苏州大学数学分析(二)课堂练习(2018.6.20)
- 格式:pdf
- 大小:156.99 KB
- 文档页数:2
数学分析2部分习题解析傅里叶级数部分第3节部分习题1、设f 以2π为周期且具有二阶连续的导数,证明f 的傅里叶级数在(),-∞+∞上一致收敛于f 。
证明由条件知,f 一定是以2π为周期的连续函数且在一个周期区间[],ππ-上按段光滑,所以由收敛定理得,在(),-∞+∞上有()011cos sin ()2n n n a a nx b nx f x ∞=++=∑,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
由三角级数一致收敛的判别法,下证()0112n n n a a b ∞=++∑收敛即可。
事实上,记0a ',n a ',nb '为导函数()f x '的傅里叶系数,由()f x 与()f x '的傅里叶系数的关系得0a '=,n n a nb '=,n n b na '=-。
所以,()()22211112n n n n n n a b b a a b n n n ⎛⎫''''+=+≤++ ⎪⎝⎭。
又由傅里叶系数满足的贝塞尔不等式得,()()()221nn n a b ∞=''+∑收敛,再注意到211n n∞=∑收敛,所以()0112n n n a a b ∞=++∑收敛,故结论成立。
2、设f 为[],ππ-上的可积函数,证明:若f 的傅里叶级数在[],ππ-上一致收敛于f ,则成立帕塞瓦尔等式:()22220111()d 2n n n f x x a a b πππ∞-==++∑⎰,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
证明由f 在[],ππ-上可积得,f 在[],ππ-上有界,从而由题设可得()2011()()cos ()sin ()2n n n a f x a f x nx b f x nx f x ∞=++=∑,在[],ππ-上一致成立。
院系 专业 学号 姓名 3211.1 对弧长的曲线积分1. 计算下列对弧长的曲线积分 (1)⎰+L n ds y x )(22 , 其中)20(sin cos :π≤≤⎩⎨⎧==t t R y t R x L 122+n R π(2)⎰Lds x 2 , 其中L 为由1222=++z y x 与0=++z y x 所表示的圆的一周 32π(3)⎰Γ++ds z y x 2221,Γ为曲线t t t e z t e y t e x ===,sin ,cos 上相应于t 从0到π2 的一段弧)1(232π--e(4)⎰+Lds y x )(3434, 其中L 为内摆线323232a y x =+ 374a(5)设L 为双纽线)0(),()(222222>-=+a y x a y x , 求ds y L ⎰)22(22-a院系 专业 学号 姓名 3311.2 对坐标的曲线积分1. 计算下列对坐标的曲线积分 (1)⎰L xydx , 其中L 为)0(,)(222>=+-R R y R x 及x 轴所围成的在第一象限内的区域的逆时针方向绕行的整个边界23R π-(2)⎰+--+L yx dy y x dx y x 22)()( , 其中L 为逆时针方向绕行的圆周222R y x =+ π2-(3)⎰Γ+-++dz y x ydy xdx )2(32 , 其中Γ为从点)1,1,1(到点)4,3,2(的直线段 39/2(4)⎰-+-L dy xy y dx xy x )2()2(23 , 其中L 为2x y =上从点)1,1(-到点)1,1(的一段弧-4/52. 利用曲线积分计算星形线323232a y x =+所围图形的面积 283a π院系 专业 学号 姓名 3411.3 格林公式及其应用1. 利用格林公式计算下列曲线积分 (1)⎰-+++-Ldy y x dx y x )753()42( , 其中L 为三顶点分别为)2,3(),0,3(),0,0(的三角形正向边界15(2) ⎰+-L y x xdy ydx )(422其中L 为9)2(22=+-y x ,且为逆时针方向 2π-2. 验证下列曲线积分与路径无关,并求积分值(1)⎰--)1,1()0,0())((dy dx y x 0(2) ⎰-)2,1()1,2(2x xdy ydx 沿在右半平面的路线 -3/2院系 专业 学号 姓名 353. 利用格林公式计算曲线积分⎰-+-Ldy y x dx y y )1cos ()(sin , 其中L 为圆周x y x 222=+上从点)0,0(O 到点)1,1(A 的一段弧411sin π--4. 验证下列dy y x Q dx y x P ),(),(+是某一函数),(y x U 的全微分,并求这个),(y x U(1)dy y xy x dx y xy x )2()2(2222--+-+ (2)ydy x dx y x cos )sin 2(++ C y xy y x x y x U +--+=33),(3223 C y x x y x U ++=sin ),(25. 在过点)0,0(O 与点)0,(πA 的曲线族x a y sin = )0(>a 中求一条曲线L , 使沿该曲线从O 到A 的积分⎰+++L dy y x dx y )2()1(3的值最小1=a6. 求可微函数)(x f ,使0))((=-⎰L xdy ydx x f 成立,其中L 为与y 轴不相交的任何闭曲线2xC y =院系 专业 学号 姓名 36第十一章 曲线积分习题课1. 计算⎰+Lds y x )( , 其中L 为连接点)1,0(),0,1(),0,0(的闭折线 21+2. 计算⎰+L y x ds e 22 , 其中L 为圆周222a y x =+,直线0,==y x y 在第一象限内围成扇形的边界a a ae e 4)1(2π+-3. 计算⎰-L ydx x dy xy 22, L 是从)0,1(A 沿21x y -=到)0.1(-B 的圆弧4π4. 设曲线积分⎰+L dy x y dx xy )(2ϕ与路径无关,其中ϕ具有连续导数,且0)0(=ϕ,计算⎰+)1,1()0,0(2)(dy x y dx xy ϕ1/2院系 专业 学号 姓名 375. 计算曲线积分⎰+---=L y x dyx ydx I 22)1()1((1)L 为圆周0222=-+y y x 的正向(2) L 为椭圆08422=-+x y x 的正向π2-6. 设曲线L 是正向圆周1)()(22=-+-a y a x ,)(x ϕ是连续的正函数,证明πϕϕ2)()(≥-⎰L dx x y dy y x院系 专业 学号 姓名 3811.4 对面积的曲面积分1. 计算下列对面积的曲面积分(1)⎰⎰∑++dS z y x )(,其中∑是上半球面0,2222>=++z a z y x3a π(2)⎰⎰∑+22yx dS ,其中∑是柱面222R y x =+被平面0,0>==h z z 所截取的部分 Rh π2(3)⎰⎰∑xyzdS ,其中∑是平面1=++z y x 在第一卦限的部分12032. 求面密度为z =ρ的抛物面壳)(2122y x z +=)10(≤≤z 的质量 π)152534(+院系 专业 学号 姓名 3911.5 对坐标的曲面积分1. 计算下列对坐标的曲面积分(1)⎰⎰∑yzdzdx ,其中∑是球面1222=++z y x 的上半部分并取外侧 4π(2) ⎰⎰∑++zxdxdy yzdzdx xydydz ,其中∑是由平面1,0=++===z y x z y x 所围的四面体表面并取外侧为正向1/82. 求流速场k y i x v ρρρ2+=穿过曲面22y x z +=与平面1=z 所围的立体表面的流量2π院系 专业 学号 姓名 4011.6 高斯公式1. 利用高斯公式计算⎰⎰∑+++-dxdy xz ydzdx x dydz z x y )()(22 , 其中∑是a z z a y y a x x ======,0,,0,,0所围成的正方体表面的外侧4a2. 利用高斯公式计算⎰⎰∑++zdxdy ydzdx xdydz , 其中∑是介于3,0==z z 之间的圆柱体922≤+y x 的整个表面的外侧π81院系 专业 学号 姓名 41 第十一章 曲面积分习题课1. 计算⎰⎰∑++dxdy z dzdx y dydz x 111 , 其中∑是球面2222R z y x =++的外侧 R π62. 设∑是球面2222a z y x =++的外侧,计算⎰⎰∑zdxdy343a π3. 计算⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()( , 其中∑是)0(222h z y x z ≤≤+=的下侧苏州大学理工类高等数学课次练习院系 专业 学号 姓名 424.求曲面积分⎰⎰∑+dS y x )(22 , ∑为锥面22y x z +=与平面1=z 所围成的区域的边界曲面 π212+5.计算对坐标的曲面积分⎰⎰∑++=dxdy z h dzdx y g dydz x f I )()()(,其中∑是平行六面体c z b y a x ≤≤≤≤≤≤0,0,0的表面并取外侧,)(),(),(z h y g x f 为∑上的连续函数 ab h b h ac g b g bc f a f ))0()(())0()(())0()((-+-+-。
1、设)(x f 是以T 为周期的周期函数且⎰=TC x f T 0)(1,证明⎰+∞∞→=n n C dx x x f n 2)(lim 。
证明:由⎰=T C x f T 0)(1,得到⎰=-Tdx C x f T 00])([1,从而有⎰=-T dx C x f 00])([ (*)本题即证明⎰+∞∞→=-n n dx x C x f n 0)(lim 2(此因⎰+∞=n n dx x112) 注意到21x 是递减的正函数,应用积分第二中值定理,对ξ∃>∀,n A 介于n 与A 之间,使⎰⎰-=-A n n dx C x f n dx xC x f n ξ])([1)(2 k ∃为非负整数使T kT n <--<ξ0,于是由(*),dx C x f dx C x f dx C x f dx C x f kTn kTn kTn nn⎰⎰⎰⎰+++-=-+-=-ξξξ])([])([])([])([于是有dxC x f n dx C x f n dx C x f n dx x C x f nTkT n kT n An⎰⎰⎰⎰-≤-≤-=-++02)(1)(1])([1)(ξξ令∞→A 有dx C x f n dx xC x f nTn⎰⎰-≤-∞+02)(1)( 故⎰+∞∞→=-nn dx x C x f n0)(lim 2,即⎰+∞∞→=n n C dx x x f n 2)(lim 。
2、设函数f(x)在整个实数轴有连续的三阶导数,证明存在实数a 使0)()()()(''''''≥a f a f a f a f 。
证明:由于f 的三阶导数连续,故若'''''',,,f f f f 有一个变号的话,利用根的存在性原理便知,使a ∃0)()()()(''''''=a f a f a f a f ,结论得证。
苏州大学2018届高考考前指导卷2一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.设全集{|2,}U x x x =∈N ≥,集合2{|5,}A x x x =∈N ≥,则U A =ð ▲ . 2.已知i 是虚数单位,复数(12i)(i)a -+是纯虚数,则实数a 的值为 ▲ . 3.利用计算机随机产生0~1之间的数a ,则事件“310a ->”发生的概率为 ▲ . 4.某地区连续5天的最低气温(单位:C ︒)依次为8,4,1,0,2--,则该组数据的方差为 ▲ .5.执行如图所示的伪代码,则输出的结果为 ▲ .6.若抛物线24x y =的弦AB 过焦点F ,且AB 的长为6,则弦AB 的中点M 的纵坐标为 ▲ .7.已知一个正方体的外接球体积为1V ,其内切球体积为2V ,则21V V的值为 ▲ .8.设S n 是等比数列{a n }的前n 项和,若满足a 4 + 3a 11= 0,则2114S S = ▲ . 9.已知0a >,函数2()()f x x x a =-和2()(1)g x x a x a =-+-+存在相同的极值点,则a = ▲ .10. 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4,若等边△PAB 的一边AB 为圆C 的一条弦,则PC 的最大值为 ▲ .11. 若cos 2cos()4ααπ=+,则tan()8απ+= ▲ . 12. 已知0,0a b >>,则222a ba b b a+++的最大值为 ▲ . 13. 在ABC △中,90C =∠°,24AB BC ==,,M N 是边AB 上的两个动点,且1MN =,则CM CN ⋅的取值范围为 ▲ .14. 设函数()33,2,,x x x a f x x x a ⎧-<=⎨-⎩,≥若关于x 的不等式()4f x a >在实数集R 上有解,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在多面体ABCDE 中,∠ABD =60º,BD =2AB ,AB ∥CE ,AB ⊥CD , (1)求证://AB 平面CDE ; (2)求证:平面ABC ⊥平面ACD .16.(本小题满分14分)在△ ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知60B =︒,8c =. (1)若点M 是线段BC 的中点,AMBMb 的值; (2)若12b =,求△ ABC 的面积.ABDE(第15题图)17.(本小题满分14分)某校在圆心角为直角,半径为1km 的扇形区域内进行野外生存训练.如图所示,在相距1km 的A ,B 两个位置分别有300,100名学生,在道路OB 上设置集合地点D ,要求所有学生沿最短路径到D 点集合,记所有学生行进的总路程为S (km ). (1)设ADO θ∠=,写出S 关于θ的函数表达式; (2)当S 最小时,集合地点D 离点A 多远?18.(本小题满分16分)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>为4x =,(,0)Q n 是椭圆C 的长轴上一点(Q 异于长轴端点),过点Q 的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的标准方程;(2)①若2n =,求OA OB ⋅的最大值;②在x 轴上是否存在一点P ,使得PA PB ⋅为定值,若存在,求出点P ;若不存在,请说明理由.(第17题图)19.(本小题满分16分)已知数列{a n },{b n }满足:b n =a n +1-a n (n ∈N *). (1)若a 1=1,b n =n ,求数列{a n }的通项公式; (2)若b n +1b n -1=b n (n ≥2),且b 1=1,b 2=2.①记c n =a 6n -1(n ≥1),求证:数列{c n }为等差数列;②若数列{a nn}中任意一项的值均未在该数列中重复出现无数次,求首项a 1应满足的条件.20.(本小题满分16分)已知函数()ln f x x =,1()g x x x=-. (1)①若直线1y kx =+与()ln f x x =的图像相切, 求实数k 的值;②令函数()()()h x f x g x =-,求函数()h x 在区间[,1]a a +上的最大值. (2)已知不等式2()()f x kg x <对任意的(1,)x ??恒成立,求实数k 的范围.(第18题图)苏州大学2018届高考考前指导卷(2)参考答案一、填空题1.{2} 2.2- 3.234.16 5.11 6.2 7. 8.769.3 10.4 11.1312.23- 13. 11[,9]414. 1(,)(7,)2-∞+∞填空题参考解答或提示1. {}{|2}2U A x x x =<∈=N ≤ð.2. (12i)(i)(2)(12)i a a a -+=++-是纯虚数,所以实数a 的值为2-.3.本题为几何概型,因为13103a a ->⇒>,所以所求概率112313P -==. 4. 8(4)(1)0215x +-+-++==,所以该组数据的方差为52211()165i i s x x ==-=∑.5.第1次,33S I ==,;第2次,75S I ==,;第三次,117S I ==,. 6.设1122(,),(,)A x y B x y ,则126AB y y p =++=,所以1262222M y y y +-===. 7.设正方体棱长为a,则333311132224π214π2V R R V R R a ⎛⎫⎪⎛⎫ ⎪===== ⎪⎪⎝⎭ ⎪⎝⎭8.由题意得74430a a q +⋅=,又40a ≠,所以713q =-,321211421411()173161()3S q S q ---===---. 9. 2322()()2+f x x x a x ax a x =-=-,所以22()34+(3)()f x x ax a x a x a '=-=--;由题意得132a a -=或12a a -=,又0,a >所以3a =. 10.由题意知,在PAC △中,由正弦定理可得,sin sin PC ACPAC APC=∠∠, 所以2sin 4sin sin30PC PAC PAC =∠=∠︒,所以当90PAC ∠=︒时,PC 的最大值为4. 11. cos 2cos(),cos()2cos()48888ααααπππππ=++-=++,所以3s i n()s8888ααππππ+=+所以11tan()833tan8απ+===π.12.设20,20m a b n b a=+>=+>,则22,33m n n ma b--==,所以原式24223322233m n n mn mm n m n--=+=---≤当且仅当233n mm n=即n=,也即b=时等号成立.13.设MN的中点为D,则2221=()()4C M C N CD D M C D D N C D D M C D⋅+⋅+=-=-,故只需考虑||CD的最大、最小值.如图,点D在D1及D2处(1212AD CD AB=⊥,)分别取得最大、最小值.由222137,34CD CD==,所以CM CN⋅的取值范围为11[,9]4.14.由题意知,max()4f x a>①当0a<时,因为(0)0f=,max()4f x a>显然成立;②当0a=时,()33,02,0,x x xf xx x⎧-<=⎨-⎩,≥m a x()(1)204f x f a=-=>=,满足题意;③当0a>时,令332,x x-=解得121,2x x=-=,所以i)当02a<<时,max max()(1)24,f x f a=-=>解得12a<<;ii)当2a>时,3()3f x a a<-,由题意334a a a->,解得a综上所述,实数a的取值范围是1(,)(7,)2-∞+∞.二、解答题15. 证明(1)由题意AB∥CE,CE⊂面CDE,AB⊄平面CDE,所以//AB平面CDE.(2)在△ABD中,因为∠ABD=60º,BD=2AB,所以︒⋅⋅-+=60cos2222BDABBDABAD,即223ABAD=,因为222BDADAB=+,所以AB AD⊥,又AB CD AD CD D⊥=,,所以⊥AB平面ACD,又⊂AB面ABC,所以平面ABC⊥平面ACD.16. 解(1)因为点M 是线段BC的中点,AMBMBM x =,则AM , 又60B =︒,8c =,在△ABM 中,由余弦定理得2236428cos60x x x =+-⨯︒, 解得4x =(负值舍去),则4BM =,8BC =. 所以△ ABC 中为正三角形,则8b =.(2)在△ ABC 中,由正弦定理sin sin b c B C=,得8sin 2sin 12c BC b ==. 又b c >,所以B C >,则C为锐角,所以cos C =.则()1sin sin sin cos cos sin 2A B C B C B C =+=+==, 所以△ ABC的面积1sin 4826S bc A ==⨯=17. 解(1)因为在△OAD 中,θ=∠ADO ,1OA =,所以由正弦定理可知1ππsin sin sin 33AD ODθθ==⎛⎫+ ⎪⎝⎭, 解得πsin 3sin AD OD θθ⎛⎫+ ⎪⎝⎭=,且π2π(,)33θ∈,故πsin 33001001001sin S AD BD θθ⎤⎛⎫+ ⎪⎥⎝⎭⎥=+=+-⎢⎥⎢⎥⎣⎦3cos 50sin θθ-=+,π2π(,)33θ∈, (2) 令3cos sin y θθ-=,则有23cos 1sin y θθ-+'= , 当1cos 3θ>时,0y '<; 当1cos 3θ<时,0y '>;可知,当且仅当1cos 3θ=时,y 有最小值22,当AD =时,此时总路程S有最小值50km . 答:当集合点D 离出发点Akm时,总路程最短,其最短总路程为50km .18. 解(1)由c e a ==24a x c ==,所以,a =2b =,即椭圆22:184x y C +=. (2)①由已知,(2,0)Q ,当直线AB 垂直于x 轴时,A ,(2,B , 2O A O B⋅=. 当直线AB 不垂直于x 轴时,设直线AB :(2)y k x =-,代入22184x y +=得2222(12)8880k x k x k +-+-=, 设11(,)A x y ,22(,)B x y ,212121212(2)(2)OA OB x x y y x x k x x ⋅=+=+--2221212(1)2()4k x x k x x k =+-++2222222(1)(88)8241212k k k k k k k +-=-⋅+++224812k k -=+210212k =-+<2. 所以,当直线AB 垂直于x 轴时,OA OB ⋅取到最大值2. ②设点(,0)P t ,11(,)PA x t y =-,22(,)PB x t y =-, 当直线AB 不垂直于y 轴时,设AB :x my n =+,代入22184x y +=得222(2)280m y mny n +++-=, 12121212()()()()PA PB x t x t y y my n t my n t y y ⋅=--+=+-+-+221212(1)()()()m y y m n t y y n t =++-++-22222(8)(1)2()()2n m m n n t n t m -+--=+-+ 22222[82()]8()2m n n n t n n t m ---+-=+-+, 令2282()812n n n t n ----=得2384n t n+=,当2384n t n+=时,2222222883894()()522416n n n PA PB n t n n n n --+⋅=+-=+-=+-.当直线AB 垂直于y 轴时,(A n ,(,B n ,238(,0)4n P n + 2222238894()54216n n PA PB n n n n+-⋅=-+=+-.所以,在x 轴上存在点238(,0)4n P n +,使得PA PB ⋅为定值2294516n n+-. 方法二 先利用直线l 垂直于x 轴和垂直于y 轴两种情况下PA PB ⋅的值不变,猜想点238(,0)4n P n +,然后再证明此时PA PB ⋅为定值2294516n n+-.19. 解(1)当n ≥2时,有a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+b 1+b 2+…+b n -1=n 22-n2+1.又a 1=1也满足上式,所以数列{a n }的通项公式是a n =n 22-n2+1.(2)①因为对任意的n ∈N *,有b n +6=b n +5b n +4=1b n +3=b n +1b n +2=b n ,所以c n +1-c n =a 6n +5-a 6n -1=b 6n -1+b 6n +b 6n +1+b 6n +2+b 6n +3+b 6n +4=1+2+2+1+12+12=7. 所以数列{c n }为等差数列.②设c n =a 6(n -1)+i (n ∈N *)(其中i 为常数且i ∈{1,2,3,4,5,6},所以c n +1-c n =a 6(n -1)+6+i -a 6(n -1)+i =b 6(n -1)+i +b 6(n -1)+i +1+b 6(n -1)+i +2+b 6(n -1)+i +3+b 6(n -1)+i +4+b 6(n -1)+i +5=7,即数列{a 6(n -1)+i }均为以7为公差的等差数列.设f k =a 6k +i 6k +i =a i +7k i +6k =76(i +6k )+a i -76i i +6k =76+a i -76ii +6k (其中n =6k +i ,k ≥0,i 为{1,2,3,4,5,6}中一个常数) 当a i =76i 时,对任意的n =6k +i ,有a n n =76;当a i ≠76i 时,f k +1-f k =a i -76i i +6(k +1)-a i -76ii +6k =(a i -76i )-6[i +6(k +1)](i +6k ),①若a i >76i ,则对任意的k ∈N 有f k +1<f k ,所以数列{a 6k +i 6k +i }为递减数列;②若a i <76i ,则对任意的k ∈N 有f k +1>f k ,所以数列{a 6k +i 6k +i }为递增数列.综上所述,集合B ={76}∪{43}∪{12}∪{-13}∪{-16}={76,43,12,-13,-16}.当a 1∈B 时,数列{a nn}中必有某数重复出现无数次;当a 1∉B 时,数列{a 6k +i6k +i }(i =1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列{a nn }任意一项的值均未在该数列中重复出现无数次.20. 解(1)设切点00(,)x y ,1()f x x¢=.所以000001ln 1x y x y kx k ,,,ìï=ïïï=+íïï=ïïî所以20x e =,21k e =. (2)因为1()g x x x=-在(0,)+?上单调递增,且(1)0g =. 所以1ln ,01,1()()|()|ln ||1ln , 1.x x x xh x f x g x x x x x x x x ìïï+-<<ïïï=-=--=íïï-+?ïïïî当01x <<时,1()ln h x x x x =+-,211()10h x x x¢=++>, 当1x ≥时,1()ln h x x x x=-+,222111()10x x h x x x x -+-¢=--=<, 所以()h x 在(0,1)上单调递增,在(1,)+?上单调递减,且max ()(1)0h x h ==. 当01a <<时,max ()(1)0h x h ==; 当1a ≥时,max 1()()ln h x h a a a a==-+. (3)令1()2ln ()F x x k x x=--,(1,)x ??. 所以222212()(1)kx x k F x k x x x -+-¢=-+=.设2()2x kx x k j =-+-,①当0k £时,()0F x ¢>,所以()F x 在(1,)+?上单调递增,又(1)0F =,所以不成立; ②当0k >时,对称轴01x k=, 当11k≤时,即1k ≥,(1)220k j =-≤,所以在(1,)+?上,()0x j <,所以()0F x ¢<, 又(1)0F =,所以()0F x <恒成立; 当11k>时,即01k <<,(1)220k j =->,所以在(1,)+?上,由()0x j =,0x x =,所以0(1,)x x Î,()0x j >,即()0F x ¢>;0(,)x x ??,()0x j <,即()0F x ¢<, 所以max 0()()(1)0F x F x F =>=,所以不满足()0F x <恒成立. 综上可知:1k ≥.11。
08071. 06求下列极限:(1).(1)lim n n n αα→∞⎡⎤+-⎣⎦,其中01α;(2)224cos arcsin 0limx x ex x --→2.设函数f(x)= 1sin ,00,0m x x x x ⎧≠⎨=⎩。
讨论m=1,2,3时f(x)在x=0处的连续性,可微性及导函数的连续性。
3.设u=f(x,y+z)二次可微。
给定球变换cos sin x ρθϕ=,sin sin y ρθϕ=,cos z ρϕ=.计算22,u u ϕθ∂∂∂∂。
4.设f(x)二次可导,'()f a ='()f b =0。
证明(,)a b ξ∃∈,使2''4()()()()b a f f a f b ξ-≥-。
5.设函数项级数1()n n u x ∞=∑在区间I 上一致收敛于s(x),如果每个()n u x 都在I 上一致连续。
证明s(x)在I上一致连续。
6.设f(x,y)是2上的连续函数,试交换累次积分2111(,)x x xdx f x y dy +-+⎰⎰的积分次序。
7.设函数f(x)在[0,1]上处处可导,导函数'()()()f x F x G x =-,其中()F x ,()G x 均是单调函数,并且'()f x >0,[0,1]x ∀∈。
证明 0c ∃>,使'()f x c ≥,[0,1]x ∀∈。
8.设三角形三边长的和为定值P 。
三角形绕其中的一边旋转,问三边长如何分配时旋转体的体积最大?051.(20')1)11(2)lim(),()0,()()()()()()()0,()n n n n x aa b bbf a f a f x f a x a f a x a f a f a →<≤≤=='''-≠'---''''''≠求下列极限()而因此其中存在解:由于存在,从而f(x)=f(a)+f (a)(x-a)+f (a)222222(())211()()(()())lim()lim()()()()()(()())()()()()()((()))2lim(()()()((()))2limx a x a x a x o x a x a f a f x f a f x f a x a f a f x f a x a f a x a x a f a o x a x a x a f a o x a →→→+-'----=''-----''''--+-=-''''-+-=f (a)(x-a)+f (a)f (a)(x-a)+f (a)22222()(())2()()()((()))21()()2lim ()2[()]()(()(())2a x a x a o x a x a x a f a o x a f a f a x a f a f a f a o x a →→-''+--''''-+-''-''==--'''''++--f (a)f (a)(x-a)+f (a)f (a)000002.(18')()[01]()()0()0.()[0,1]()[0,1]}[0,1],()0,1,2}{},()()0()0()limx x f x f x f x x f x f x f n x k f f x f x →='≠⊂==→→∞=='=k k k n n n n n n 设在,上可微,且的每一个零点都是简单零点,即若则f 证明:在上只有有限个零点。
苏州大学2018届高考指导测试 (二)高 三 数 学(正题) 2018. 5考生注意:1.本试卷共4页,包括(第1题—第12题)、(第13题—第17题)两部分。
本试卷满分150分,考试时间120分钟。
2.答将填空题答案和解答题的解答过程写在答题卷上,在本试卷上答题无效。
3.答题前,务必将自己的姓名、学校、准考证号写在答卷纸的规定位置。
一、填空题(本大题共14小题,每小题5分,共90分。
请把答案填写在答题卡相应位置上) 1. 若2(31)i 25i a a a -+-=+,其中i 是虚数单位,则实数a 的值为 ▲ .2. 在平面直角坐标系xOy 中,“方程22113x y k k +=--表示焦点在x 轴上的双曲线”的充要条件是“实数k ∈ ▲ ”.3. 某地区在连续7天中,新增某种流感的数据分别为4,2,1,0,0,0,0,则这组数据的方差s 2= ▲ .4. 已知角α是锐角,求sin α+3cos α的取值范围 ▲ .5. 设m ,n 是两条不同的直线,α,β,γ是两个不同的平面,有下列四个命题:①⎩⎨⎧α∥ββ∥γ⇒α∥γ; ②⎩⎨⎧α⊥βm ∥α⇒m ⊥β; ③⎩⎨⎧m ⊥αm ∥β⇒α⊥β; ④⎩⎨⎧m ∥n n ⊂α⇒m ∥α.其中真命题的是 ▲ (填上所有真命题的序号).6. 将A ,B ,C ,D 四个人平均分成两组,则“A ,B 两人恰好在同一组”的概率为 ▲ .7. 右图是一个算法的流程图,最后输出的n = ▲ .8. 设S n 表示等差数列{a n }的前n 项和,已知a 5=3a 3,则95S S = ▲ .9. 已知函数()f x 是定义在(0,)+∞上的单调增函数,当n *∈N 时,()f n *∈N ,若[()]3f f n n =,则f (5)的值等于 ▲ .10. 已知f (x )=x 3-3x ,过A (1,m )可作曲线y =f (x )的三条切线,则m 的取值范围是 ▲ .高三数学 第1页 共4页11. 已知D 是由不等式组⎩⎨⎧x -2y ≥0,x +3y ≥0所确定的平面区域,则圆x 2+y 2=4 围成的区域与区域D的公共部分的面积为 ▲ .12. 在平面直角坐标系xOy 中,设直线l :10kx y -+=与圆C :224x y +=相交于A 、B 两点,以OA ,OB 为邻边作□OAMB ,若点M 在圆C 上,则实数k = ▲ .13. 在正六边形ABCDEF 中,AB =1,AP xAB yAF =+,则x +y 的取值范围是 ▲ .14. 将所有3的幂,或者是若干个3的幂之和,由小到大依次排列成数列1,3,4,9,10,12,13,…,则此数列的 第100项为 ▲ .二、解答题(本大题共6小题,共90分.解答题应写出文字说明、证明过程或演算步骤) 15. (本小题满分14分) 已知向量m =(a ,cos2x ),n =(1+sin2x ,3),x ∈R ,记f (x )=m ⋅n .若y =f (x )的图象经过点( π4,2 ).(1)求实数a 的值;(2)设x ∈[-π4,π4],求f (x )的最大值和最小值;(3)将y =f (x )的图象向右平移π12,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到y =g (x )的图象,求y =g (x )的单调递减区间. 16.(本小题满分14分)在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°, P A ⊥平面ABCD ,E 为PD 的中点,P A =2AB =2. (Ⅰ)求四棱锥P -ABCD 的体积V ;(Ⅱ)若F 为PC 的中点,求证PC ⊥平面AEF ; (Ⅲ)求证CE ∥平面P AB .FCPA BCDEF高三数学第2页共4页17.(本小题满分15分)某企业有两个生产车间分别在A,B两个位置,A车间有100名员工,B车间有400名员工,现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐,已知A,B,C中任意两点间的距离均有1km,设∠BDC=α,所有员工从车间到食堂步行的总路程为S.(1)写出S关于α的函数表达式,并指出α的取值范围;(2)问食堂D建在距离A多远时,可使总路程S最少?18.(本小题满分15分)已知椭圆C:x2a2+y2b2=1(a>b>0),直线l过点A(a,0)和B(0,b).(1)以AB为直径作圆M,连接MO并延长,与椭圆C的第三象限部分交于N,若直线NB是圆M的切线,求椭圆的离心率;(2)已知三点D(4,0),E(0,3),G(4,3),若圆M与△DEG恰有一个公共点,求椭圆方程.高三数学第3页共4页19.(本小题满分16分)已知数列{}na的前n项和nS满足:(1)1n naS aa=--(a为常数,且0,1a a≠≠).(1)求{}na的通项公式;(2)设21=+nnnSba,若数列{}n b为等比数列,求a的值;(3)在满足条件(2)的情形下,设111211nn nca a+=-++-(),数列{}nc的前n项和为T n.求证:13nT<.20.(本小题满分16分)已知关于x的函数f(x)=x2+2ax+b(其中a,b∈R).(1)求函数|f(x)|的单调区间;(2)对于一切a∈[0,1],若存在实数m,使得1|()|4f m≤与1|(1)|4f m+≤能同时成立,求b-a 的取值范围.高三数学 第4页 共4页苏州大学2018届高考指导测试 (二)1.2. 2. 3. 4.(1,2]4-2若函数tan y x ω=在区间π(,π)2上单调递增,则实数ω的取值范围是________.13(0,][1,]22⋃.5.①③6.137. 100. 8.275 9. 8 10.(-3,-2). 11.π2. 12. 0. 12-2在直角坐标平面内,点A (1,2)到直线l 的距离为1,且点B (4,1)到直线l 的距离为2,则这样的直线l 最多的条数为_________.4. 13.无13—2已知|a |=2,|b |=3,|c |=4,且a +b +c =0 ,则向量a 与b 的夹角的余弦值= .13-3在Rt △ABC 中,∠A =90°,AB =AC =2,点D 为AC 中点,点E 满足13BE BC =,则AE BD ⋅=__________.13-4设点O 为△ABC 的外心,AB =13,AC =12,则BC AO ⋅=_____. 14. 981. 二、解答题15. 16. 无17.(1)在△BCD 中,∵sin 60sin sin(120)BD BC CDαα==︒︒-,∴2sin BD α=,sin(120)sin CD αα︒-=.则sin(120)1sin AD αα︒-=-.S=sin(120)2400100[1]sin sin ααα︒-⋅+⋅-=cos 450sin αα--. 其中π3≤α≤2π3. (2)2sin sin (cos 4)cos sin S ααααα-⋅--'=-=214cos sin αα-. 令S '=0,得1cos 4α=. 当1cos 4α>时,S '<0,S 是α的单调减函数; 当1cos 4α<时,S '>0,S 是α的单调增函数. ∴当1cos 4α=时,S 取得最小值.此时,sin α=1sin sin(120)12211sin sin 2AD ααααα+︒-=-=-=-=11122-=-(答) 18已知椭圆C :x 2a 2+y 2b2=1(a >b >0),直线l 过点A (a ,0)和B (0,b ).(1)以AB 为直径作圆M ,连接MO 并延长,与椭圆C 的第三象限部分交于N ,若直线NB 是圆M 的切线,求椭圆的离心率; (2)已知三点D (4,0),E (0,3),G (4,3),若圆M与△CADEG 恰有一个公共点,求椭圆方程.数列问题19-1解 (1)11(1),1-=-aS a a ∴1,=a a 当2n ≥时,11,11n n n n n a aa S S a a a a --=-=---1nn a a a -=,即{}n a 是等比数列.∴1n n n a a a a -=⋅=; (2)由(1)知,2(1)(31)211(1)n n n n n aa a a a ab a a a ⋅----=+=-, 若{}n b 为等比数列,则有2213,b b b =而21232323223,,,a a a b b b a a +++=== 故22232322()3a a a a a +++=⋅, 解得13a =,再将13a =代入得3n n b =成立,所以13a =.(3)证明:由(2)知1()3n n a =,所以11111332111131311()1()33n n n n n n n c +++==+-+----+-1113131n n +=-+-,由111111,313313n n n n ++<>+-得111111,313133n n n n ++-<-+- 所以11133n n n c +-<,从而122231*********())33333333n n n n n T c c c ++=+++--++-=-<+(<13.函数问题20-1已知关于x 的函数f (x )=x 2+2ax +b (其中a ,b ∈R ). (1)求函数|f (x )|的单调区间;(2)对于一切a ∈[0,1],若存在实数m ,使得1|()|4f m ≤与1|(1)|4f m +≤能同时成立,求b -a的取值范围.。
课时安排:2课时教学目标:1. 让学生掌握数学分析的基本概念和理论;2. 培养学生运用数学分析方法解决实际问题的能力;3. 培养学生的逻辑思维能力和严谨的学术态度。
教学重点:1. 数学分析的基本概念和理论;2. 数学分析方法在解决实际问题中的应用。
教学难点:1. 理解和掌握数学分析中的抽象概念;2. 将数学分析方法应用于实际问题。
教学内容:一、数学分析的基本概念和理论1. 数列极限;2. 函数极限;3. 极限的性质;4. 无穷小和无穷大;5. 连续性。
二、数学分析方法在解决实际问题中的应用1. 极限的求解;2. 连续性的判断;3. 函数的导数和积分。
教学过程:第一课时一、导入1. 回顾数列极限和函数极限的概念;2. 引入无穷小和无穷大的概念。
二、新课讲解1. 数列极限的性质;2. 函数极限的性质;3. 无穷小和无穷大的性质。
三、例题讲解1. 讲解数列极限的求解方法;2. 讲解函数极限的求解方法;3. 讲解无穷小和无穷大的求解方法。
四、课堂练习1. 学生独立完成数列极限、函数极限和无穷小无穷大的求解题;2. 教师巡视指导,解答学生疑问。
第二课时一、导入1. 回顾连续性的概念;2. 引入连续性的性质。
二、新课讲解1. 连续性的性质;2. 连续性的判断方法。
三、例题讲解1. 讲解连续性的判断方法;2. 讲解函数的导数和积分的求解方法。
四、课堂练习1. 学生独立完成连续性的判断题;2. 教师巡视指导,解答学生疑问。
教学评价:1. 学生对数学分析的基本概念和理论掌握程度;2. 学生运用数学分析方法解决实际问题的能力;3. 学生在课堂上的参与度和学习积极性。
教学反思:1. 教师在讲解过程中要注意引导学生理解抽象概念,提高学生的逻辑思维能力;2. 教师要注重培养学生的实际应用能力,让学生在解决实际问题的过程中提高数学分析水平;3. 教师要根据学生的实际情况,适时调整教学内容和方法,提高教学效果。
苏州大学 微积分二 期末练习二一. 填空题:(每小题3分,共30分)1. 函数z =的定义域为 .2. 旋转曲面1222=--z y x 是xoy 平面上的双曲线绕 轴旋转所得.3. 曲线2222x y z R x z a⎧++=⎨+=⎩在xoy 平面上的投影曲线方程是 .4. 设曲线2t x =,3t y =,32t z =在点(1,1,1)处的一个切向量与z 轴正向的夹角成钝角,则它与x 轴正向夹角的余弦cos α= .5. 设D 是422≤+y x ,则⎰⎰+Dd xy σ)1(的值是 .6. 设(,)()(,)w f x y g x h x y =+,其中,,f g h 均为可微函数,则xw ∂∂= . 7. 若(,)z f x y =存在二阶连续偏导数,则2z x y ∂∂∂与2z y x∂∂∂的关系是 8. 设L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧,则()Lx y dx -=⎰ . 9. 幂级数∑∞=---11214)1(n n n n x n 的收敛半径R = . 10. 设方程2sin(23)23x y z x y z +-=+-确定(,)z z x y =,则z z x y∂∂+=∂∂ . 二.解下列各题:(每小题6分,共30分)1. 设)()(1y x yf xy f x z ++=,其中f 具有一阶导数,求y z x z ∂∂∂∂,.2. 设222),(z y x r r f u ++==,其中f 为可微函数,求gradu .3. 计算曲面积分xyzdxdy ∑⎰⎰,其中∑是球面2221x y z ++=在第五卦限的外侧.4. 计算曲线积分⎰Γ++++222z y x zdz ydy xdx ,其中Γ是曲线⎪⎩⎪⎨⎧===t e z t y t x cos sin 上从0t =到2t π=的一段.5. 判别级数∑∞=-+12)11(n n n 的敛散性.三.(A 类题,5分)求()Dxy x y dxdy -⎰⎰,其中D 由直线0,0x y x y -=+=及1x =围成.(B 类题,10分)试求曲面1z xy a=上被圆柱面222a y x =+所截下的有限部分的曲面面积)0(>a .四.(A 类题,5分)求x x f 2cos )(=的麦克劳林展开式,并指出收敛区间.(B 类题,10分)求234()ln(1)f x x x x x =++++的麦克劳林展开式,并指出收敛区间.五.(A 类题,5分)设方程0132=--xz y z 确定了),(y x z z =,求 xz ∂∂以及曲面),(y x z z =在点(1,0,1)-处的法线方程.(B 类题,10分)求曲线cos ,sin ,t t t x ae t y ae t z ae ===上任一点的切线和该点与原点连线的交角.六.(A 类题,5分)求双曲线4xy =与直线21x y +=的最短距离.(B 类题,10分)设32212()z y y xy x x y αγβαββγ-=+++++,试证:当2γαβ≠时,函数z 有一个且仅有一个极值;又若0<β,则该极值必为极大值.。
《数学分析(下)》课程习题集一、计算题 1. 设f xyz z yxf u),,(222++=具有二阶连续偏导数,求xz u ∂∂∂2.2. 设f z yxf u ),(222++=具有二阶连续偏导数,求22xu ∂∂,.2yz u ∂∂∂3. 0)cos(=--+xyz z y x ,求yz xz ∂∂∂∂,.4. 已知),(yx x f z=,求yz xz ∂∂∂∂,.5. 已知),(),,(v u f xy y x f z+=可微,求yx z ∂∂∂2.6. 设.,dz yx y x z 求-+=7. 设),(z x f u =,而),(y x z 是由方程)(z y x z ϕ+=所确的函数,求du .8. 设)1,0(≠>=x x x zy,证明它满足方程z yzx xz y x 2ln 1=∂∂+∂∂.9. 设yxez=,证明它满足方程0=∂∂+∂∂yz yxz x.10. 已知zyxu= ,求yx u ∂∂∂2.11. 求曲面22yxz+=包含在圆柱x yx 222=+内部的那部分面积.12. 计算二重积分Dx d y ⎰⎰,其中积分区域为22{(,)|14}D x y x y=≤+≤.13. ⎰⎰-Dydxdy e2,其中D 是以点) 0 , 0 (、) 1 , 1 (和) 1 , 0 (为顶点的三角形域.14. 计算二重积分⎰⎰Ω+=dxdyy xI )(22,其中Ω是以a y a x y x y =+==,,和)0( 3>=a a y 为边的平行四边形.15. 把下列积分化为极坐标形式,并计算积分值:⎰⎰-+a xax dyy xdx2020222)(.16. 求级数11(1)nn n xn∞-=-∑的和函数.17. 求幂级数∑∞=+1)1(n nn n x的和函数.18. 求级数∑∞=+0)1(n nxn 的收敛域及和函数,并求∑∞=+021n nn 的和.19. 讨论∑∞=--11ln )1(n n nn 的收敛性.20. 判别级数∑∞=⋅1!2n nnnn 的收敛性.21.求幂级数11(1))2nnnn x ∞=--∑的收敛区间.22. 求幂级数∑∞=122n nnxn 的收敛区间.23. 计算nn nx n)1(21-∑∞=的收敛半径和收敛域.24. 求幂级数nn nx n∑∞=+12)11(的收敛半径和收敛域.25. 求下列幂级数的收敛区间:+⋅++⋅+⋅+⋅nn n xxxx 33332313322.二、 填空题26. 幂级数nn x n∑∞=11的收敛半径为( ).27. 设级数∑∞=053n nn ,则其和为( ).28. 设级数∑∞==14n n u ,则级数=-∑∞=1)2121(n nn u ( ).29. 当1<x 时,幂级数∑∞=+-013)1(n n n x的和函数为( ).30. 若∑∞=-1)1(n n u 收敛,则=∞→n n u lim ( ).31. 几何级数)0(11>∑∞=+a aqn n 当( )时收敛.32. 幂级数∑∞=+0!1n nxn n 的和函数为( ).33. 幂级数∑∞=12n n nx 的收敛域为( ).34. 幂级数∑∞=-12)1(n nn nn x的收敛域为( ).35.=)(x f x sin 的幂级数展开式为( ). 36. 级数∑∞=1n n u 发散的充分条件是( ).37. 设级数∑∞=+111n p n收敛,则p 的取值范围是( ).38. =∞→nnn nn !2lim( ).39.2xe-的幂级数展开式为( ).40. =>∞→nk n an lim1a 时,当( ).41. =→→yxy y x sin lim0( ).42. 二元函数1122-+=y xz的定义域为( ).43.=++→→22220)sin(limyxy x y x ( ).44.11lim22220-+++→→yx yx y x =( ).45.xyxy y x 11lim0-+→→=( ).46. 设22ln yxxy arctgz ++=,则=∂∂)1,1(xz ( ). 47. 设='+=)0,1(),32ln(),(y f xy x y x f 则( ).48. 设=++=)1,1(,1ln ),(22df y xy x f 则( ). 49. 设),(y x z z=是由方程yz x ln =确定的隐函数,则xz ∂∂=( ).50. 设xu yx euy∂∂=-则,sin在点(2,π1)处的值为( ).51. 函数xy yxz333-+=的极小值为( ).52. 若函数y xyax x y x f 22),(22+++=在点(1,-1)处取得极值,则常数=a ( ).53. 函数33812),(y xy xy x f +-=的极小值点为( ).54. 函数22)(4),(y x y x y x f ---=的极值为( ). 55. 函数y x yxy xy x f --++=2),(22的极值为( ).56. 设,),arctan(xe y xy z ==则=dxdz ( ).57. 设==dz ez xy则,sin ( ).58. 设=∂∂+∂∂+=yz yxz xy x z 则),ln(( ).59. 设='=)0,0(,),(x f xy y x f 则( ). 60.222zy x u ++=在(1,1,1)点的全微分为( ).61. 设)1ln(32z yx u+++=,则=∂∂+∂∂+∂∂)1,1,1()(zu yu xu ( ).62. 二重积分=+⎰⎰σd y xD)6(2( ), 其中D 是由1,,222===x x y x y 所围成的区域; 63. 若函数,)()(),()(1∑-=+-∞=n nn a x a x f r r a r a x f 为收敛半径),内能展开成幂级数(在则=k a ( ),且内任意可导;在),()(r a r a x f +-64. 设023=+-y xz z ,则)1,1,1(xz ∂∂=( ).65. =∞→2)!(limn nn n ( ). 66. 积分=⎰⎰-yydx edy022( ).67. 改变积分⎰⎰xedy y x f dxln 01),(的次序后所得积分为( ).68. =⎰⎰1210xyxdy edx ( ).69. 二重积分⎰⎰=+Dyx d eσ( ),其中D 是由x y ln =,x 轴,2=x 所围成的区域. 70. 已知D 是长方形域:,10;≤≤≤≤y b x a 且1)(=⎰⎰Ddxdy x yf ,则⎰badx x f )( =( ).71. ,1,≤≤y x D π:设则⎰⎰-Ddxdy y x )sin (=( ). 72. 设D :,1,3≤≤y x 则=+⎰⎰Dd y x x σ)(( ). 73. 设D :,20,0ππ≤≤≤≤y x 则=⎰⎰Dydxdyx cos sin ( ). 74. 设D 是由1,1,1,1=-==-=y y x x围成的矩形区域,则=⎰⎰Ddxdy ( ). 75. 设f 是连续函数而D :⎰⎰=+>≤+Ddxdy yxf y yx )(,0,12222则且( ). 三、单选题 (略)……答案一、计算题 1. 解:zu ∂∂=212xyf z f +,)2()2(22221212112yzfxfxy yfyzfxf z xz u ++++=∂∂∂.2. 解:令222z yx t++=,则)(t f u =,xu ∂∂=)(2t f x ',zu ∂∂=)(2t f z '.)(4)(2222t f xt f xu ''+'=∂∂,)(42t f yz yz u ''=∂∂∂.3. 解:1s in ()1s in (),.1s in ()1s in ()z y z x y z z x z x y z xx y x y z y x y x y z ∂+∂+==∂-∂-4. 解:x z ∂∂=yf f 121+,yz ∂∂=22yx f -.5. 解:xz ∂∂=yf f 21+yz ∂∂=x f f 21+,22122112)(xyff y x f f yx z ++++=∂∂∂.6. 解:2()()()()()x y x y d x y x y d x y d zd x y x y ⎛⎫+-+-+-== ⎪--⎝⎭2()()()()()x y d x d y x y d x d y x y -+-+-=-222()y d x x d yx y -+=-2222.()()y x d x d y x y x y =-+--7. 解:u u d u d x d y xy∂∂=+∂∂,()z x y z ϕ=+ (1)方程(1)两边对x 求导:1()z z y z x xϕ∂∂'=+∂∂,1.()1z xy z ϕ∂-∴='∂-方程(1)两边对y 求导:()(),z z z y z yyϕϕ∂∂'=+∂∂ ().()1z z yy z ϕϕ∂-∴='∂-而;()1zx f u f f z f x x zxy z ϕ∂∂∂∂=+⋅=-'∂∂∂∂-()();()1()1z z f z u f z z f yzyy z y z ϕϕϕϕ⋅∂∂∂-=⋅=⋅=-''∂∂∂--()().()1()1zz x f f z u u d u d x d y f d x d y xyy z y z ϕϕϕ⋅∂∂∴=+=--''∂∂--8. 解:1-=∂∂y yxxu ,x xyu yln =∂∂,z x xxyxyx yzx xz y x yy 2ln ln 1ln 11=+=∂∂+∂∂-.9. 解:yex z yx1=∂∂,2yx eyz yx-=∂∂,则012=-=∂∂+∂∂y x yeyxey z yxz xyxyx.10. 解:xu ∂∂=1-zyxzy ,=∂∂∂yx u 2121ln 1--+zyzyxzx y xz.11.解:由222z x y x⎧⎪=⎨+=⎪⎩ 消去z 得投影柱面:222x y x+=,在xoy 面上的投影区域为 22:2xy D x y x+≤2x y z z ==21122222222=++++=++∴yxy yxx zzyx所求面积为:2c o s 2002x yD Ax d yd d r πθθ==⎰⎰⎰⎰220c o s .d πθθ==12.解:由对称性,可只考虑第一象限部分,14DD =,Dx d y ⎰⎰=41D x d y ⎰⎰2201s in 44r d r d r rππθ==-⎰⎰.13. 解:dx edydxdy eyyDy⎰⎰⎰⎰--=10022ee eydy eyy210121221-=-==--⎰.14. 解:⎰⎰⎰⎰Ω-=+=+a ayay adx y xdydxdy y x34222214)()(.15. 解:在极坐标系下,半圆22xax y-=的方程变为⎰⎰==≤≤=2cos 204343,20,cos 2πθπθπθθa adr r d a r 原式.16. 解:11()(1)nn n xs x n∞-==-∑,显然(0)0s =.21()1,(11)1s x x x x x'=-+-=-<<+两边积分得0()ln (1)xs t d t x '=+⎰即()(0)ln (1)()ln (1),s x s x s x x -=+∴=+又1x =时,111(1)n n n∞-=-∑收敛,11(1)ln (1)(11)nn n xx x n∞-=-=+-<<∑.17. 解:令111()(1)1n n n n n n xxxS x n n nn ∞∞∞=====-++∑∑∑11111nn n n xxnxn +∞∞===-+∑∑,设11(),nn xS x n∞==∑121(),1n n xS x n +∞==+∑则1111(),1n n S x xx ∞-='==-∑101()ln (1).1xS x d x x x∴==---⎰21(),1nn xS x xx∞='==-∑20()l n (1).1x x S x d x x x x∴==----⎰1211()()()ln (1)[ln (1)]S x S x S x x x x xx∴=-=--++-11(1)ln (1).x x=+-- (1,0)(0,1x ∈- 即 11(1)ln (1),(1,0)(0,1)()0,0x x S x xx ⎧+--∈-⎪=⎨⎪=⎩.18. 解:令)(x f =∑∞=+0)1(n nxn ,则)(x f =∑∞=+0)1(n nxn ∑∞=+'=1)(n n x '⎪⎭⎫ ⎝⎛=∑∞=+01n n x .)1(112x x x -='⎪⎭⎫ ⎝⎛-=1<x 当1±=x 时,级数∑+±)1()1(n n发散,所以级数的收敛域)1,1(-, 令1-=x ,得4)21(211==+∑∞=f n n n.19. 解:∑∞=-1ln )1(n nnn 发散,令xx x f ln )(=,则当2e x >时,02ln 2)(<-='xxx x f ,从而)(x f 在),(2+∞e 上单减,故当9>n 时,数列⎭⎬⎫⎩⎨⎧n n ln 单调减少,又0ln lim =∞→n n n ,故∑∞=--11ln )1(n n n n 为 leibniz 级数,所以它条件收敛.20. 解:12)1(2lim !2)1()!1(2limlim111<=+=⋅⋅++⋅=∞→++∞→+∞→en n n nn n u u nn nnn n n nn n ,所以级数∑∞=⋅1!2n nnnn 收敛.21.解:11limlim22n n n na R a ρ+→∞→∞===∴=,即1122x -<收敛,(0,1)x ∈收敛 .当0x =时,级数为1n ∞=∑,当1x =时,级数为1nn ∞=∑(0,1).22. 解: 级数缺奇次幂的项,而 2(1)112(1)2limlim2n n n n nn n nu n xu n x+++→∞→∞+=⋅2211lim.22n n xxn→∞+==当211,2x <即x <时,级数收敛; 当211,2x>即x >,级数发散.收敛半径为R =又当x =±时,级数为1n n ∞=∑发散,故收敛区间为(23. 解:21212lim1=++∞→nn nn n ,∴收敛半径21=R ,当21=x 时,∑∞=-1)1(n nn收敛,当23=x时,∑∞=11n n发散,故收敛域为)23,21[.24. 解:由于en n nn nn nn 1])111(1))111()11(lim[(11=++⨯+++++∞→收敛半径为e1,当ex 1=时,)(01)1()1()11(2∞→≠→±+n e nnn n,所以收敛域为)1,1(ee -. 25. 解:313)1(3limlim11=+=+∞→+∞→n nn nn n n n a a ,R=3。