苏州大学数学分析(二)课堂练习(2018.6.20)
- 格式:pdf
- 大小:156.99 KB
- 文档页数:2
数学分析2部分习题解析傅里叶级数部分第3节部分习题1、设f 以2π为周期且具有二阶连续的导数,证明f 的傅里叶级数在(),-∞+∞上一致收敛于f 。
证明由条件知,f 一定是以2π为周期的连续函数且在一个周期区间[],ππ-上按段光滑,所以由收敛定理得,在(),-∞+∞上有()011cos sin ()2n n n a a nx b nx f x ∞=++=∑,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
由三角级数一致收敛的判别法,下证()0112n n n a a b ∞=++∑收敛即可。
事实上,记0a ',n a ',nb '为导函数()f x '的傅里叶系数,由()f x 与()f x '的傅里叶系数的关系得0a '=,n n a nb '=,n n b na '=-。
所以,()()22211112n n n n n n a b b a a b n n n ⎛⎫''''+=+≤++ ⎪⎝⎭。
又由傅里叶系数满足的贝塞尔不等式得,()()()221nn n a b ∞=''+∑收敛,再注意到211n n∞=∑收敛,所以()0112n n n a a b ∞=++∑收敛,故结论成立。
2、设f 为[],ππ-上的可积函数,证明:若f 的傅里叶级数在[],ππ-上一致收敛于f ,则成立帕塞瓦尔等式:()22220111()d 2n n n f x x a a b πππ∞-==++∑⎰,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
证明由f 在[],ππ-上可积得,f 在[],ππ-上有界,从而由题设可得()2011()()cos ()sin ()2n n n a f x a f x nx b f x nx f x ∞=++=∑,在[],ππ-上一致成立。
院系 专业 学号 姓名 3211.1 对弧长的曲线积分1. 计算下列对弧长的曲线积分 (1)⎰+L n ds y x )(22 , 其中)20(sin cos :π≤≤⎩⎨⎧==t t R y t R x L 122+n R π(2)⎰Lds x 2 , 其中L 为由1222=++z y x 与0=++z y x 所表示的圆的一周 32π(3)⎰Γ++ds z y x 2221,Γ为曲线t t t e z t e y t e x ===,sin ,cos 上相应于t 从0到π2 的一段弧)1(232π--e(4)⎰+Lds y x )(3434, 其中L 为内摆线323232a y x =+ 374a(5)设L 为双纽线)0(),()(222222>-=+a y x a y x , 求ds y L ⎰)22(22-a院系 专业 学号 姓名 3311.2 对坐标的曲线积分1. 计算下列对坐标的曲线积分 (1)⎰L xydx , 其中L 为)0(,)(222>=+-R R y R x 及x 轴所围成的在第一象限内的区域的逆时针方向绕行的整个边界23R π-(2)⎰+--+L yx dy y x dx y x 22)()( , 其中L 为逆时针方向绕行的圆周222R y x =+ π2-(3)⎰Γ+-++dz y x ydy xdx )2(32 , 其中Γ为从点)1,1,1(到点)4,3,2(的直线段 39/2(4)⎰-+-L dy xy y dx xy x )2()2(23 , 其中L 为2x y =上从点)1,1(-到点)1,1(的一段弧-4/52. 利用曲线积分计算星形线323232a y x =+所围图形的面积 283a π院系 专业 学号 姓名 3411.3 格林公式及其应用1. 利用格林公式计算下列曲线积分 (1)⎰-+++-Ldy y x dx y x )753()42( , 其中L 为三顶点分别为)2,3(),0,3(),0,0(的三角形正向边界15(2) ⎰+-L y x xdy ydx )(422其中L 为9)2(22=+-y x ,且为逆时针方向 2π-2. 验证下列曲线积分与路径无关,并求积分值(1)⎰--)1,1()0,0())((dy dx y x 0(2) ⎰-)2,1()1,2(2x xdy ydx 沿在右半平面的路线 -3/2院系 专业 学号 姓名 353. 利用格林公式计算曲线积分⎰-+-Ldy y x dx y y )1cos ()(sin , 其中L 为圆周x y x 222=+上从点)0,0(O 到点)1,1(A 的一段弧411sin π--4. 验证下列dy y x Q dx y x P ),(),(+是某一函数),(y x U 的全微分,并求这个),(y x U(1)dy y xy x dx y xy x )2()2(2222--+-+ (2)ydy x dx y x cos )sin 2(++ C y xy y x x y x U +--+=33),(3223 C y x x y x U ++=sin ),(25. 在过点)0,0(O 与点)0,(πA 的曲线族x a y sin = )0(>a 中求一条曲线L , 使沿该曲线从O 到A 的积分⎰+++L dy y x dx y )2()1(3的值最小1=a6. 求可微函数)(x f ,使0))((=-⎰L xdy ydx x f 成立,其中L 为与y 轴不相交的任何闭曲线2xC y =院系 专业 学号 姓名 36第十一章 曲线积分习题课1. 计算⎰+Lds y x )( , 其中L 为连接点)1,0(),0,1(),0,0(的闭折线 21+2. 计算⎰+L y x ds e 22 , 其中L 为圆周222a y x =+,直线0,==y x y 在第一象限内围成扇形的边界a a ae e 4)1(2π+-3. 计算⎰-L ydx x dy xy 22, L 是从)0,1(A 沿21x y -=到)0.1(-B 的圆弧4π4. 设曲线积分⎰+L dy x y dx xy )(2ϕ与路径无关,其中ϕ具有连续导数,且0)0(=ϕ,计算⎰+)1,1()0,0(2)(dy x y dx xy ϕ1/2院系 专业 学号 姓名 375. 计算曲线积分⎰+---=L y x dyx ydx I 22)1()1((1)L 为圆周0222=-+y y x 的正向(2) L 为椭圆08422=-+x y x 的正向π2-6. 设曲线L 是正向圆周1)()(22=-+-a y a x ,)(x ϕ是连续的正函数,证明πϕϕ2)()(≥-⎰L dx x y dy y x院系 专业 学号 姓名 3811.4 对面积的曲面积分1. 计算下列对面积的曲面积分(1)⎰⎰∑++dS z y x )(,其中∑是上半球面0,2222>=++z a z y x3a π(2)⎰⎰∑+22yx dS ,其中∑是柱面222R y x =+被平面0,0>==h z z 所截取的部分 Rh π2(3)⎰⎰∑xyzdS ,其中∑是平面1=++z y x 在第一卦限的部分12032. 求面密度为z =ρ的抛物面壳)(2122y x z +=)10(≤≤z 的质量 π)152534(+院系 专业 学号 姓名 3911.5 对坐标的曲面积分1. 计算下列对坐标的曲面积分(1)⎰⎰∑yzdzdx ,其中∑是球面1222=++z y x 的上半部分并取外侧 4π(2) ⎰⎰∑++zxdxdy yzdzdx xydydz ,其中∑是由平面1,0=++===z y x z y x 所围的四面体表面并取外侧为正向1/82. 求流速场k y i x v ρρρ2+=穿过曲面22y x z +=与平面1=z 所围的立体表面的流量2π院系 专业 学号 姓名 4011.6 高斯公式1. 利用高斯公式计算⎰⎰∑+++-dxdy xz ydzdx x dydz z x y )()(22 , 其中∑是a z z a y y a x x ======,0,,0,,0所围成的正方体表面的外侧4a2. 利用高斯公式计算⎰⎰∑++zdxdy ydzdx xdydz , 其中∑是介于3,0==z z 之间的圆柱体922≤+y x 的整个表面的外侧π81院系 专业 学号 姓名 41 第十一章 曲面积分习题课1. 计算⎰⎰∑++dxdy z dzdx y dydz x 111 , 其中∑是球面2222R z y x =++的外侧 R π62. 设∑是球面2222a z y x =++的外侧,计算⎰⎰∑zdxdy343a π3. 计算⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()( , 其中∑是)0(222h z y x z ≤≤+=的下侧苏州大学理工类高等数学课次练习院系 专业 学号 姓名 424.求曲面积分⎰⎰∑+dS y x )(22 , ∑为锥面22y x z +=与平面1=z 所围成的区域的边界曲面 π212+5.计算对坐标的曲面积分⎰⎰∑++=dxdy z h dzdx y g dydz x f I )()()(,其中∑是平行六面体c z b y a x ≤≤≤≤≤≤0,0,0的表面并取外侧,)(),(),(z h y g x f 为∑上的连续函数 ab h b h ac g b g bc f a f ))0()(())0()(())0()((-+-+-。
1、设)(x f 是以T 为周期的周期函数且⎰=TC x f T 0)(1,证明⎰+∞∞→=n n C dx x x f n 2)(lim 。
证明:由⎰=T C x f T 0)(1,得到⎰=-Tdx C x f T 00])([1,从而有⎰=-T dx C x f 00])([ (*)本题即证明⎰+∞∞→=-n n dx x C x f n 0)(lim 2(此因⎰+∞=n n dx x112) 注意到21x 是递减的正函数,应用积分第二中值定理,对ξ∃>∀,n A 介于n 与A 之间,使⎰⎰-=-A n n dx C x f n dx xC x f n ξ])([1)(2 k ∃为非负整数使T kT n <--<ξ0,于是由(*),dx C x f dx C x f dx C x f dx C x f kTn kTn kTn nn⎰⎰⎰⎰+++-=-+-=-ξξξ])([])([])([])([于是有dxC x f n dx C x f n dx C x f n dx x C x f nTkT n kT n An⎰⎰⎰⎰-≤-≤-=-++02)(1)(1])([1)(ξξ令∞→A 有dx C x f n dx xC x f nTn⎰⎰-≤-∞+02)(1)( 故⎰+∞∞→=-nn dx x C x f n0)(lim 2,即⎰+∞∞→=n n C dx x x f n 2)(lim 。
2、设函数f(x)在整个实数轴有连续的三阶导数,证明存在实数a 使0)()()()(''''''≥a f a f a f a f 。
证明:由于f 的三阶导数连续,故若'''''',,,f f f f 有一个变号的话,利用根的存在性原理便知,使a ∃0)()()()(''''''=a f a f a f a f ,结论得证。
苏州大学2018届高考考前指导卷2一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.设全集{|2,}U x x x =∈N ≥,集合2{|5,}A x x x =∈N ≥,则U A =ð ▲ . 2.已知i 是虚数单位,复数(12i)(i)a -+是纯虚数,则实数a 的值为 ▲ . 3.利用计算机随机产生0~1之间的数a ,则事件“310a ->”发生的概率为 ▲ . 4.某地区连续5天的最低气温(单位:C ︒)依次为8,4,1,0,2--,则该组数据的方差为 ▲ .5.执行如图所示的伪代码,则输出的结果为 ▲ .6.若抛物线24x y =的弦AB 过焦点F ,且AB 的长为6,则弦AB 的中点M 的纵坐标为 ▲ .7.已知一个正方体的外接球体积为1V ,其内切球体积为2V ,则21V V的值为 ▲ .8.设S n 是等比数列{a n }的前n 项和,若满足a 4 + 3a 11= 0,则2114S S = ▲ . 9.已知0a >,函数2()()f x x x a =-和2()(1)g x x a x a =-+-+存在相同的极值点,则a = ▲ .10. 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4,若等边△PAB 的一边AB 为圆C 的一条弦,则PC 的最大值为 ▲ .11. 若cos 2cos()4ααπ=+,则tan()8απ+= ▲ . 12. 已知0,0a b >>,则222a ba b b a+++的最大值为 ▲ . 13. 在ABC △中,90C =∠°,24AB BC ==,,M N 是边AB 上的两个动点,且1MN =,则CM CN ⋅的取值范围为 ▲ .14. 设函数()33,2,,x x x a f x x x a ⎧-<=⎨-⎩,≥若关于x 的不等式()4f x a >在实数集R 上有解,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在多面体ABCDE 中,∠ABD =60º,BD =2AB ,AB ∥CE ,AB ⊥CD , (1)求证://AB 平面CDE ; (2)求证:平面ABC ⊥平面ACD .16.(本小题满分14分)在△ ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知60B =︒,8c =. (1)若点M 是线段BC 的中点,AMBMb 的值; (2)若12b =,求△ ABC 的面积.ABDE(第15题图)17.(本小题满分14分)某校在圆心角为直角,半径为1km 的扇形区域内进行野外生存训练.如图所示,在相距1km 的A ,B 两个位置分别有300,100名学生,在道路OB 上设置集合地点D ,要求所有学生沿最短路径到D 点集合,记所有学生行进的总路程为S (km ). (1)设ADO θ∠=,写出S 关于θ的函数表达式; (2)当S 最小时,集合地点D 离点A 多远?18.(本小题满分16分)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>为4x =,(,0)Q n 是椭圆C 的长轴上一点(Q 异于长轴端点),过点Q 的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的标准方程;(2)①若2n =,求OA OB ⋅的最大值;②在x 轴上是否存在一点P ,使得PA PB ⋅为定值,若存在,求出点P ;若不存在,请说明理由.(第17题图)19.(本小题满分16分)已知数列{a n },{b n }满足:b n =a n +1-a n (n ∈N *). (1)若a 1=1,b n =n ,求数列{a n }的通项公式; (2)若b n +1b n -1=b n (n ≥2),且b 1=1,b 2=2.①记c n =a 6n -1(n ≥1),求证:数列{c n }为等差数列;②若数列{a nn}中任意一项的值均未在该数列中重复出现无数次,求首项a 1应满足的条件.20.(本小题满分16分)已知函数()ln f x x =,1()g x x x=-. (1)①若直线1y kx =+与()ln f x x =的图像相切, 求实数k 的值;②令函数()()()h x f x g x =-,求函数()h x 在区间[,1]a a +上的最大值. (2)已知不等式2()()f x kg x <对任意的(1,)x ??恒成立,求实数k 的范围.(第18题图)苏州大学2018届高考考前指导卷(2)参考答案一、填空题1.{2} 2.2- 3.234.16 5.11 6.2 7. 8.769.3 10.4 11.1312.23- 13. 11[,9]414. 1(,)(7,)2-∞+∞填空题参考解答或提示1. {}{|2}2U A x x x =<∈=N ≤ð.2. (12i)(i)(2)(12)i a a a -+=++-是纯虚数,所以实数a 的值为2-.3.本题为几何概型,因为13103a a ->⇒>,所以所求概率112313P -==. 4. 8(4)(1)0215x +-+-++==,所以该组数据的方差为52211()165i i s x x ==-=∑.5.第1次,33S I ==,;第2次,75S I ==,;第三次,117S I ==,. 6.设1122(,),(,)A x y B x y ,则126AB y y p =++=,所以1262222M y y y +-===. 7.设正方体棱长为a,则333311132224π214π2V R R V R R a ⎛⎫⎪⎛⎫ ⎪===== ⎪⎪⎝⎭ ⎪⎝⎭8.由题意得74430a a q +⋅=,又40a ≠,所以713q =-,321211421411()173161()3S q S q ---===---. 9. 2322()()2+f x x x a x ax a x =-=-,所以22()34+(3)()f x x ax a x a x a '=-=--;由题意得132a a -=或12a a -=,又0,a >所以3a =. 10.由题意知,在PAC △中,由正弦定理可得,sin sin PC ACPAC APC=∠∠, 所以2sin 4sin sin30PC PAC PAC =∠=∠︒,所以当90PAC ∠=︒时,PC 的最大值为4. 11. cos 2cos(),cos()2cos()48888ααααπππππ=++-=++,所以3s i n()s8888ααππππ+=+所以11tan()833tan8απ+===π.12.设20,20m a b n b a=+>=+>,则22,33m n n ma b--==,所以原式24223322233m n n mn mm n m n--=+=---≤当且仅当233n mm n=即n=,也即b=时等号成立.13.设MN的中点为D,则2221=()()4C M C N CD D M C D D N C D D M C D⋅+⋅+=-=-,故只需考虑||CD的最大、最小值.如图,点D在D1及D2处(1212AD CD AB=⊥,)分别取得最大、最小值.由222137,34CD CD==,所以CM CN⋅的取值范围为11[,9]4.14.由题意知,max()4f x a>①当0a<时,因为(0)0f=,max()4f x a>显然成立;②当0a=时,()33,02,0,x x xf xx x⎧-<=⎨-⎩,≥m a x()(1)204f x f a=-=>=,满足题意;③当0a>时,令332,x x-=解得121,2x x=-=,所以i)当02a<<时,max max()(1)24,f x f a=-=>解得12a<<;ii)当2a>时,3()3f x a a<-,由题意334a a a->,解得a综上所述,实数a的取值范围是1(,)(7,)2-∞+∞.二、解答题15. 证明(1)由题意AB∥CE,CE⊂面CDE,AB⊄平面CDE,所以//AB平面CDE.(2)在△ABD中,因为∠ABD=60º,BD=2AB,所以︒⋅⋅-+=60cos2222BDABBDABAD,即223ABAD=,因为222BDADAB=+,所以AB AD⊥,又AB CD AD CD D⊥=,,所以⊥AB平面ACD,又⊂AB面ABC,所以平面ABC⊥平面ACD.16. 解(1)因为点M 是线段BC的中点,AMBMBM x =,则AM , 又60B =︒,8c =,在△ABM 中,由余弦定理得2236428cos60x x x =+-⨯︒, 解得4x =(负值舍去),则4BM =,8BC =. 所以△ ABC 中为正三角形,则8b =.(2)在△ ABC 中,由正弦定理sin sin b c B C=,得8sin 2sin 12c BC b ==. 又b c >,所以B C >,则C为锐角,所以cos C =.则()1sin sin sin cos cos sin 2A B C B C B C =+=+==, 所以△ ABC的面积1sin 4826S bc A ==⨯=17. 解(1)因为在△OAD 中,θ=∠ADO ,1OA =,所以由正弦定理可知1ππsin sin sin 33AD ODθθ==⎛⎫+ ⎪⎝⎭, 解得πsin 3sin AD OD θθ⎛⎫+ ⎪⎝⎭=,且π2π(,)33θ∈,故πsin 33001001001sin S AD BD θθ⎤⎛⎫+ ⎪⎥⎝⎭⎥=+=+-⎢⎥⎢⎥⎣⎦3cos 50sin θθ-=+,π2π(,)33θ∈, (2) 令3cos sin y θθ-=,则有23cos 1sin y θθ-+'= , 当1cos 3θ>时,0y '<; 当1cos 3θ<时,0y '>;可知,当且仅当1cos 3θ=时,y 有最小值22,当AD =时,此时总路程S有最小值50km . 答:当集合点D 离出发点Akm时,总路程最短,其最短总路程为50km .18. 解(1)由c e a ==24a x c ==,所以,a =2b =,即椭圆22:184x y C +=. (2)①由已知,(2,0)Q ,当直线AB 垂直于x 轴时,A ,(2,B , 2O A O B⋅=. 当直线AB 不垂直于x 轴时,设直线AB :(2)y k x =-,代入22184x y +=得2222(12)8880k x k x k +-+-=, 设11(,)A x y ,22(,)B x y ,212121212(2)(2)OA OB x x y y x x k x x ⋅=+=+--2221212(1)2()4k x x k x x k =+-++2222222(1)(88)8241212k k k k k k k +-=-⋅+++224812k k -=+210212k =-+<2. 所以,当直线AB 垂直于x 轴时,OA OB ⋅取到最大值2. ②设点(,0)P t ,11(,)PA x t y =-,22(,)PB x t y =-, 当直线AB 不垂直于y 轴时,设AB :x my n =+,代入22184x y +=得222(2)280m y mny n +++-=, 12121212()()()()PA PB x t x t y y my n t my n t y y ⋅=--+=+-+-+221212(1)()()()m y y m n t y y n t =++-++-22222(8)(1)2()()2n m m n n t n t m -+--=+-+ 22222[82()]8()2m n n n t n n t m ---+-=+-+, 令2282()812n n n t n ----=得2384n t n+=,当2384n t n+=时,2222222883894()()522416n n n PA PB n t n n n n --+⋅=+-=+-=+-.当直线AB 垂直于y 轴时,(A n ,(,B n ,238(,0)4n P n + 2222238894()54216n n PA PB n n n n+-⋅=-+=+-.所以,在x 轴上存在点238(,0)4n P n +,使得PA PB ⋅为定值2294516n n+-. 方法二 先利用直线l 垂直于x 轴和垂直于y 轴两种情况下PA PB ⋅的值不变,猜想点238(,0)4n P n +,然后再证明此时PA PB ⋅为定值2294516n n+-.19. 解(1)当n ≥2时,有a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+b 1+b 2+…+b n -1=n 22-n2+1.又a 1=1也满足上式,所以数列{a n }的通项公式是a n =n 22-n2+1.(2)①因为对任意的n ∈N *,有b n +6=b n +5b n +4=1b n +3=b n +1b n +2=b n ,所以c n +1-c n =a 6n +5-a 6n -1=b 6n -1+b 6n +b 6n +1+b 6n +2+b 6n +3+b 6n +4=1+2+2+1+12+12=7. 所以数列{c n }为等差数列.②设c n =a 6(n -1)+i (n ∈N *)(其中i 为常数且i ∈{1,2,3,4,5,6},所以c n +1-c n =a 6(n -1)+6+i -a 6(n -1)+i =b 6(n -1)+i +b 6(n -1)+i +1+b 6(n -1)+i +2+b 6(n -1)+i +3+b 6(n -1)+i +4+b 6(n -1)+i +5=7,即数列{a 6(n -1)+i }均为以7为公差的等差数列.设f k =a 6k +i 6k +i =a i +7k i +6k =76(i +6k )+a i -76i i +6k =76+a i -76ii +6k (其中n =6k +i ,k ≥0,i 为{1,2,3,4,5,6}中一个常数) 当a i =76i 时,对任意的n =6k +i ,有a n n =76;当a i ≠76i 时,f k +1-f k =a i -76i i +6(k +1)-a i -76ii +6k =(a i -76i )-6[i +6(k +1)](i +6k ),①若a i >76i ,则对任意的k ∈N 有f k +1<f k ,所以数列{a 6k +i 6k +i }为递减数列;②若a i <76i ,则对任意的k ∈N 有f k +1>f k ,所以数列{a 6k +i 6k +i }为递增数列.综上所述,集合B ={76}∪{43}∪{12}∪{-13}∪{-16}={76,43,12,-13,-16}.当a 1∈B 时,数列{a nn}中必有某数重复出现无数次;当a 1∉B 时,数列{a 6k +i6k +i }(i =1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列{a nn }任意一项的值均未在该数列中重复出现无数次.20. 解(1)设切点00(,)x y ,1()f x x¢=.所以000001ln 1x y x y kx k ,,,ìï=ïïï=+íïï=ïïî所以20x e =,21k e =. (2)因为1()g x x x=-在(0,)+?上单调递增,且(1)0g =. 所以1ln ,01,1()()|()|ln ||1ln , 1.x x x xh x f x g x x x x x x x x ìïï+-<<ïïï=-=--=íïï-+?ïïïî当01x <<时,1()ln h x x x x =+-,211()10h x x x¢=++>, 当1x ≥时,1()ln h x x x x=-+,222111()10x x h x x x x -+-¢=--=<, 所以()h x 在(0,1)上单调递增,在(1,)+?上单调递减,且max ()(1)0h x h ==. 当01a <<时,max ()(1)0h x h ==; 当1a ≥时,max 1()()ln h x h a a a a==-+. (3)令1()2ln ()F x x k x x=--,(1,)x ??. 所以222212()(1)kx x k F x k x x x -+-¢=-+=.设2()2x kx x k j =-+-,①当0k £时,()0F x ¢>,所以()F x 在(1,)+?上单调递增,又(1)0F =,所以不成立; ②当0k >时,对称轴01x k=, 当11k≤时,即1k ≥,(1)220k j =-≤,所以在(1,)+?上,()0x j <,所以()0F x ¢<, 又(1)0F =,所以()0F x <恒成立; 当11k>时,即01k <<,(1)220k j =->,所以在(1,)+?上,由()0x j =,0x x =,所以0(1,)x x Î,()0x j >,即()0F x ¢>;0(,)x x ??,()0x j <,即()0F x ¢<, 所以max 0()()(1)0F x F x F =>=,所以不满足()0F x <恒成立. 综上可知:1k ≥.11。