的方向向量可以表示为V=PQ=(x2-x1,y2-y1,z2-z1)。
然后,我们可以通过点P的坐标和方向向量V来推导直线的一般方程。
2.1.点向式:直线的一般方程可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c其中(a,b,c)为方向向量V的分量。
2.2.对称式:直线的一般方程也可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c=t这里的t为参数。
2.3.常法式:直线的一般方程还可以表示为:Ax+By+Cz+D=0其中A,B,C为方向向量V的分量,而D为常数。
对于两个不平行的直线,我们可以通过将它们的方向向量进行叉乘来求得它们的交点。
除了参数方程和一般方程,还有其他表示直线的方法,比如点法式、斜截式等。
这些方法都根据直线上已知点和方向向量的不同形式而有所不同。
需要注意的是,在使用直线的方程时,我们需要根据实际情况选择最适合的表达形式。
有时候参数方程更方便,可以直接通过改变参数t来表示直线上的任意一点;而一般方程则适合于求直线与其他平面或直线的交点等问题。
参数方程的知识点总结
参数方程虽然和函数很相似,但是却是与函数不同的。
下面请看小编带来的参数方程的知识点总结!欢迎大家参考!
参数方程的知识点总结一般在平面直角坐标系中,如果曲线上任意一点的坐标x,
y都是某个变数t的函数:x=f(t),y=g(t),
并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x,
y的变数t叫做参变数,简称参数。
圆的参数方程
x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径θ为参数
椭圆的参数方程
x=a cosθ y=b sinθ a为长半轴长 b为短半轴长θ为参数
双曲线的参数方程
x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长θ为参数
抛物线的参数方程
x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程
x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
分析
消去参数,把直线与圆的参数方程化为普通方程;
求出圆心到直线的距离d,再根据直线l与圆C有公共点d≤r即可求出.
参数方程问题,最重要的就是消参,但是消参的过程中一定要注意范围有没有变化!另外,需要记住常见的参数方程。
答案。
xx x第54讲 参数方程与 曲线系1.参数方程是联系多个变量之间关系的桥梁,在解题过程中引入参数或参数方程,使多个变量单一化,达到简化计算,解决问题的目的.几种常见的参数方程的形式如下:(1)直线的参数方程⎩⎨⎧x =x 0+t cos θ,y =y 0+t sin θ,(t 为参数).其中θ是直线的倾斜角,参数t 表示有向线段AP →的数量(其中点A 、P 的坐标为A (x 0,y 0),P (x ,y )),如图1所示.(2)圆的参数方程⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ,(θ为参数).其中r 是半径,圆心是(x 0,y 0),参数θ表示圆心角,如图2所示.(3)椭圆参数方程⎩⎨⎧x =x 0+a cos θ,y =y 0+b sin θ,(θ为参数).其中椭圆中心是(x 0,y 0),长半轴长为a ,短半轴长为b (a >b ),参数θ表示离心(4)双曲线参数方程⎩⎨⎧x =x 0+a sec θ,y =y 0+b tan θ,(θ为参数).其中双曲线中心是(x 0,y 0),实半轴长为a ,虚半轴长为b ,θ是参数.(5)抛物线的参数方程为⎩⎨⎧x =2pt 2,y =2pt ,(t 为参数).其中焦点为(p 2,0),准线为x =-p 2. 参数或参数方程在求轨迹方程,求极值,求变量取值范围,简化计算或证明方面具有突出的作用.2.常用的直线系方程:(1)过定点(x 0,y 0)的直线系为:λ1(y -y 0)+λ2(x -x 0)=0,其中λ1、λ2为参数.(2)与直线Ax +By +C =0平行的直线系为:Ax +By +λ=0,其中λ≠C ,λ为参数.(3)与直线Ax +By +C =0垂直的直线系为:Bx -Ay +λ=0,其中λ为参数.(4)当直线l 1与l 2的一般式分别为f 1(x ,y )=0,f 2(x ,y )=0时,曲线系λ1f1(x,y)+λ2f2(x,y)=0,其中λ1、λ2为参数①当l1与l2相交时表示通过l1与l2交点的所有直线;②当l1∥l2时,表示与l1平行的一组平行直线.(5)在两坐标轴上截距和为a的直线系为:xλ+ya-λ=1,其中λ为参数.(6)与原点距离等于r(r>0)的直线系为:x cosθ+y sinθ=r,其中θ为参数.3.曲线系与圆系:(1)方程f1(x,y)+ f2(x,y)=0表示的曲线一定经过两条曲线f1(x,y)=0与f2(x,y)=0的交点.(反过来,经过它们交点的曲线不一定能用此方程表示).当需要解决“求过两条曲线的交点作的一条曲线”时,常用此曲线系来解题,可以避免解方程组求交点而直接得出结果.(2)圆系:圆系是求圆的方程的一个重要的方法,同时也是证明四点共圆的简捷途径.对于不同圆心的两个圆C i=x2+y2+D i x+E i y+F i=0(i=1,2),则C1+λC2=0,(λ为参数)表示共轴圆系.当λ≠-1时,表示圆;当λ=-1时,退化为一条直线(D1-D2)x+(E1-E2)y+(F1-F2)=0,此直线叫两圆的根轴.对于已知圆C1及圆上一点(m,n),则C1+λ[(x-m)2+(y-n)2]=0,(λ为参数)表示与C1相切于点(m,n)的圆系.4.二次曲线系:一般二次曲线的方程由6个参数确定:Ax2+Bxy+Cy2+Dx+Ey+F=0(A2+B2+C2≠0).但只要5个独立参数即可确定唯一的二次曲线.①给定5个点,如果其中有三点共线,另两点不在此直线上,则经过此5点的二次曲线是唯一的,是二条直线(退化二次曲线);②给定5个点,无三点共线,则经过此5点的二次曲线是唯一的.③若有两个二次曲线——C1:F1(x,y)=0;C2:F2(x,y)=0,且C1与C2交于不共线4点.则λF1(x,y)+μF2(x,y)=0表示所有经过此4个交点的二次曲线.5.用直线方程构成二次曲线系:①如果两条直线l i:l i(x,y)=A i x+B i y+C i=0(i=1,2)与一条二次曲线:F(x,y)=0有交点,那么,曲线系λF+μl1·l2=0经过这些交点,若它们有四个不共线的交点,则此曲线系包含所有的过此四点的二次曲线.②若有不共线4点P i(i=1,2,3,4),记直线P i P i+1(P5=P1)为l i(x,y).则曲线系λl1·l3+μl2·l4=0包括了所有过此4点的二次曲线系.③若有不共线3点P i(i=1,2,3),记直线P i P i+1(P4=P1)为l i(x,y).则曲线系λl1·l2+μl2·l3+ηl3·l1=0包括了所有过此3点的二次曲线系.④与两条直线l i(x,y)=A i x+B i y+C i=0(i=1,2)交于两点M1、M2的二次曲线系为λl1·l2+μl32=0.(其中l3为经过M1、M2的直线方程).6.部分常用的二次曲线系:(1)共焦二次曲线系:x2m2-λ+y2n2-λ=1;(2)共顶点二次曲线系:x2a2+y2λ=1;(3)共离心率二次曲线系:x2a2+y2b2=λ(λ>0);(4)共渐近线的双曲线系:x2a2-y2b2=λ.7.极线方程:从二次曲线外一点引二次曲线的切线,过两个切点的直线.利用曲线系解题实质上是取曲线方程中的特征量(如直线方程中的斜率k、截距b,圆的半径R,二次曲线中的a、b等)作为变量,得到曲线系,根据所给的已知量,采用待定系数法,达到解决问题的目的.常常体现的是参数变换的数学观点和整体处理的解题策略.通常的题型有求点的坐标,求曲线的方程,求图形的性质等等. A 类例题 例1.椭圆x 216+y 24=1有两点P 、Q .O 是原点,若OP 、OQ 斜率之积为-14. 求证:|OP |2+|OQ |2为定值.证明 设P (4cosα,2sinα),Q (4cosβ,2sinβ),因为k OP ·k OQ =-14,所以2sinα4cosα·2sinβ4cosβ=-14,即cos(α-β)=0,则α-β=±π2+2k π,k ∈Z . 所以|OP |2+|OQ |2=16cos 2α+4sin 2α+16cos 2β+4sin 2β=16cos 2(β±π2)+4sin 2(β±π2)+16cos 2β+4sin 2β =20cos 2β+20sin 2β=20为定值.得证.例2.求经过两直线2x -3y =1,3x +2y =2的交点,且平行于直线y +3x =0的直线方程.解 设所求的直线方程为(2x -3y -1)+λ(3x +2y -2)=0, 整理得 (2+3λ)x +(-3+2λ)y +(-1-2λ)=0. (1)由于已知直线y +3x =0的斜率为-3,所以-2+3λ-3+2λ=-3 解得λ=113.将λ=113代入(1)化简得39x +13y -25=0. 此即为所求的直线方程.说明 本题还可以采用以下两种思路来求直线方程:思路一:设所求的直线方程为y +3x +λ=0.解出直线2x -3y =1,3x +2y =2的交点,代入到y +3x +λ=0,解出λ即可.思路二:过直线2x -3y =1,3x +2y =2的交点的直线系为(2x -3y -1)+λ(3x +2y -2)=0,即(2+3λ)x +(-3+2λ)y +(-1-2λ)=0.与直线y +3x =0平行的直线系为y +3x +μ=0(μ≠0).比较系数2+3λ3=-3+2λ1=-1-2λμ,解出μ即可. 例3.抛物线y 2=2px (p >0)的内接ΔAOB 的垂心为抛物线的焦点F ,O 为原点,求点A 、B 的坐标.解 由题设条件可知AB 与x 轴垂直.设A (2pt 2,2pt ),则B 的坐标为(2pt 2,-2pt ).由于焦点F 的坐标为F (p 2,0), 则AF 的斜率为k 1=2pt2pt 2-p 2=4t4t 2-1; 而OB 的斜率为k 2=-1t . 因为AF 与OB 垂直,则k 1k 2=-1,即4t 4t 2-1·(-1t )=-1,解得t=5 2.所以A的坐标为A(52p,5p)、B的坐标为B(52p,-5p).情景再现1.已知有向线段PQ的起点P和终点Q的坐标分别为(-1,1)和(2,2),若直线l:x+my+m=0与PQ的延长线相交,则m的取值范围是.2.椭圆x2+2y2=2与直线x+2y-1=0交于B、C两点,求经过B、C及A(2,2)的圆的方程.3.若动点P(x,y)以等角速度ω在单位圆上逆时针运动,则点Q(-2xy,y2-x2)的运动方式是()A.以角速度ω在单位圆上顺时针运动B.以角速度ω在单位圆上逆时针运动C.以角速度2ω在单位圆上顺时针运动D.以角速度2ω在单位圆上逆时针运动(1984年全国高中数学联赛)B类例题例4.斜率为3的动直线l和两抛物线y=x2,y=2x2-3x+3交于四个不同的点,设这四个点顺次为A、B、C、D(如图).求证:|AB|与|CD|之差为定值.证明 设AD 的中点为M (x 0,y 0),因为直线l 的斜率为3,所以直线l 的参数方程为 ⎩⎨⎧x 0=x 0+12t ,y =y 0+32t .(t 为参数) ① 设MA =t 1,MD =t 2,MB =t 3,MC =t 4,则t 1<t 2<t 3<t 4,因而|AB |-|CD |=(t 3-t 1)-(t 2-t 4)=(t 3+t 4)-(t 1+t 2) ②将①式代入y =x 2,整理得t 2+4(x 0-32)t +4(x20-y 0)=0, 由t 1+t 2=0,得x 0=32. 将①式代入y =2x 2-3x +3,整理得t 2+(4x 0-3-3)t +4(x 20-6x 0-2y 0+6)=0,所以t 3+t 4=-4x 0+3+3,因为x 0=32,所以t 3+t 4=3-3, 代入②得:|AB |-|CD |=3-3是定值.例5.设直线ax +by +c =0与抛物线y 2=4px 相交于A 、B 两点,F 是抛物线的焦点,直线AF 、BF 交抛物线(异于A 、B 两点)于C、D两点(异于A、B两点).求直线CD的方程.解设A(pt21,2pt1)、B(pt22,2pt2)、C(pt23,2pt3)、D(pt24,2pt3).直线AC的方程为:y-2pt1=2p(t1-t3)p(t21-t23))(x-pt21),即2x-(t1+t3)y+2pt1t3=0.因为AC经过焦点F(p,0),所以t3=-1t1;同理,t4=-1t2.①因为点A、B在直线ax+by+c=0上,则apt21+2pbt1+c=0,apt22+2pbt2+c=0,即t1、t2是方程apt2+2pbt+c=0的两根.根据根与系数关系,得t1+t2=-2ba,t1t2=cap.设CD的方程为ex+fy+g=0 ②同理有t3+t4=-2fe,t1t2=gep.所以-2fe=-(1t1+1t2)=-t1+t2t1t2=2bpc,则f=-bpec;gep=1t1t2=apc,则g=ep2ac.把f=-bpec,g=ep2ac代入②,并整理得CD的方程为:x-bpy+ap2=0.例6.给定曲线族2(2sinθ-cosθ+3)x2-(8sinθ+cosθ+1)y=0,θ为参数,求该曲线在直线y=2x上所截得的弦长的最大值.(1995年全国高中数学联赛)解显然,该曲线族恒过原点,而直线y=2x也过原点,所以曲线族在y=2x上所截得的弦长仅取决于曲线族与y=2x的另一个交点的坐标.把y=2x代入曲线族方程得(2sinθ-cosθ+3)x2-(8sinθ+cosθ+1)x=0,又2sinθ-cosθ+3=5sin(θ-arctan 12)+3≠0,当x≠0时,就有x=8sinθ+cosθ+12sinθ-cosθ+3,(1)令sinθ=2u1+u2,cosθ=1-u21+u2,则x=8u+12u2+2u+1,得2xu2+2(x-4)u+(x-1)=0.由u∈R知,当x≠0时Δ=[2(x-4)]2-8x(x-1)=4(-x2-6x +16)≥0,即x2+6x-16≤0且x≠0,故-8≤x≤2且x≠0,则|x|max=8由y =2x 得|y |max =16,所以所求弦长的最大值为82+162=85.说明 对于式(1)还可以这样处理:整理得(2x -8)sinθ-(x +1)cosθ=1-3x ,于是只有当(2x -8)2+(x +1)2≥(1-3x )2时方程才有解,即x 2+6x -16≤0.以下同题中解法.情景再现4.在曲线y =51-x 29(-3≤x ≤3)上取一点,使它到直线x +y -10=0的距离最远,并求出这个最远点.5.设a ,b 是两个已知正数,且a >b ,点P 、Q 在椭圆x 2a 2+y 2b 2=1上,若连结点A (-a ,0)与Q 的直线平行于直线OP ,且与y 轴交于点R ,则|AQ |·|AR ||OP |2= ;(O 为坐标原点)(上海市1992年高中数学竞赛)6.已知MN 是圆O 的一条弦,R 是MN 的中点,过R 作两弦AB 和CD ,过A 、B 、C 、D 四点的二次曲线MN 于P 、Q .求证:R 是PQ 的中点. C 类例题例7.自点P 1向椭圆引两条切线,切点为Q 1、R 1,又自点P 2向这椭圆引两条切线,切点为Q 2、R 2.证明:P 1、Q 1、R 1、P 2、Q 2、R2六点在一条二次曲线上.解设椭圆方程为ax2+by2=1(a>0,b>0),P1(x1,y1),P2(x2,y2).过切点Q1、R1的直线方程为ax1x+by1y-1=0,过切点Q2、R2的直线方程为ax2x+by2y-1=0,所以经过Q1、R1、Q2、R2的二次曲线方程可设为(ax1x+by1y-1)(ax2x+by2y-1)+λ(ax2+by2-1)=0.令λ=-(ax1x2+by1y2-1),得方程(ax1x+by1y-1)(ax2x+by2y-1)-(ax1x2+by1y2-1)(ax2+by2-1)=0.显然点P1、P2的坐标满足此方程,而此方程是二次方程,即:P1、Q1、R1、P2、Q2、R2六点在一条二次曲线上.得证!例8.已知椭圆E:x2a2+y2b2=1(a>b>0),动圆Γ:x2+y2=R2,其中b<R<a,若A是椭圆上的点,B是动圆Γ上的点,且使直线AB与椭圆和动圆Γ均相切,求A、B两点距离|AB|的最大值.(四川省2004年全国高中数学联赛预赛题)解设A(a cosθ,b sinθ),则直线AB方程为(b2a cosθ)x+(a2b sinθ)y=a2b2即l:(b cosθ)x+(a sinθ)y=ab.l也是圆Γ的切线,故OB⊥l,故直线OB的方程为(a sinθ)x-(b cosθ)y=0.于是点B坐标为B(ab2cosθb2cos2θ+a2sin2θ,a2b sinθb2cos2θ+a2sin2θ).故|AB|2=(a cosθ-ab2cosθb2cos2θ+a2sin2θ)2+(b sinθ-a2b sinθb2cos2θ+a2sin2θ)2=a2cos2θ(b2cos2θ+a2sin2θ-b2)2(b2cos2θ+a2sin2θ)2+b2sin2θ(b2cos2θ+a2sin2θ-a2)2(b2cos2θ+a2sin2θ)2=(a2-b2)2cos2θsin2θb2cos2θ+a2sin2θ=(a-b)2·(a+b)2cos2θsin2θb2cos2θ+a2sin2θ.而b2cos2θ+a2sin2θ≥(a+b)2cos2θsin2θ,等价于b2cos2θ-b2cos2θsin2θ+a2sin2θ-a2sin2θcos2θ≥2ab cos2θsin2θ,即b2cos4θ+a2sin4θ≥2ab cos2θsin2θ.最后一式显然成立.故|AB|2≤(a-b)2,即|AB|≤a-b.当且仅当tan2θ=ba时等号成立,此时R=|OB|=ab.说明本题也可以这样考虑:设AB的斜率为k,由直线AB是椭圆E的切线,则AB方程为y=kx±a2k2+b2.x 由AB 是圆Γ的切线,则AB 方程为y =kx ±R k 2+1.切点A 的横坐标x 1=-ka 2m ;B 的横坐标x 2=-kR 2m. 由a 2k 2+b 2=R k 2+1,得k 2=R 2-b 2a 2-R 2, 故|AB |2=k 2m 2(a 2-R 2)2(1+k 2)=R 2-b 2a 2-R 2 (a 2-R 2)2R 2 =1R2(a 2-R 2)(R 2-b 2) =a 2+b 2-R 2-a 2b 2R 2=(a -b )2-(R -ab R )2≤(a -b )2. 从而可得上述结果.情景再现7.设P 、Q 为给定二次曲线ax 2+bxy +cy 2+dx +ey +f =0上任二点,过P 、Q 任作一圆,该圆与所给二次曲线交于另外两点M 、N ,求证:直线MN 有定向.(1978年上海市赛题) 8.如图,过点A (-2,m )作直线l 交椭圆x 22+y 2=1于B 、C .点Q 在弦BC 上,且满足BQ QC =AB AC. (1)求m =0时,点Q 的轨迹方程;(2)若M 变动,则证明不论m 为何实数,点Q的轨迹恒过一个定点.习题541.设P是抛物线y2=2x上的点,Q是圆(x-5)2+y2=1上的点,则|PQ|的最小值是;(上海市2001高中数学竞赛)2.与双曲线x29-y216=1有共同的渐近线,且经过点(-3,23)的双曲线方程是.(湖南省2001年高中数学竞赛)3.已知:双曲线的两条渐近线的方程为x+y=0和x-y=0,两顶点间的距离为2,试求此双曲线方程.(1979年全国高中数学竞赛)4.当s和t取遍所有实数时,则(s+5-3|cos t|)2+(s-2|sin t|)2所能达到的最小值为.(1989年全国高中数学联赛) 5.求证:若轴垂直的两条抛物线如果有4个交点,则此四个交点共圆.(1979年河北省赛题)6.设AB、CD是椭圆x2a2+y2b2=1的两条弦,若它们的倾斜角互补,求证:A、B、C、D四点共圆.7.已知二次曲线C:Ax2+Bxy+Cy2+Dx+Ey+F=0与两条直线l1x+m1y+n1=0,l2x+m2y+n2=0有4个不同的交点.求证:Ax2+Bxy+Cy2+Dx+Ey+F+λ(l1x+m1y+n1)(l2x+m2y+n2)=0(*)是过四个交点的曲线系.8.过不在圆锥圆锥上的一定点一定点P引已知圆锥曲线的任意相互垂直的两弦AB与CD.求证:1P A·PB+1PC·PD是定值.本节“情景再现”解答:1.-3<m<-23.2.圆的方程为6x2+6y2-9x-14y-2=0.3.C.4.d max=722,最远点为(-3,0).5.2.6.以R为原点,MN为x轴,建立平面直角坐标系.设圆心O的坐标为(0,a),圆半径为r,则原方程为x2+(y-a)2=r2①.设AB、CD的方程分别为y=k1x和y=k2x.将它们合成为(y-k1x)(y-k2x)=0 ②.于是,过①与②的四个交点A、B、C、D的曲线系方程为(y-k1x)(y-k2x)+λ[x2+(y-a)2-r2]=0③.令③中y=0得,(λ+k1k2)x2+λ(a2-r2)=0④.④的两个根是二次曲线与MN交点P、Q的横坐标.因为x P+x Q=0,x 即R 是PQ 的中点.7.以P 为原点,PQ 方向为x 轴正方向建立平面直角坐标系,且设Q (l ,0),则所给二次曲线在此坐标系内的方程可以写为x 2+b 'xy +c 'y 2-lx +e 'y =0.而过PQ 两点的圆方程为x 2+y 2-lx +ky =0.于是曲线x 2+b 'xy +c 'y 2-lx +e 'y +λ(x 2+y 2-lx +ky )=0过此二曲线交点.故必过另两个交点M 、N .取λ=-1代入得,b 'xy +(c '-1)y 2+(e '-k )y =0,即y =0表示直线PQ .方程b 'x +(c '-1)y +(e '-k )=0表示直线MN ,由于b '、c '-有定向.8.设直线l 的参数方程为⎩⎨⎧x =-2+t cosαy =m +t sinα,(t 为参数).①代入椭圆方程,并整理得,(2sin 2α+cos 2α)t 2+4(m sinα-cosα)t +2(m 2+1)=0.所以,t 1+t 2=-4(m sinα-cosα)2sin 2α+cos 2α,t 1t 2=2(m 2+1)2sin 2α+cos 2α②. 设AB =t 1,AC =t 2,AQ =t ,则由BQ QC =AB AC ,得t -t 1t 1-t =t 1t 2,整理得,t (t 1+t 2)=2t 1t 2 ③,②代入③,得-t (m sinα-cosα)=m 2+1.t =m 2+1cosα-m sinα④.将④代入①,得点Q 的轨迹的参数方程为⎩⎨⎧x =-2+(m 2+1)cosαcosα-m sinα,y =m +(m 2+1)sinαcosα-m sinα,(α为参数).消去α,得ym -(x +1)=0. (1)当m =0时,所求轨迹是x =-1(过左焦点)被椭圆截下的弦;(2)当m 变动时,点Q 的轨迹恒过定点F 1(-1,0).本节“习题4”解答:1.2. 2.x 29-y 216=14. 3.双曲线方程为x 2-y 2=±1. 4.2.5.设两条抛物线的方程分别为y 2=2p (x -m )及x 2=2q (y -n ).则曲线y 2-2p (x -m )+λ[x 2-2q (y -n )]=0必经过两条抛物线的交点,取λ=1,即得一圆方程,由已知,此圆经过两条抛物线的四个交点.即此四个交点共圆.6.设AB 、CD 的倾斜角分别为θ与π-θ,直线AB 、CD 的交点坐标为P (x 0,y 0),则AB 方程可写为⎩⎨⎧x =x 0+t cosθ,y =y 0+t sinθ.(θ为参数) 代入方程得:(b 2cos 2θ+a 2sin 2θ)t 2+2(b 2x 0cos θ+a 2y 0sin θ)t +b 2x 02+a 2y 02-a 2b 2=0.由韦达定理知|P A |·|PB |=|t 1t 2|=|b 2x 20+a 2y 20-a 2b 2|b 2cos 2θ+a 2sin 2θ.以π-θ代替θ,即可得|PC |·|PD |=|b 2x 20+a 2y 20-a 2b 2|b 2cos 2θ+a 2sin 2θ,即|P A |·|PB |=|PC |·|PD |,故A 、B 、C 、D 共圆.7.设P i (x i ,y i )(i =1,2,3,4)为二次曲线C 与两条直线的四个交点,则Ax i 2+Bx i y i +Cy i 2+Dx i +Ey i +F =0(i =1,2,3,4),同时也有,l 1x i +m 1y i +n 1=0,或l 2x i +m 2y i +n 2=0.因此,这四个点的坐标满足(*),即(*)表示的曲线过曲线C 与直线的四个交点;在过已知四点P 1,P 2,P 3,P 4的任意一条二次曲线上取一点Q (x 0,y 0),Q 与已知四点不同(它不在两已知直线上).令λ0=-Ax 02+Bx 0y 0+Cy 02+Dx 0+Ey 0+F (l 1x 0+m 1y 0+n 1)(l 2x 0+m 2y 0+n 2),方程(*)变形为Ax 2+Bxy +Cy 2+Dx +Ey +F +λ0(l 1x +m 1y +n 1)(l 2x +m 2y +n 2)=0.这个方程表示过P 1,P 2,P 3,P 4,Q 五个点的曲线,故可用方程(*)表示已知二次曲线和两条直线交点的二次曲线系.8.以P 为原点建立直角坐标系,在此坐标系内圆锥曲线的方程为 Ax 2+Bxy +Cy 2+Dx +Ey +F =0. (1)P AB 的方程⎩⎨⎧x =x 0+t cosθ,y =y 0+t sinθ.(θ为参数), 代入⑴得:t 2(A sin 2θ+B sin θcos θ+C cos 2θ)+t (D sin θ+E cos θ)+F =0,由于P 不在圆锥曲线上,故F ≠0.则1P A ·PB =A sin 2θ+B sin θcos θ+C cos 2θF. PCD 的方程⎩⎨⎧x =-t sinθ,y =t cosθ.(θ为参数), 代入(1)得:t 2(A cos 2θ-B sin θcos θ+C sin 2θ)+t (-D cos θ+E sinθ)+F=0,同理,得,1PC·PD=A cos2θ-B sinθcosθ+C sin2θF.从而可得1P A·PB+1PC·PD=A+CF为定值.第21 页共21 页。
第四讲 直线参数t 的几何意义1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为00cos (sin x x t t y y t αα=+⎧⎪⎨=+⎪⎩为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(1)当0M M u u u u u r与e (直线的单位方向向量)同向时,t 取正数.(2)当0M M u u u u u r与e 反向时,t 取负数,(3)当M 与M 0重合时,t =0.3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)212121212121212()4,0,0t t t t t t t t PA PB t t t t t t ⎧-=+-<⎪+=+=⎨+>⎪⎩当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】(1)直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.(2)直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-;知识解读考向一 参数t 的系数的平方和为1【例1】已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.【答案】(1)见解析 (2)3【解析】(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3. 学科&网【举一反三】1.已知曲线C 1的极坐标方程为2sin 4cos ρθθ=, C 2的参数方程为32(32x t t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)(1)将曲线C 1与C 2的方程化为直角坐标系下的普通方程; (2)若C 1与C 2相交于A 、B 两点,求AB .【答案】(1)曲线C 1的普通方程y 2=4x ,C 2的普通方程x+y-6=0 ;(2)AB 【解析】(1)曲线C 1的普通方程为y 2=4x , 曲线C 2的普通方程为x+y-6=0(2)将C 2的参数方程代入C 1的方程y 2=4x,得23=43-+()()整理可得260t +-=,由韦达定理可得12126t t t t +=-=-12AB t t =-==2.已知曲线C 的极坐标方程是4sin 0ρθ-=,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为34π. (Ⅰ)求曲线C 的直角坐标方程与直线l 的参数方程; (Ⅱ)设直线l 与曲线C 交于A 、B 两点,求MA MB +的值. 【答案】(Ⅰ)曲线C 的直角坐标方程为:x 2+(y-2)2=4,直线l的参数方程为1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ).【解析】(Ⅰ)因为曲线C 的极坐标方程是4sin 0ρθ-=即曲线C 的直角坐标方程为:x 2+(y-2)2=4直线l 的参数方程31+t cos 4(3sin 4x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩为参数)即1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ)设点A 、B 对应的参数分别为t 1,t 2将直线l 的参数方程代入曲线C的直角坐标方程得22(1)2)4-+-=整理,得210t -+=,由韦达定理得12121t t t t +== 因为t 1t 2>0,所以1212MA MB t t t t +=+=+=考向二 t 系数平方和不等于1【例2】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为12{22x t y t=+=-(t 为参数),以O 为极点, x 轴的非负半轴为极轴,曲线2C 的极坐标方程为: 22cos sin θρθ=. (Ⅰ)将曲线1C 的方程化为普通方程;将曲线2C 的方程化为直角坐标方程; (Ⅱ)若点()1,2P ,曲线1C 与曲线2C 的交点为A B 、,求PA PB +的值.【答案】(Ⅰ) 12:30,:C x y C +-= 22y x =;(Ⅱ).【解析】(Ⅰ) 1:3C x y +=,即: 30x y +-=;222:sin 2cos C ρθρθ=,即: 22y x =(Ⅱ)方法一:由t 的几何意义可得C 1的参数方程为12(t 22x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)代入22:2C y x =得26240t t ++=∴1262t t +=-,∴1262PA PB t t +=+=. 方法二:把1:3C x y +=代入22:2C y x =得2890x x -+=所以128x x +=, 129x x = 所以()221212*********PA PB x x x x +=+-++-=⨯-+-()()1221128262x x =⨯-+-=⨯-=【举一反三】1.在平面直角坐标系xOy 中,直线的参数方程为3(3x tt y t⎧=⎪⎨⎪=-⎩为参数)数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为cos ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点3,0),直线l 与曲线C 交于不同的两点A 、B ,求MA MB ⋅的值. 【答案】(1)直线l 330x y +-=,【总结套路】直线参数t 几何意义运用最终版套路 第一步--化:曲线化成普通方程,直线化成参数方程;第二步--查:检查直线参数t 的系数平方和是否为1,如果是,进行第三步;如果否,则先化1.2202200022(t a b y t a x x t x x at a b t y y bt b y y t a b ±+⎧=+⎪=+⎧+⎪⎪−−−−−→⎨⎨=+⎪⎪⎩=+⎪+⎩前的系数同时除以保证中的的系数为正数为参数) 第三步--代:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第四步--写:写出韦达定理:a c t t a b t t =-=+2121,曲线C 的直角坐标方程(x-2)2+y 2=4; (2)3MA MB ⋅=-【解析】(1)直线l30y +-= 因为曲线C 的极坐标方程为cos ρθ=. 所以曲线C 的直角坐标方程(x-2)2+y 2=4;(2)点在直线l 上,且直线l 的倾斜角为120°,可设直线的参数方程为:12(x t t y ⎧=⎪⎪⎨⎪=⎪⎩为参数)代入到曲线C 的方程得:30t +-=,由韦达定理得12122,t t t t +==-由参数的几何意义知123MA MB t t ⋅==。
直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2. (3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85. 答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
参数方程题型大全1.直线、圆、椭圆、双曲线和抛物线都可以用参数方程表示。
对于过点M(x,y),倾斜角为α的直线l,其参数方程为:x = x + tcosαy = y + tsinα其中t为参数。
对于圆心在点M(x,y),半径为r的圆,其参数方程为:x = x + rcosθy = y + rsinθ其中θ为参数。
对于椭圆x^2/a^2 + y^2/b^2 = 1(a>b>0),其参数方程为:x = a cosφy = b sinφ其中φ为参数。
对于双曲线x^2/a^2 - y^2/b^2 = 1(a>0,b>0),其参数方程为:x = a secθy = b tanθ其中θ为参数。
对于抛物线y = 2px,其参数方程为:x = 2pt^2y = 2pt其中t为参数。
2.给定曲线的参数方程,求其普通方程。
对于曲线C的参数方程,设其参数为t,则其普通方程为:y = f(x)其中x和y是曲线上的点,f是关于t的函数。
将参数方程中的t用x或y表示,代入另一个方程中消去t,得到关于x 和y的方程即为普通方程。
3.给定曲线的参数方程,求其与直线或另一曲线的交点。
对于曲线C的参数方程,设其参数为t,则曲线上的点可以表示为(x(t)。
y(t))。
如果要求曲线C与直线l的交点,则将直线l的方程代入曲线C的参数方程中,解出参数t,再代入参数方程中求出交点的坐标。
如果要求曲线C与另一曲线D的交点,则将曲线D的参数方程代入曲线C的参数方程中,解出参数t,再代入参数方程中求出交点的坐标。
4.求椭圆上两点间的最短距离。
设椭圆的参数方程为:x = a cosφy = b sinφ其中φ为参数。
设椭圆上两点分别为A(x1.y1)和B(x2.y2),则两点间的距离为:A B = √[(x2 - x1)^2 + (y2 - y1)^2]将x和y用φ表示,代入上式,得到AB的函数,求导后令其为0,解出φ的值,再代入AB的函数中求得最小值即为最短距离。
三直线的参数方程1.直线的参数方程(1)过点M0(x0,y0),倾斜角为α的直线l的参数为错误!(t为参数).(2)由α为直线的倾斜角知,α∈已知直线l的方程为3x-4y+1=0,点P(1,1)在直线l上,写出直线l的参数方程,并求点P到点M(5,4)的距离.由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正弦值、余弦值,从而得到直线参数方程.由直线方程3x-4y+1=0可知,直线的斜率为错误!,设直线的倾斜角为α,则tan α=错误!,sin α=错误!,cos α=错误!.又点P(1,1)在直线l上,所以直线l的参数方程为错误!(t为参数).因为3×5-4×4+1=0,所以点M在直线l上.由1+错误!t=5,得t=5,即点P到点M的距离为5.理解并掌握直线参数方程的转化,弄清参数t的几何意义,即直线上动点M到定点M0的距离等于参数t的绝对值,是解决此类问题的关键.1.一直线过P0(3,4),倾斜角α=错误!,求此直线与直线3x+2y=6的交点M与P0之间的距离.解:由题意设直线的参数方程为错误!(t为参数),将它代入已知直线3x+2y-6=0,得3错误!+2错误!=6。
解得t=-错误!,∴|MP0|=|t|=错误!。
2.已知直线l的参数方程为错误!求直线l的倾斜角.解:将参数方程化成另一种形式错误!若2t为一个参数,则错误!在α∈已知直线l经过点P(1,1),倾斜角α=错误!,(1)写出直线l的参数方程;(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.(1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.(1)∵直线l过点P(1,1),倾斜角为错误!,∴直线的参数方程为错误!即错误!(t为参数)为所求.(2)∵点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为A错误!,B错误!,将直线l的参数方程代入圆的方程x2+y2=4整理得到t2+(错误!+1)t-2=0,①又∵t1和t2是方程①的解,从而t1t2=-2。
参数方程的概念及直线的标准参数方程及应用一、教学内容:1.参数方程的概念及参数方程与普通方程的互化 2.直线的标准参数方程及其应用 二、重点难点:1.参数方程的概念:在xoy 平面上,若曲线C 的任意点的坐标(x, y)都能通过第三变量t 表示出来,即⎩⎨⎧==)()(t g y t f x ,t ∈M,①,这里M 是某个指定的区间,反之,对于每一个t ∈M, 由①确定的点(x,y)都在曲线C 上,那么方程组①才能叫做曲线C 的参数方程. 2.曲线参数方程与普通方程的互化:曲线C 的普通方程和参数方程是曲线C 的两种不同代数形式,以本质上讲它们是互相联系的,一般可以进行互化.曲线的参数方程曲线的普通方程.通常使用代入消参,加减消参,使用三角公式消参。
还常利用万能公式消解决形如2221()(,,,1()1()At x at a A B B at y at ⎧=⎪+⎪⎨⎡⎤-⎪⎣⎦=⎪+⎩其中为非零参数) 的消参问题 · 但特别要注意,(1)互化时,必须使坐标x, y 的取值范围在互化前后保持不变,否则,互化就是不等价的.如曲线y=x 2的一种参数方程是( ).A 、⎪⎩⎪⎨⎧==42ty t x B 、⎪⎩⎪⎨⎧==t y t x 2sin sin C 、⎪⎩⎪⎨⎧==t y t x D 、⎪⎩⎪⎨⎧==2t y tx分析:在y=x 2中,x ∈R, y ≥0,在A 、B 、C 中,x,y 的范围都发生了变化,因而与y=x 2不等价,而在D 中,x,y 范围与y=x 2中x,y 的范围相同,且以⎪⎩⎪⎨⎧==2ty tx 代入y=x 2后满足该方程,从而D 是曲线y=x 2的一种参数方程.(2)在求x,y 的取值范围时,常常需用求函数值域的各种方法。
如利用单调性求函数值域,二次函数在有限区间上求值域,三角函数求值域,判别式法求值域等。
3.直线的参数方程过点M 0(x 0,y 0),且倾斜角为α的直线l 的参数方程的标准形式为⎩⎨⎧α+=α+=.sin ,cos 00t y y t x x其中参数t 的几何意义是:规定l 向上方向为正方向,t 是有向直线l 上,从已知点M 0(x 0, y 0)到点M(x,y)的有向线段M 0M 的数量,且|M 0M|=|t|. 当t>0时,点M 在点M 0的上方 当t=0时,点M 与点M 0重合 当t<0时,点M 在点M 0的下方特别地,若直线l 的倾角α=0时,直线l 的参数方程为⎩⎨⎧=+=00y y tx x .当t>0时,点M 在点M 0的右侧当t=0时,点M 与点M 2重合当t<0时,点M 在点M 0的左侧 4. 直线的参数方程的应用:由参数t 的几何意义可知,若M 1,M 2为直线l 上两点, t 1, t 2分别为M 1,M 2所对应的参数, 则(1)|M 1M 2|=|t 1-t 2|(2)010212M M M M t t ⋅=(3)若M 3为M 1,M 2的中点,则中点M 3对应的参数为2213t t t +=所以,处理过定点的直线截得的线段长问题,采用直线的参数方程有时比较方便。