遗传算法合集
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
GATBX遗传算法工具箱函数及实例讲解基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。
它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。
它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。
遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。
从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。
如此模仿生命的进化进行不断演化,直到满足期望的终止条件。
运算流程:Step 1:对遗传算法的运行参数进行赋值。
参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。
Step 2:建立区域描述器。
根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。
Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。
Step 4:执行比例选择算子进行选择操作。
Step 5:按交叉概率对交叉算子执行交叉操作。
Step 6:按变异概率执行离散变异操作。
Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。
Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。
运用遗传算法工具箱:运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。
目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。
实际上,GADS就是大家所看到的Matlab中自带的工具箱。
我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。
因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。
遗传算法总结遗传算法概念遗传算法是模仿⾃然界⽣物进化机制发展起来的随机全局搜索和优化⽅法,它借鉴了达尔⽂的进化论和孟德尔的遗传学说。
其本质是⼀种⾼效、并⾏、全局搜索的⽅法,它既能在搜索中⾃动获取和积累有关空间知识,并⾃适应地控制搜索过程以求得最优解遗传算法操作使⽤适者⽣存的原则,在潜在的解决⽅案种群中逐次产⽣⼀个近视最优⽅案。
在遗传算法的每⼀代中,根据个体在问题域中的适应度值和从⾃然遗传学中借鉴来的再造⽅法进⾏个体选择,产⽣⼀个新的近视解。
这个过程导致种群中个体的进化,得到的新个体⽐原个体更适应环境,就像⾃然界中的改造⼀样。
应⽤遗传算法在⼈⼯智能的众多领域具有⼴泛应⽤。
例如,机器学习、聚类、控制(如煤⽓管道控制)、规划(如⽣产任务规划)、设计(如通信⽹络设计、布局设计)、调度(如作业车间调度、机器调度、运输问题)、配置(机器配置、分配问题)、组合优化(如TSP、背包问题)、函数的最⼤值以及图像处理和信号处理等等。
遗传算法多⽤应与复杂函数的优化问题中。
原理遗传算法模拟了⾃然选择和遗传中发⽣的复制、交叉、和变异等现象,从任⼀初始种群出发,通过随机选择、交叉、变异操作,产⽣⼀群更适合环境的个体,使群体进⾏到搜索空间中越来越好的区域,这样⼀代⼀代地不断繁衍进化,最后收敛到⼀群最适合环境的个体求得问题的最优解。
算法流程1.编码:解空间中的解数据x,作为作为遗传算法的表现型形式。
从表现型到基本型的映射称为编码。
遗传算法在进⾏搜索之前先将解空间的解数据表⽰成遗传空间的基本型串结构数据,这些串结构数据的不同的组合就构成了不同的点。
2.初始种群的形成:随机产⽣N个初始串数据,每个串数据称为⼀个个体,N个串数据构成了⼀个群体。
遗传算法以这N个串结构作为初始点开始迭代。
设置进化代数计数器t 0;设置最⼤进⾏代数T;随机⽣成M个个体作为初始群体P(0)。
3.适应度检测:适应度就是借鉴⽣物个体对环境的适应程度,适应度函数就是对问题中的个体对象所设计的表征其优劣的⼀种测度。
遗传算法合集遗传算法简介遗传算法是一类模拟生物进化的智能优化算法,它是由于六十年代提出的。
目前,遗传算法已成为进化计算研究的一个重要分支。
与传统优化方法相比,遗传算法的优点是:·群体搜索·不需要目标函数的导数·概率转移准则遗传算法研究热点·收敛性证明·新型高效的遗传算子设计·遗传算法与局部优化算法的结合·遗传算法在各领域的应用研究·软计算与计算智能中的遗传算法遗传算法著作1.陈国良等,遗传算法及其应用,国防出版社in Natural and Artificial Systems, Ann Arbor: Univ. of Michigan Press, 1975Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley, 1989 Handbook of Genetic Algorithms, Van Nostrand ReinholdGenetic Algorithms + Data Structures=Evolution Programs, Spinger Press,1996Algorithms & Engineering Design, 1997,Genetic Algorithms in Engineering and Computer Science,1995Introducion to Genetic Algorithms,1996,Genetic Algorithms and Simulated Annealing,1987,Genetic Algorithms and Robotics,1991,Genetic Programming,1992,Genetic Algorithms and Investiment Strategies,1994遗传算法站点Genetic Algorithms ArchiveAdaptive Systems LAB (GASLAB) GASLAB is hosted by the Computer Science Department of the University of Nevada-Reno.3.4. publications: (downloading website)Genetic Algorithms Laboratory Prof. David E. Goldberg, DirectorState University Genetic Algorithms Research and Applications Group (GARAGE) Bill Punch (,5) Erik Goodman (,5)下载2.用遗传算法进行路径规划下载3.最短路问题的简便算法下载4.带多重选择的最短路问题下载5.用原始-对偶算法求解过指定顶点的最短路下载6.给定限制期条件下最小风险路径的选取算法下载7.带有e约束的网络最短路算法下载8.无线网络中最短路径的标记与减少计算量的方法下载9.遗传算法用于从EM雷达数据提取地下古墓遗迹定位信下载息10.对FLOYD算法的两点注记下载11.应用单亲遗传算法进行树状管网优化布置下载。
基本遗传算法【精品毕业设计】(完整版)遗传算法1、遗传算法⽣物学基础和基本理论达尔⽂⾃然选择学说认为,⽣物要⽣存下去,就必须进⾏⽣存⽃争。
⽣存⽃争包括种内⽃争、种间⽃争以及⽣物跟⽆机环境之间的⽃争三个⽅⾯。
在⽣存⽃争中,具有有利变异(mutation)的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产⽣后代的机会也少得多。
因此,凡是在⽣存⽃争中获胜的个体都是对环境适应性⽐较强的。
达尔⽂把这种在⽣存⽃争中适者⽣存,不适者淘汰的过程叫做⾃然选择。
达尔⽂的⾃然选择学说表明,遗传和变异是决定⽣物进化的内在因素。
遗传是指⽗代与⼦代之间,在性状上存在的相似现象。
变异是指⽗代与⼦代之间,以及⼦代的个体之间,在性状上或多或少地存在的差异现象。
在⽣物体内,遗传和变异的关系⼗分密切。
⼀个⽣物体的遗传性状往往会发⽣变异,⽽变异的性状有的可以遗传。
遗传能使⽣物的性状不断地传送给后代,因此保持了物种的特性,变异能够使⽣物的性状发⽣改变,从⽽适应新的环境⽽不断地向前发展。
⽣物的各项⽣命活动都有它的物质基础,⽣物的遗传与变异也是这样。
根据现代细胞学和遗传学的研究得知,遗传物质的主要载体是染⾊体(chromsome),染⾊体主要是由DNA(脱氧核糖核酸)和蛋⽩质组成,其中DNA⼜是最主要的遗传物质。
现代分⼦⽔平的遗传学的研究⼜进⼀步证明,基因(gene)是有遗传效应的⽚段,它储存着遗传信息,可以准确地复制,也能够发⽣突变,并可通过控制蛋⽩质的合成⽽控制⽣物的性状。
⽣物体⾃⾝通过对基因的复制(reproduction)和交叉(crossover),即基因分离、基因⾃由组合和基因连锁互换)的操作使其性状的遗传得到选择和控制。
同时,通过基因重组、基因变异和染⾊体在结构和数⽬上的变异产⽣丰富多采的变异现象。
需要指出的是,根据达尔⽂进化论,多种多样的⽣物之所以能够适应环境⽽得以⽣存进化,是和上述的遗传和变异⽣命现象分不开的。
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
优化算法之遗传算法(GeneticAlgorithm,GA)⽬录概述遗传算法(Genetic Algorithm, GA) 起源于对⽣物系统所进⾏的计算机模拟研究。
它是模仿⾃然界⽣物进化机制发展起来的 随机全局搜索和优化⽅法,借鉴了达尔⽂的进化论和孟德尔的遗传学说。
其本质是⼀种⾼效、并⾏、全局搜索的⽅法,能在搜索过程中⾃动获取和积累有关搜索空间的知识,并⾃适应地控制搜索过程以求得最佳解。
相关术语基因型(genotype):性状染⾊体的内部表现;表现型(phenotype):染⾊体决定的性状的外部表现,或者说,根据基因型形成的个体的外部表现;个体(individual):指染⾊体带有特征的实体;种群(population):个体的集合,该集合内个体数称为种群的⼤⼩编码(coding):DNA中遗传信息在⼀个长链上按⼀定的模式排列。
遗传编码可看作从表现型到基因型的映射。
解码(decoding):基因型到表现型的映射。
交叉(crossover):两个染⾊体的某⼀相同位置处DNA被切断,前后两串分别交叉组合形成两个新的染⾊体。
也称基因重组或杂交;变异(mutation):复制时可能(很⼩的概率)产⽣某些复制差错,变异产⽣新的染⾊体,表现出新的性状。
进化(evolution):种群逐渐适应⽣存环境,品质不断得到改良。
⽣物的进化是以种群的形式进⾏的。
适应度(fitness):度量某个物种对于⽣存环境的适应程度。
选择(selection):以⼀定的概率从种群中选择若⼲个个体。
⼀般,选择过程是⼀种基于适应度的优胜劣汰的过程。
复制(reproduction):细胞分裂时,遗传物质DNA通过复制⽽转移到新产⽣的细胞中,新细胞就继承了旧细胞的基因。
遗传算法的实现过程遗传算法的实现过程实际上就像⾃然界的进化过程那样。
⾸先寻找⼀种对问题潜在解进⾏“数字化”编码的⽅案,(建⽴表现型和基因型的映射关系)。
然后⽤随机数初始化⼀个种群(那么第⼀批袋⿏就被随意地分散在⼭脉上),种群⾥⾯的个体就是这些数字化的编码。
常见的遗传算法
常见的遗传算法有:
1. 标准遗传算法(SGA):是最早也是最基本的遗传算法,包括选择、交叉、变异和复制等基本操作。
2. 遗传编程(GP):将遗传算法应用于生成计算机程序的领域,通过遗传操作对程序进行优化和演化。
3. 约束处理遗传算法(CGA):在传统遗传算法的基础上,加入对问题约束条件的处理和优化,以确保产生的解满足特定的约束条件。
4. 多目标遗传算法(MOGA):解决多个目标决策问题的遗传算法,同时考虑多个目标函数的优化,并通过适应度分配方法来选择适应度较好的个体。
5. 免疫算法(IA):通过模拟免疫系统的工作原理,利用选择、变异等机制进行优化和搜索。
6. 遗传模拟退火算法(GASA):将模拟退火算法与遗传算法相结合,通过遗传操作和模拟退火操作进行全局搜索和局部优化。
7. 遗传神经网络(GNN):将遗传算法和神经网络相结合,通过遗传操作对神经网络结构和参数进行优化和演化。
8. 差分进化算法(DE):基于群体的随机搜索算法,通过选择、交叉和变异等操作对个体进行优化。
以上是一些常见的遗传算法,根据问题和需求的不同,可以选择适合的遗传算法进行优化和搜索。
遗传算法(GeneticAlgorithms)遗传算法前引:1、TSP问题1.1 TSP问题定义旅⾏商问题(Traveling Salesman Problem,TSP)称之为货担郎问题,TSP问题是⼀个经典组合优化的NP完全问题,组合优化问题是对存在组合排序或者搭配优化问题的⼀个概括,也是现实诸多领域相似问题的简化形式。
1.2 TSP问题解法传统精确算法:穷举法,动态规划近似处理算法:贪⼼算法,改良圈算法,双⽣成树算法智能算法:模拟退⽕,粒⼦群算法,蚁群算法,遗传算法等遗传算法:性质:全局优化的⾃适应概率算法2.1 遗传算法简介遗传算法的实质是通过群体搜索技术,根据适者⽣存的原则逐代进化,最终得到最优解或准最优解。
它必须做以下操作:初始群体的产⽣、求每⼀个体的适应度、根据适者⽣存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染⾊体的基因并随机变异某些染⾊体的基因⽣成下⼀代群体,按此⽅法使群体逐代进化,直到满⾜进化终⽌条件。
2.2 实现⽅法根据具体问题确定可⾏解域,确定⼀种编码⽅法,能⽤数值串或字符串表⽰可⾏解域的每⼀解。
对每⼀解应有⼀个度量好坏的依据,它⽤⼀函数表⽰,叫做适应度函数,⼀般由⽬标函数构成。
确定进化参数群体规模、交叉概率、变异概率、进化终⽌条件。
案例实操我⽅有⼀个基地,经度和纬度为(70,40)。
假设我⽅飞机的速度为1000km/h。
我⽅派⼀架飞机从基地出发,侦察完所有⽬标,再返回原来的基地。
在每⼀⽬标点的侦察时间不计,求该架飞机所花费的时间(假设我⽅飞机巡航时间可以充分长)。
已知100个⽬标的经度、纬度如下表所列:3.2 模型及算法求解的遗传算法的参数设定如下:种群⼤⼩M=50;最⼤代数G=100;交叉率pc=1,交叉概率为1能保证种群的充分进化;变异概率pm=0.1,⼀般⽽⾔,变异发⽣的可能性较⼩。
编码策略:初始种群:⽬标函数:交叉操作:变异操作:选择:算法图:代码实现:clc,clear, close allsj0=load('data12_1.txt');x=sj0(:,1:2:8); x=x(:);y=sj0(:,2:2:8); y=y(:);sj=[x y]; d1=[70,40];xy=[d1;sj;d1]; sj=xy*pi/180; %单位化成弧度d=zeros(102); %距离矩阵d的初始值for i=1:101for j=i+1:102d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*...cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));endendd=d+d'; w=50; g=100; %w为种群的个数,g为进化的代数for k=1:w %通过改良圈算法选取初始种群c=randperm(100); %产⽣1,...,100的⼀个全排列c1=[1,c+1,102]; %⽣成初始解for t=1:102 %该层循环是修改圈flag=0; %修改圈退出标志for m=1:100for n=m+2:101if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<...d(c1(m),c1(m+1))+d(c1(n),c1(n+1))c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈endendendif flag==0J(k,c1)=1:102; break %记录下较好的解并退出当前层循环endendendJ(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上实数即染⾊体编码for k=1:g %该层循环进⾏遗传算法的操作for k=1:g %该层循环进⾏遗传算法的操作A=J; %交配产⽣⼦代A的初始染⾊体c=randperm(w); %产⽣下⾯交叉操作的染⾊体对for i=1:2:wF=2+floor(100*rand(1)); %产⽣交叉操作的地址temp=A(c(i),[F:102]); %中间变量的保存值A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作A(c(i+1),F:102)=temp;endby=[]; %为了防⽌下⾯产⽣空地址,这⾥先初始化while ~length(by)by=find(rand(1,w)<0.1); %产⽣变异操作的地址endB=A(by,:); %产⽣变异操作的初始染⾊体for j=1:length(by)bw=sort(2+floor(100*rand(1,3))); %产⽣变异操作的3个地址%交换位置B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);endG=[J;A;B]; %⽗代和⼦代种群合在⼀起[SG,ind1]=sort(G,2); %把染⾊体翻译成1,...,102的序列ind1num=size(G,1); long=zeros(1,num); %路径长度的初始值for j=1:numfor i=1:101long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度endend[slong,ind2]=sort(long); %对路径长度按照从⼩到⼤排序J=G(ind2(1:w),:); %精选前w个较短的路径对应的染⾊体endpath=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度xx=xy(path,1);yy=xy(path,2);plot(xx,yy,'-o') %画出路径以上整个代码中没有调⽤GA⼯具箱。
遗传算法合集
遗传算法简介
遗传算法是一类模拟生物进化的智能优化算法,它是由J.H.Holland于六十年代提出的。
目前,遗传算法已成为进化计算研究的一个重要分支。
与传统优化方法相比,遗传算法的优点是:
·群体搜索
·不需要目标函数的导数
·概率转移准则
遗传算法研究热点
·收敛性证明
·新型高效的遗传算子设计
·遗传算法与局部优化算法的结合
·遗传算法在各领域的应用研究
·软计算与计算智能中的遗传算法
遗传算法著作
1.陈国良等,遗传算法及其应用,国防出版社
2.J.H.Holland,Adaptation in Natural and Artificial Systems, Ann Arbor: Univ. of
Michigan Press, 1975
3.D.E.Goldberg,Genetic Algorithms in Search, Optimization and Machine Learning.
Reading, MA: Addison-Wesley, 1989
4.L.D.Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold
5.Z.Michalewicz, Genetic Algorithms + Data Structures=Evolution Programs, Spinger
Press,1996
6.M.Gen,R.Cheng,Genetic Algorithms & Engineering Design, 1997
7.Wiely,Genetic Algorithms in Engineering and Computer Science,1995
8.M.Mitchell,An Introducion to Genetic Algorithms,1996
9.Davis,Genetic Algorithms and Simulated Annealing,1987
10.Davidor,Genetic Algorithms and Robotics,1991
11.Koza,Genetic Programming,1992
12.Bauer,Genetic Algorithms and Investiment Strategies,1994
遗传算法站点
1.The Genetic Algorithms Archive
/galist/
2.Genetic Adaptive Systems LAB (GASLAB)
GASLAB is hosted by the Computer Science Department of the University of Nevada-Reno.
/~sushil/papers/conference/conf.html
/
3.http://www.mat.sbg.ac.at/~uhl/GA.html
4./research/gag/
email:kdejong@
publications: (downloading website)
/research/gas/pubs.html
5.Illinois Genetic Algorithms Laboratory Prof. David E. Goldberg, Director ./illigal.home.html
6.Michigan State University
Genetic Algorithms Research and Applications Group (GARAGE)
Bill Punch (punch@,517-353-3541)
Erik Goodman (goodman@,517-355-6453)
/
7.ftp:///pub/EC/GA/
遗传算法应用的参考文章
1.用遗传算法求解最短路径问题下载
2.用遗传算法进行路径规划下载
3.最短路问题的简便算法下载
4.带多重选择的最短路问题下载
5.用原始-对偶算法求解过指定顶点的最短路下载
6.给定限制期条件下最小风险路径的选取算法下载
7.带有e约束的网络最短路算法下载
8.无线网络中最短路径的标记与减少计算量的方法下载
9.遗传算法用于从EM雷达数据提取地下古墓遗迹定位信
下载
息
10.对FLOYD算法的两点注记下载
11.应用单亲遗传算法进行树状管网优化布置下载。