(完整版)四川省成都市高新区2018-2019下学期八年级数学试题
- 格式:doc
- 大小:272.51 KB
- 文档页数:5
2018-2019学年四川省成都市高新区七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×1033.代数式﹣的系数是()A.B.﹣C.D.﹣4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣15.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x46.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣77.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣409.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直棱柱.12.不超过(﹣)3的最大整数是.13.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为元.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)星期一二三四五六日增减/吨﹣1+3﹣2+4+7﹣7﹣11(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=.23.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有个.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:图形编号①②③④⑤火柴棒根数712(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.2018-2019学年四川省成都市高新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步【解答】解:∵向东走10步记作+10步,∴向西走9步记作﹣9步.故选:B.2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×103【解答】解:将1200亿用科学记数法表示为1200×108=1.2×1011.故选:A.3.代数式﹣的系数是()A.B.﹣C.D.﹣【解答】解:代数式﹣的系数是﹣.故选:D.4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣1【解答】解:根据题意得:a+b=0,c=﹣1,d=1或﹣1,则原式=2(a+b)﹣cd=1或﹣1.故选:D.5.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x4【解答】解:A、(﹣1)2018=12018,故此选项错误;B、(﹣1)2017=﹣12017,正确;C、﹣2(x﹣3)=﹣2x+6,故此选项错误;D、﹣2x2+5x2=3x2,故此选项错误;故选:B.6.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣7【解答】解:根据题意得:3﹣4=﹣1或﹣3﹣4=﹣7,此时终点所表示的数是﹣1或﹣7,故选:D.7.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.【解答】解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有C选项图形符合.故选:C.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣40【解答】解:把x=﹣5代入得:5﹣10﹣25=﹣30<0,则输出的结果为﹣30,故选:C.9.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次【解答】解:A、一个数,如果不是正数,必定是非负数,故A错误;B、两个数相加,和不一定大于任何一个加数,故B错误;C、是二次二项式,故C正确;D、单独的一个数或一个字母也是单项式,其次数不一定为0次,故D错误.故选:C.10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【解答】解:根据题意得:新矩形的长为(a﹣b),则“S”形的图案的周长可表示为:4a+4(a﹣b)=8a﹣4b.故选:B.二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直六棱柱.【解答】解:一个直棱柱有18条棱,则它是直六棱柱.故答案为:六.12.不超过(﹣)3的最大整数是﹣3.【解答】解:(﹣)3=﹣,则不超过﹣的最大整数是﹣3,故答案为:﹣313.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为﹣7.【解答】解:∵|a+1|+(b﹣4)2=0,∴a+1=0,b﹣4=0,解得:a=﹣1,b=4,故3a﹣b=﹣3﹣4=﹣7.故答案为:﹣7.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为 1.04a元.【解答】解:依题意得(1+30%)a×80%=1.04a(元).故答案是:1.04a.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].【解答】解:(1)原式=﹣32+14+4=﹣14;(2)原式=×(﹣)×=﹣2;(3)原式=37﹣(﹣)×36=37﹣28+6=15;(4)原式=﹣4×(﹣)﹣×(﹣32)=﹣×(﹣4﹣32)=﹣×(﹣36)=12.16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).【解答】解:(1)原式=7y﹣3z﹣8y+5z=﹣y+2z;(2)原式=k2﹣k+7+k2﹣k=k2﹣k+7.四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【解答】解:如图所示:18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)星期一二三四五六日增减/吨﹣1+3﹣2+4+7﹣7﹣11(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?【解答】解:(1)生产量最多的一天星期五+7,生产量最少的一天是星期日﹣11,∴生产量最多的一天比生产量最少的一天多生产+7﹣(﹣10)=17,即生产量最多的一天比生产量最少的一天多生产17吨;(2)﹣1+3﹣2+4+7﹣7﹣11=﹣7,本周总生产量为100×7+(﹣7)=693(吨),平均每辆装载量为=19.8吨,即平均每辆货车大约需装载19.8吨.19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.【解答】解:(1)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴A﹣B=x2﹣3xy﹣y+x2﹣xy+3y=2x2﹣4xy+2y;(2)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴原式=5A﹣2A+6B=3A+6B=3x2﹣9xy﹣3y﹣6x2+6xy﹣18y=﹣3x2﹣3xy﹣21y,当x=﹣2,y=﹣1时,原式=﹣12﹣6+21=3.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.【解答】解:(1)若实际购票:因为31+4=35<40,则需费用为:31×15+4×30=585(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵594>585,∴若学生人数为31人,该班买票至少应付585元;(2)若实际购票:因为32+4=36<40,则需费用为:32×15+4×30=600(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵600>594,∴若学生人数为32人,选择购40人团体票,最少付费594元;(3)根据(1)与(2)计算结果可知,购团体票比实际票便宜时的人数为x≥32;分三种情况讨论:①若32≤x≤36时,购团体票最少,则需费用:(4×30+36×15)×0.9=660×0.9=594(元),②若x>36时,则需费用为:(4×30+15x)×0.9=108+13.5x(元),③若0<x≤31时,则需费用:4×30+15x=120+15x(元),答:若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是1﹣π.【解答】解:由直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,得A点与1之间的距离是π.由两点间的距离是大数减小数,得A点表示的数是1﹣π,故答案为:1﹣π.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=﹣1.【解答】解:把x=﹣1代入得:a﹣2b+1=0,即a﹣2b=﹣1,则原式=﹣2(a﹣2b)﹣3=2﹣3=﹣1,故答案为:﹣123.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有6个.【解答】解:设原两位数的个位数字为x,十位数字为y,依题意,得:10x+y=10y+x﹣27,解得:y﹣x=3.∵x,y均为一位正整数,∴y=4,5,6,7,8,9.故答案为:6.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为1009.【解答】解:由题意可得,a1=0,a2=1,a3=1,a4=2,a5=2,a6=3,a7=3,a8=4,a9=4,…,∵(2018﹣1)÷2=1008…1,∴a2018=1008+1=1009,故答案为:1009.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为12个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个12面体.【解答】解:①设出正二十面体的顶点为n个,则棱有条.由题意F=20,∴n+10﹣=2,解得n=12.②设顶点数V,棱数E,面数F,每个点属于三个面,每条边属于两个面由每个面都是五边形,则就有E=,V=由欧拉公式:F+V﹣E=2,代入:F+﹣=2化简整理:F=12所以:E=30,V=20即多面体是12面体.棱数是30,面数是12,故答案为12,12.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.【解答】解:(1)(2x3﹣8x2y+x+1)+(﹣3x3﹣2mx2y+6x﹣9)=2x3﹣8x2y+x+1﹣3x3+2mx2y+6x﹣9=﹣x3﹣8x2y+2mx2y+7x﹣8=(﹣8+2m)x2y﹣x3+7x﹣8,∵﹣8+2m=0,解得m=4.(2)由数轴可得,a<b<0<c,|a|>|c|>|b|,∴|a+b|﹣|b+c|+|a+c|=﹣a﹣b﹣b﹣c﹣a﹣c=﹣2a﹣2b﹣2c.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:图形编号①②③④⑤火柴棒根数712172227(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?【解答】解:(1)图①中火柴棒的根数7=2+5×1,图②中火柴棒的根数12=2+5×2,图③中火柴棒的根数2+5×3=17,图④中火柴棒的根数2+5×4=22,图⑤中火柴棒的根数2+5×5=27,补全图形如下:图形编号①②③④⑤火柴棒根数712172227(2)搭第n个图形需要的火柴根数为2+5n;(3)根据题意,得:2+5n=187,解得:n=37,∵图n中正方形的个数为2+3(n﹣1)=3n﹣1,∴第37个图形中,正方形的个数为3×37﹣1=110.28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.【解答】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=或t=,其中<3不符合题意舍去答:t的值为和。
2018-2019学年下学期八年级数学《因式分解》培优检测试题姓名:班级:______________________ 考号:一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是( )A. a2+ (-b) 2 ।B. 5m2-20mn 9.-x2-y2 । D. -x2+92.下列多项式能因式分解的是( )A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是( )A. (2x+4) (x-4) FB. (x+2) ( x-2)C. 2 (x+2) ( x-2) 卜D. 2 (x+4) (x-4)4.下列因式分解中正确的是( )-J 1 1 1A.串—8工+16=B.-仃2+口-彳三=三(2仃-1),C. x ( a- b) - y (b - a) = (a- b) ( x - y)D. b" = ।fr > )5.把代数式ab:- 6ab十9n分解因式,下列结果中正确的是A. B. C'-Q T■-「I; .,) C.,屋8 T厂 D.6.下列各式中,不能用完全平方公式分解的个数为( )① x2-10x+25;② 4a2+4a - 1 ;③ x2-2x-1;④-m2+m-;;⑤ 4x4-x2+1 .A. 1个B. 2个C. 3个D. 4个7.若X-+tm-15=,,则mn 的值为()A. 5B. -5C. 10D. -108.若a , b , c是三角形的三边之长,则代数式a; -2ac+c二-b2的值()A.小于0B.大于0C.等于0 "D.以上三种情况均有可能9.下列多项式中能用提公因式法分解的是( )A. x2+y2B. x 2-y2C. x2+2x+1D. x 2+2x10.已知:a=2014x+2015, b=2014x+2016 , c=2014x+2017 ,则a2+b2+c2-ab- ac- bc 的值是( )A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:一疝一/4忸一〃)=12.已知x- 2y= - 5, xy= — 2,贝U 2x2y - 4xy2= .13.分解因式:a3 - 4a2+4a=.14.若屋_a + l = U,那么屋叫1 一屋飒十型颊二.15.如果x+y=5 , xy=2 ,贝U x2y+xy 2=.16.已知= 而=2,求;门取岫'的值为17.多项式2ax2-12axy中,应提取的公因式是18.若x+y= 1,贝U x4+5x3y+x2y+8x2y2+xy2+5xy 3+y4的值等于。
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
2023-2024学年四川省成都市高新区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,属于无理数的是()A.B.C.D.0.572.(4分)下列运算正确的是()A.B.C.D.3.(4分)下面4组数值中,是二元一次方程3x+y=10的解是()A.B.C.D.4.(4分)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系以正东方向为x轴的正方向,以正北方向为y轴的正方向,并且综合楼和教学楼的坐标分别是(﹣4,﹣1)和(1,2)则食堂的坐标是()A.(3,5)B.(﹣2,3)C.(2,4)D.(﹣1,2)5.(4分)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD是斜边的高,则CD 的长为()A.B.C.5D.107.(4分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=80°,城市规划部门想新修一条道路CE,要求CF=EF,则∠C的度数为()A.30°B.40°C.50°D.80°8.(4分)关于一次函数y=﹣2x+4,下列说法正确的是()A.函数值y随自变量x的增大而减小B.图象与x轴交于点(4,0)C.点A(1,6)在函数图象上D.图象经过第二、三、四象限二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)一块面积为3m2的正方形桌布,其边长为m.10.(4分)在平面直角坐标系xOy中,点A的坐标是(2,3),若AB∥x轴,且AB=4,则点B的坐标是.11.(4分)下表是小明参加一次“青春风采”才艺展示活动比赛的得分情况:项目书法舞蹈演唱得分859070总评分时,按书法占40%,舞蹈占30%,演唱占30%考评,则小明的最终得分为.12.(4分)若直线y=x向上平移m个单位长度后经过点(3,5),则m的值为.13.(4分)如图,有两棵树,一棵高12米,另一棵高7米,两树相距12米,一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,则小鸟至少要飞行米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程组:.15.(8分)学校组织七、八年级学生参加体育综合素质评价测试,已知七、八年级各有160人,现从两个年级分别随机抽取8名学生的测试成绩(单位:分)进行统计.七年级:89,87,91,91,93,98,94,97八年级:98,84,92,93,95,95,88,95整理如下:年级平均数中位数众数七年级92.5x91八年级92.594y根据以上信息,回答下列问题:(1)填空:x=,y=;(2)甲同学说:“这次测试我得了93分,位于年级中等偏上水平”,你认为甲同学在哪个年级,并简要说明理由;(3)若规定测试成绩不低于90分为“优秀”,估计该学校这两个年级测试成绩达到“优秀”的学生总人数.16.(8分)在平面直角坐标系xOy中,△ABC的顶点A(1,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画△ABC关于y轴的对称图形△A1B1C1;(2)已知点D的坐标为(3,﹣3),判断△ABD的形状,并说明理由.17.(10分)某单位准备购买一种水果,现有甲、乙两家超市进行促销活动,该水果在两家超市的标价均为13元/千克.甲超市购买该水果的费用y(元)与该水果的质量x(千克)之间的关系如图所示;乙超市该水果在标价的基础上每千克直降3元.(1)求y与x之间的函数表达式;(2)现计划用290元购买该水果,选甲、乙哪家超市能购买该水果更多一些?18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.点D是△ABC所在平面内一点,且∠ADB=90°.(1)如图1,当点D在BC边上,求证:AD=CD;(2)如图2,当点D在△ABC外部,连接CD,若AB=5,AC=CD,求线段BD的长;(3)如图3,当点D在△ABC内部,连接CD,若∠ADC=∠BDC,AD=3,求点D到BC的距离.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,数轴上的点A表示的实数是.20.(4分)已知直线y=﹣3x与y=x+n(n为常数)的交点坐标为(1,m),则方程组的解为.21.(4分)如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(0,3),B(0,1),C(﹣4,0),点D在y轴右侧,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.22.(4分)在Rt△ABC中,∠BAC=90°,BD=AD=2,在BC的延长线上有一点E使得AE=AD,过点E作AC的垂线,垂足为F,若∠FEA=67.5°,则CE =.23.(4分)定义:若三个正整数a,b,c满足a<b,a2+b2=c2,且c﹣b=2,则称(a,b,c)为“偶差”勾股数组.例如:(6,8,10),(8,15,17)都是“偶差”勾股数组.令m=a+b+c,将m从小到大排列,分别记为m1,m2,m3,…,m n(n为正整数),则m20的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2023年12月4日至10日,国际乒联混合团体世界杯在四川成都举行,在此期间,成都某酒店对三人间及双人间客房进行优惠大酬宾,优惠方案为:三人间为每天每间360元,双人间为每天每间300元,一个40人的旅游团于2023年12月4日在该酒店入住,住了一些三人间及双人间客房,且每个客房正好住满.(1)若旅游团一天共花去住宿费5100元,求该旅行团租住了三人间、双人间各多少间?(2)设有x人住三人间,这个团一天共花去住宿费y元,请求出y与x的函数表达式.25.(10分)如图1,在边长为2的正方形ABCD中,点E是射线BC上一动点,连接AE,以AE为边在直线AE右侧作正方形AEFG.(1)当点E在线段BC上,连接DG,求证:BE=DG;(2)当点E是线段BC的中点,连接CF,求线段CF的长;(3)如图2,点E在线段BC的延长线上,连接BG,若ED的延长线恰好经过BG的中点P,求线段EP的长.26.(12分)如图,直线l1:y=﹣x+3与x轴,y轴分别交于A,B两点,点C坐标为(﹣5,﹣2),连接AC,BC,点D是线段AB上的一动点,直线l2过C,D两点.(1)求△ABC的面积;(2)若点D的横坐标为1,直线l2上是否存在点E,使点E到直线l1的距离为,若存在,求出点E的坐标,若不存在,请说明理由;(3)将△BCD沿直线CD翻折,点B的对应点为M,若△ADM为直角三角形,求线段BD 的长.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.C;2.D;3.D;4.B;5.C;6.A;7.B;8.A;二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.;10.(6,3)或(﹣2,3);11.32.16;12.2;13.13;三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)4;(2).;15.92;95;16.(1)见解答.(2)△ABD为直角三角形,理由见解答.;17.(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.;18.(1)证明见解析.(2);(3).;一、填空题(本大题共5个小题,每小题4分,共20分)19.1+; 20.;21.(4,4)或(4,0);22.2﹣2;23.1012;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(1)此旅游团住了三人间客房10间,住了双人间客房5间;(2)y与x的函数表达式为y=﹣30x+6000.;25.(1)证明见解答;(2)线段CF的长为;(3)EP=3.;26.(1)S△ABC=15;(2)存在,点E的坐标为或;(3)BD的长为或﹣.。
北师大版八年级下册数学等腰三角形专项训练(原创) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,等腰三角形ABC 中,,AB AC =延长BC 至点,D 恰好使得,CA CD =若84BAD ∠=︒,则B 为( )A .32B .48C .52D .64 2.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70° 3.一个等腰三角形的三边长分别为21x -、1x +、32x -,该等腰三角形的周长是( ) A .10或4 B .10或7 C .4或7 D .10或4或7 4.若等腰三角形的一个内角为80°,则这个等腰三角形的底角为( )A .80°B .50°C .80°或50°D .80°或20° 5.如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个6.已知等腰三角形的两边长x ,y 满足2|4|(8)0x y -+-=,则这个等腰三角形的周长为( )A .16B .20C .16或20D .以上都不对 7.如图,已知 AB =AC =BD ,则∠1与∠2的关系是( )A .3∠1﹣∠2=180°B .2∠1+∠2=180°C .∠1+3∠2=180°D .∠1=2∠28.如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个9.如图,在△ABC 中,∠B =45°,∠ACB =60°,AB =16,AD ⊥BC ,垂足为D ,∠ACB 的平分线交AD 于点E ,则AE 的长为( )A B . C .163 D .二、填空题10.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____. 11.等腰三角形的一个底角为50︒,则它的顶角的度数为__________.12.有一个顶角为30°的等腰三角形,若腰长为4,则腰上的高是________13.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,32BC =,AB =_______.14.已知直角三角形中30°角所对的直角边为2cm ,则斜边的长度为_______cm . 15.在ABC 中,AB AC =,60A ∠=︒,6BC =,则AB =____.三、解答题16.已知:如图,AB AC =,DE AC ,求证:DBE 是等腰三角形.17.已知:如图,在梯形ABCD 中,//CD AB ,AD BC =,E 是AB 上一点,且AE CD =,60B ∠=,求证:EBC ∆是等边三角形.18.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在AB 边上,AD AC =,过点B 作BE CD ⊥,交CD 的延长线于点E .(1)求BCD ∠的度数;(2)求证:2CD BE =.19.如图,以平行四边形ABCD 的边DC BC 、分别做等边BCE ∆和等边CDF ∆. (1)求证:AE AF =;(2)求EAF ∠的度数.20.已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.21.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.参考答案1.D【来源】重庆市西南大学附中2018-2019学年七年级下学期期末数学试题【解析】【分析】根据等边对等角可得CAD D ∠=∠,再通过三角形外角的性质可得2ACB CAD D D =+=∠∠∠∠,再根据等边对等角可得2B ACB D ==∠∠∠,再根据三角形内角和定理求出32D ∠=︒,即可求出B 的度数.【详解】∵CA CD =∴CAD D ∠=∠∴2ACB CAD D D =+=∠∠∠∠∵AB AC =∴2B ACB D ==∠∠∠∵84BAD ∠=︒∴180180284BAD B D D D ∠=︒--=︒--=︒∠∠∠∠∴32D ∠=︒∴264B D ==︒∠∠故答案为:D .【点睛】本题考查了三角形内角的度数问题,掌握等边对等角、三角形外角的性质、三角形内角和定理是解题的关键.2.B【来源】浙江省湖州市2018年中考数学试题【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°. 【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°, ∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°. ∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°. 故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.3.B【来源】湖南省长沙市湘郡培粹实验中学2019-2020学年八年级上学期10月月考数学试题【解析】【分析】三边的长度都不清楚,所以需要讨论三种情况,然后找出能组成三角形的组合,算出答案.【详解】解:若21x -=1x +,则x=2,则三边为3,3,4,符合条件,周长为10;若21x -=32x -,则x=1,则三边为1,1,2 无法构成三角形.若1x +=32x -,则x=32,则三边为52,52,2,符合条件,周长为7; 综上该等腰三角形的周长为10或7.【点睛】求三角形的周长一定要注意三边能否构成三角形.4.C【来源】【区级联考】山东省枣庄市薛城区2018-2019学年八年级第二学期期中考试数学试题【解析】【分析】利用等腰三角形的性质,分两种情况解答本题即可得到答案.【详解】①当80°为顶角时,底角=()18080250︒︒︒-÷=,②当80°为底角时,底角为80°,∴底角为 80°或50°,故选C.【点睛】本题考查等腰三角形的性质,以及分类讨论思想.分两种情况讨论是解答本题的关键. 5.C【来源】2014-2015学年四川省自贡赵化中学八年级上学期第三次段考数学试卷(带解析)【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】解:如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP ); ③以B 为圆心,BA 为半径画圆,交BC 有二点P 5,P 2,交AC 有一点P 6(此时BP=BA ). 2+(3-1)+(3-1)=6,∴符合条件的点有六个.故选C .6.B【来源】山西省运城市芮城县2018-2019学年七年级下学期期末数学试题【解析】【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】根据题意得,x−4=0,y−8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以,三角形的周长为20.故选:B.【点睛】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.7.A【来源】湖北省武汉市洪山区2018-2019学年八年级上学期期中调研考试数学试卷(word)【解析】【分析】根据等腰三角形的性质和三角形内角和定理可得∠1 和∠C 之间的关系,再根据三角形外角的性质可得∠1 和∠2 之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.8.A【来源】山东省德州市武城县实验中学2019-2020学年八年级上学期期中数学试题【解析】【分析】由等边对等角可求出∠ABC=∠ACB=72°,再根据角平分线与三角形外角性质求出图中其余角度,在图中标注出角度,根据相等的角找出等腰三角形即可得解.【详解】∵在△ABC 中,AB =AC ,∠A =36°∴∠ABC=∠ACB=()1180A 2-∠=72° ∵BD 、CE 分别是∠ABC 、∠BCD 的平分线∴∠ABD=∠CBD=12∠ABC=36°,∠ACE=∠BCE=12∠ACB=36° ∴∠CDE=∠A+∠ABD=72°,∠CED=∠BCE+∠CBD=72°,在图中标注如下:等腰三角形有:△ABC ,△ABD ,△BCE ,△CDE ,△BCD ,总共5个,故选A.【点睛】本题考查等腰三角形的判断,根据三角形内角和与外角性质求出角度是关键.9.C【来源】广东省汕头市潮南区两英镇2018-2019学年八年级期末数学试题【解析】【分析】在Rt △ABD 中,利用等腰直角三角形的性质列方程求解可求出AD 和BD 的长度,在Rt △ADC 中;根据直角三角形中30度角所对的直角边是斜边的一半的性质可列方程解出CD ,同理可得DE 的长度,再利用AE=AD −DE 即可求出AE 的长度.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,即△ABD 、△ADC 和△CDE 为直角三角形,在Rt △ABD 中,∵∠ADB =90°,AB =16,∠B =45°,∴∠B=∠BAD =45°,则AD =BD ,设AD =BD=x ,由勾股定理得:22216+=x x ,解得:=x AD =BD=在Rt △ADC 中,∵∠ADC =90°,∠ACD =60°,AD =∴∠CAD =30°,则12CD AC =, 设CD =x ,则AC =2x ,由勾股定理得:222(2)+=x x ,解得:3=x ,即CD 3=, ∵CE 平分∠ACD ,∴∠ECD =30°,在Rt △CDE 中,同理得:DE =,∴AE =AD ﹣DE =3=3=, 故选:C .【点睛】 本题主要考查了勾股定理、等腰直角三角形的性质和直角三角形中30度角所对的直角边是斜边的一半,根据勾股定理构造方程是解题的关键.10.15或18【来源】北京交大附中2018-2019学年七年级下学期期末数学试题【解析】【分析】有两边相等的三角形是等腰三角形,由于不确定哪边是底,哪边是腰,故分两种情况讨论,并结合构成三角形的三边的关系,即可得解.【详解】若7为底,则三边为7,4,4,由于4+4>7,故可以构成三角形,周长为15;若4为底,则三边为4,7,7,也可以构成三角形,周长为18.故答案为:15或18.【点睛】本题考查等腰三角形的性质及三角形三边关系,分类讨论哪边为底哪边为腰是解题关键.11.80【来源】四川省成都市2018年中考数学试题【解析】分析:本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.详解:∵等腰三角形底角相等,∴180°-50°×2=80°,∴顶角为80°.故答案为80°.点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.2【来源】上海市静安区实验中学九年级下学期沪教版五四制第一轮复习直角三角形【解析】【分析】根据等腰三角形和直角三角形的性质即可得到结论.【详解】如图,∵AC=AB=4,∠A=30°,∵BD⊥AC于D,∴∠ADB=90°,∴BD=12AB=2,故答案为2.【点睛】此题考查等腰三角形的性质和直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.13.3【来源】吉林省长春市东北师范大学附属中学2017-2018学年八年级下学期期末数学试题【解析】【分析】根据30°所对的直角边等于斜边的一半求解.【详解】解:∵∠C=90°,∠A=30°,BC=32,∴AB=2BC=3.故答案为:3.【点睛】本题考查含30°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.14.4【来源】福建省平潭县2018-2019学年八年级上学期期中数学试题【解析】【分析】在直角三角形中,30°角所对的直角边为斜边的一半,据此进一步求解即可.【详解】∵在直角三角形中,30°角所对的直角边为斜边的一半,且该直角边长为2cm,∴该直角三角形斜边长度为4cm,故答案为:4.【点睛】本题主要考查了直角三角形性质,熟练掌握相关概念是解题关键.15.6【来源】吉林省名校2019-2020学年八年级上学期期中调研A数学试题【解析】【分析】根据等边三角形的判定与性质即可得.【详解】=AB AC∴是等腰三角形ABC∠=︒A60∴等腰ABC是等边三角形∴==AB BC6故答案为:6.【点睛】本题考查了等边三角形的判定与性质,掌握等边三角形的判定与性质是解题关键.16.见解析【来源】北京市第一六六中学2017-2018学年八年级上学期期中考试数学试题【解析】试题分析:根据等角对等边即可证明.试题解析:=,证明:∵AB AC∠=∠,∴B C∵DE∥AC,∠=∠=∠,∴C ADE B=,∴DB DE∴DBE 为等腰三角形.17.见解析.【来源】安徽省宿州市萧县2018-2019学年八年级下学期期末数学试题【解析】【分析】由已知条件证得四边形AECD 是平行四边形,则CE=AD ,从而得出CE=CB ,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.【详解】证明://CD AB ,AE CD =,∴四边形AECD 是平行四边形,CE AD ∴=,AD BC =,BC EC ∴=60B ∠=,BEC ∴∆是等边三角形.【点睛】本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.18.(1)22.5︒;(2)见解析【来源】广西壮族自治区贵港市覃塘区2018-2019学年八年级下学期期中数学试题【解析】【分析】(1)根据等腰三角形的性质以及三角形的内角和定理求解即可;(2)过点作AF CD ⊥于点F ,得出122.52CAF BAC ∠=∠=︒,因此,22.5BCE CAF ∠=∠=︒,再证明BCE CAF ≌△△,推出BE CF =,然后即可证明结论. 【详解】解:(1)∵90ACB ∠=︒,AC BC =,∴45BAC ABC ∠=∠=︒,∵AD AC =, ∴()11804567.52ACD ADC ︒︒∠=∠=⨯-=︒, ∴9067.522.5BCD ACB ACD ∠=∠-∠=︒-︒=︒.(2)证明:如图,过点作AF CD ⊥于点F .∵AD AC =,45BAC ∠=︒, ∴122.52CAF BAC ∠=∠=︒, ∴22.5BCE CAF ∠=∠=︒,又BE CD ⊥,∴90AFC BEC ∠=∠=︒,∵BC AC =,∴BCE CAF ≌△△,∴BE CF =, 又12CF DF CD ==, ∴2CD BE =.【点睛】本题考查的知识点是三角形的内角和定理,角平分线的性质,全等三角形的判定及性质,根据图形找准各角之间的数量关系是解此题的关键.19.(1)见解析(2)60°【来源】河南省洛阳市高新区三山学校2018-2019学年八年级下学期期中数学试题【解析】【分析】(1)根据平行四边形的性质得出AB=CD ,BC=AD ,∠ABC=∠ADC ,根据等边三角形的性质得出DC=DF ,BC=BE ,∠EBC=∠CDF=60°,求出AB=DF ,BE=DA ,∠ABE=∠FDA ,根据SAS 推出△ABE ≌△FDA 即可.(2)连结EF ,设∠ABC=α,则∠BCD=180°-α,通过图形上角的关系,用α表示出∠FCE ,∠ABE 即可得到关键条件∠ABE=∠FCE ,再用同(1)的方法证明△ABE ≌△FCE ,得到EF=AE ,进一步得到AE=AF=EF ,△AEF 为等边三角形求得EAF ∠=60°. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,BC=AD ,∠ABC=∠ADC ,∵△BCE 和△CDF 为等边三角形,∴DC=DF ,BC=BE ,∠EBC=∠CDF=60°,∴AB=DF ,BE=DA ,∠ABE=∠FDA ,在△ABE 和△FDA 中AB DF ABE FDA BE AD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△FDA (SAS ),∴AE=AF .(2)连结EF ,设∠ABC=α,∵四边形ABCD 是平行四边形,∴∠BCD=180°-α, ∴∠FCE=360°-∠BCE-∠DCF-∠BC,D=360°-60°-60°-(180°-α)= 60°+α, 而∠ABE=∠CBE+∠ABC=60°+α,∴∠ABE=∠FCE ,又∵△BCE 和△CDF 为等边三角形,∴EC=BE ,CF=CD ,∵四边形ABCD 是平行四边形,∴AB=CD ,∴CF=AB ,在△ABE 和△FCE 中AB CF ABE FCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FCE(SAS),∴EF=AE,∴AE=AF=EF,∴△AEF 为等边三角形,∴EAF ∠=60°【点睛】本题考查了平行四边形的性质,全等三角形的性质和判定,等边三角形的性质的应用,能综合运用定理进行推理是解此题的关键.20.①证明见解析②证明△BCF≌△ACH;③△CFH 是等边三角形【来源】人教版八年级上册数学第13章13.3.2《等边三角形》【同步练习】【解析】试题分析:①利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;②利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .③由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.试题解析:①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .②∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH.又BC=AC,∴△BCF≌△ACH.∴CF=CH.③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.点睛:本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.21.(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【来源】湖北省孝感市八校联谊2017-2018学年八年级上12月联考数学试卷含答案【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75° ,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x y x ααβ=+⎧⎨=-+⎩①② -②得,2α﹣β=0,∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴+y x y x ααβ=+⎧⎨=+⎩①② -①得,α=β﹣α,∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y x y x αβα-++=⎧⎨++=⎩①② -①得,2α﹣β=0,∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.。
2018-2019学年第二学期八年级数学期中模拟试卷(1)一.选择题(共10小题,满分30分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.02.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.63.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.15.计算结果是()A.0B.1C.﹣1D.x6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值27.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.108.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个二.填空题(共8小题,满分24分)11.若代数式有意义,则x的取值范围是.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为,△EOF的面积为.反比例函数值大于一次函数值时x的范围是.16.(3分)若关于x的分式方程无解,则m=.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.三.解答题(共10小题,满分76分)19.解下列分式方程:(1)=(2)﹣=20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案与试题解析一.选择题(共10小题,满分3分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0故选:A.2.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.6故选:B.3.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.故选:B.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.1故选:A.5.计算结果是()A.0B.1C.﹣1D.x故选:C.6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值2【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y =2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D选项结论正确.所以,结论不正确的是C.故选:C.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.8.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.9.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.【解答】解:如图,连接CG.∵正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,∴△CDE≌△CBF,易得,△BGE≌△DGF,所以S△BGE=S△EGC,S△DGF=S△CGF,于是S△BGE=S△EGC=S△DGF=S△CGF,又因为S△BFC=1××=cm2,所以S△BGE=×=cm2,则空白部分的面积为4×=cm2,于是阴影部分的面积为1×1﹣=cm2.故选:B.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个【解答】解:在正方形ABCD中有,AB=BC,AD=CD,∠ACB=45°,∴△ABC,△ADC是等腰三角形,∠EFC=90°﹣∠ACB=45°=∠ACB,∴EF=CE,△EFC是等腰三角形,∵AE=AB,∴△AEB是等腰三角形,∠ABE=∠AEB,∴∠FBE=90°﹣∠ABE=90°﹣∠AEB=∠BEF,∴FB=FE,∴△BEF是等腰三角形.故共有5个等腰三角形.故选:D.二.填空题(共8小题,满分9分)11.若代数式有意义,则x的取值范围是x≠4.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值﹣2.【解答】解:∵a2﹣2ab﹣b2=0,∴b2﹣a2=﹣2ab,则===﹣2,故答案为:﹣2.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.【解答】解:∵反比例函数y=﹣的k=﹣2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣1<0,﹣0.25<0,∴点(﹣1,y1),(﹣0.25,y2)位于第二象限,∴y1>0,y2>0,∵﹣0.25>﹣1<0,∴0<y1<y2.∵3>0,∴点(3,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=8.【解答】解:∵E是AC中点,且EF∥CD,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为:8.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为(1,5),△EOF的面积为12.反比例函数值大于一次函数值时x的范围是0<x<1或x>5.【解答】解:联立两函数解析式可得,解得或,∴E点坐标为(1,5),在y=﹣x+6中,令y=0可求得x=6,∴A(6,0),∴OA=6,∴S△EOF=S△AOE﹣S△AOF=×6×5﹣×6×1=15﹣3=12,∵E(1,5),F(5,1),∴当反比例函数值大于一次函数值时x的取值范围为0<x<1或x>5,故答案为:(1,5);12;0<x<1或x>5.16.(3分)若关于x的分式方程无解,则m=6,10.【解答】解:∵关于x的分式方程无解,∴x=﹣,原方程去分母得:m(x+1)﹣5=(2x+1)(m﹣3)解得:x=,m=6时,方程无解.或=﹣是方程无解,此时m=10.故答案为6,10.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.三.解答题(共10小题,满分30分)19.解下列分式方程:(1)=(2)﹣=【解答】解:(1)方程两边都乘以x(x+7),得100(x+7)=30x.解这个一元一次方程,得x=﹣10.检验:当x=﹣10,x(x+7)≠0.所以,x=﹣10是原分式方程的根.(2)方程两边都乘以(x+3)(x﹣3),得x﹣3+2(x+3)=12.解这个一元一次方程,得x=3.检验:当x=3时,(x+3)(x﹣3)=0.因此,x=3是原分式方程的增根,所以,原分式方程无解.20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.【解答】(1)解:∵正方形ABCO,B(4,4),E为BC中点,∴OA=AB=BC=OC=4,CE=BE=2,F的横坐标是4,∴E的坐标是(2,4),把E的坐标代入y=得:k=8,∴y=,∵F在双曲线上,∴把F的横坐标是4代入得:y=2,∴F(4,2),答:反比例函数的函数解析式是y=,点F的坐标是(4,2).(2)线段OE与CF的位置关系是OE⊥CF,理由是:∵E的坐标是(2,4),点F的坐标是(4,2),∴AF=4﹣2=2=CE,∵正方形OABC,∴OC=BC,∠B=∠BCO=90°,∵在△OCE和△CBF中,∴△OCE≌△CBF,∴∠COE=∠BCF,∵∠BCO=90°,∴∠COE+∠CEO=90°,∴∠BCF+∠CEO=90°,∴∠CME=180°﹣90°=90°,即OE⊥CF.(3)证明:∵OC=4,CE=2,由勾股定理得:OE=2,过M作MN⊥OC于N,∵OE⊥CF,∴∠CMO=∠OCE=90°,∵∠COE=∠COE,∴△CMO∽△ECO,∴==,即==,解得:CM=,OM=,在△CMO中,由三角形的面积公式得:×OC×MN=×CM×OM,即4MN=×,解得:MN=,在△OMN中,由勾股定理得:ON==,即M(,),∵A(4,0),∴由勾股定理得:AM=4=AO,即AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积不变(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.【解答】解:(1)不变,∵S△AOC=|k1|,S△BOC=|k2|,∴S△AOB=S△AOC+S△BOC=(|k1|+|k2|),∵k1,k2分别为某一确定值,∴△AOB的面积不变,故答案为:不变;(2)由题意可知:k1>0,k2<0,∴S△AOB=k1﹣k2=8,∵k1+k2=0,解得k1=8,k2=﹣8.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=2∠EAC,∠DCA=2∠FCA,∴∠EAC=∠FCA,∴AE∥CF,∵AE∥EF,∴四边形AECF是平行四边形;(2)当2AB=AC时,四边形AECF是菱形,理由如下:∵2AB=AC,∠ABC=90°,∴∠ACB=30°,∠BAC=60°,∴∠EAC=30°,∴∠EAC=∠ACB,∴AE=EC,∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。
2018-2019学年四川省成都市高新区七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×1033.代数式﹣的系数是()A.B.﹣C.D.﹣4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣15.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x46.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣77.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣409.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直棱柱.12.不超过(﹣)3的最大整数是.13.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为元.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=.23.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有个.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.2018-2019学年四川省成都市高新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步【解答】解:∵向东走10步记作+10步,∴向西走9步记作﹣9步.故选:B.2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×103【解答】解:将1200亿用科学记数法表示为1200×108=1.2×1011.故选:A.3.代数式﹣的系数是()A.B.﹣C.D.﹣【解答】解:代数式﹣的系数是﹣.故选:D.4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣1【解答】解:根据题意得:a+b=0,c=﹣1,d=1或﹣1,则原式=2(a+b)﹣cd=1或﹣1.故选:D.5.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x4【解答】解:A、(﹣1)2018=12018,故此选项错误;B、(﹣1)2017=﹣12017,正确;C、﹣2(x﹣3)=﹣2x+6,故此选项错误;D、﹣2x2+5x2=3x2,故此选项错误;故选:B.6.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣7【解答】解:根据题意得:3﹣4=﹣1或﹣3﹣4=﹣7,此时终点所表示的数是﹣1或﹣7,故选:D.7.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.【解答】解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有C选项图形符合.故选:C.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣40【解答】解:把x=﹣5代入得:5﹣10﹣25=﹣30<0,则输出的结果为﹣30,故选:C.9.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次【解答】解:A、一个数,如果不是正数,必定是非负数,故A错误;B、两个数相加,和不一定大于任何一个加数,故B错误;C、是二次二项式,故C正确;D、单独的一个数或一个字母也是单项式,其次数不一定为0次,故D错误.故选:C.10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【解答】解:根据题意得:新矩形的长为(a﹣b),则“S”形的图案的周长可表示为:4a+4(a﹣b)=8a﹣4b.故选:B.二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直六棱柱.【解答】解:一个直棱柱有18条棱,则它是直六棱柱.故答案为:六.12.不超过(﹣)3的最大整数是﹣3.【解答】解:(﹣)3=﹣,则不超过﹣的最大整数是﹣3,故答案为:﹣313.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为﹣7.【解答】解:∵|a+1|+(b﹣4)2=0,∴a+1=0,b﹣4=0,解得:a=﹣1,b=4,故3a﹣b=﹣3﹣4=﹣7.故答案为:﹣7.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为 1.04a元.【解答】解:依题意得(1+30%)a×80%=1.04a(元).故答案是:1.04a.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].【解答】解:(1)原式=﹣32+14+4=﹣14;(2)原式=×(﹣)×=﹣2;(3)原式=37﹣(﹣)×36=37﹣28+6=15;(4)原式=﹣4×(﹣)﹣×(﹣32)=﹣×(﹣4﹣32)=﹣×(﹣36)=12.16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).【解答】解:(1)原式=7y﹣3z﹣8y+5z=﹣y+2z;(2)原式=k2﹣k+7+k2﹣k=k2﹣k+7.四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【解答】解:如图所示:18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?【解答】解:(1)生产量最多的一天星期五+7,生产量最少的一天是星期日﹣11,∴生产量最多的一天比生产量最少的一天多生产+7﹣(﹣10)=17,即生产量最多的一天比生产量最少的一天多生产17吨;(2)﹣1+3﹣2+4+7﹣7﹣11=﹣7,本周总生产量为100×7+(﹣7)=693(吨),平均每辆装载量为=19.8吨,即平均每辆货车大约需装载19.8吨.19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.【解答】解:(1)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴A﹣B=x2﹣3xy﹣y+x2﹣xy+3y=2x2﹣4xy+2y;(2)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴原式=5A﹣2A+6B=3A+6B=3x2﹣9xy﹣3y﹣6x2+6xy﹣18y=﹣3x2﹣3xy﹣21y,当x=﹣2,y=﹣1时,原式=﹣12﹣6+21=3.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.【解答】解:(1)若实际购票:因为31+4=35<40,则需费用为:31×15+4×30=585(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵594>585,∴若学生人数为31人,该班买票至少应付585元;(2)若实际购票:因为32+4=36<40,则需费用为:32×15+4×30=600(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵600>594,∴若学生人数为32人,选择购40人团体票,最少付费594元;(3)根据(1)与(2)计算结果可知,购团体票比实际票便宜时的人数为x≥32;分三种情况讨论:①若32≤x≤36时,购团体票最少,则需费用:(4×30+36×15)×0.9=660×0.9=594(元),②若x>36时,则需费用为:(4×30+15x)×0.9=108+13.5x(元),③若0<x≤31时,则需费用:4×30+15x=120+15x(元),答:若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是1﹣π.【解答】解:由直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,得A点与1之间的距离是π.由两点间的距离是大数减小数,得A点表示的数是1﹣π,故答案为:1﹣π.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=﹣1.【解答】解:把x=﹣1代入得:a﹣2b+1=0,即a﹣2b=﹣1,则原式=﹣2(a﹣2b)﹣3=2﹣3=﹣1,故答案为:﹣123.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有6个.【解答】解:设原两位数的个位数字为x,十位数字为y,依题意,得:10x+y=10y+x﹣27,解得:y﹣x=3.∵x,y均为一位正整数,∴y=4,5,6,7,8,9.故答案为:6.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为1009.【解答】解:由题意可得,a1=0,a2=1,a3=1,a4=2,a5=2,a6=3,a7=3,a8=4,a9=4,…,∵(2018﹣1)÷2=1008…1,∴a2018=1008+1=1009,故答案为:1009.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为12个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个12面体.【解答】解:①设出正二十面体的顶点为n个,则棱有条.由题意F=20,∴n+10﹣=2,解得n=12.②设顶点数V,棱数E,面数F,每个点属于三个面,每条边属于两个面由每个面都是五边形,则就有E=,V=由欧拉公式:F+V﹣E=2,代入:F+﹣=2化简整理:F=12所以:E=30,V=20即多面体是12面体.棱数是30,面数是12,故答案为12,12.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.【解答】解:(1)(2x3﹣8x2y+x+1)+(﹣3x3﹣2mx2y+6x﹣9)=2x3﹣8x2y+x+1﹣3x3+2mx2y+6x﹣9=﹣x3﹣8x2y+2mx2y+7x﹣8=(﹣8+2m)x2y﹣x3+7x﹣8,∵﹣8+2m=0,解得m=4.(2)由数轴可得,a<b<0<c,|a|>|c|>|b|,∴|a+b|﹣|b+c|+|a+c|=﹣a﹣b﹣b﹣c﹣a﹣c=﹣2a﹣2b﹣2c.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?【解答】解:(1)图①中火柴棒的根数7=2+5×1,图②中火柴棒的根数12=2+5×2,图③中火柴棒的根数2+5×3=17,图④中火柴棒的根数2+5×4=22,图⑤中火柴棒的根数2+5×5=27,补全图形如下:(2)搭第n个图形需要的火柴根数为2+5n;(3)根据题意,得:2+5n=187,解得:n=37,∵图n中正方形的个数为2+3(n﹣1)=3n﹣1,∴第37个图形中,正方形的个数为3×37﹣1=110.28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.【解答】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=或t=,其中<3不符合题意舍去答:t的值为和。
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
2018-2019学年江苏省苏州市高新区八年级(下)期末数学试卷一、选择题:(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡相应的位置上.)1.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2分)下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式3.(2分)某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是80%”,则对该同学的说法理解最合理的是()A.小东夺冠的可能性较大B.如果小东和他的对手比赛10局,他一定会赢8局C.小东夺冠的可能性较小D.小东肯定会赢4.(2分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为()A.10%B.15%C.20%D.25%5.(2分)若﹣1是关于x的方程nx2+mx+2=0(n≠0)的一个根,则m﹣n的值为()A.1B.2C.﹣1D.﹣26.(2分)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.7.(2分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm8.(2分)如图,有一个平行四边形ABCD和一个正方形CEFG,其中点E在边AD上.若∠ECD =40°,∠AEF=25°,则∠B的度数为()A.55°B.60°C.65°D.75°9.(2分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数(k为常数)的图象上,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y110.(2分)如图,在平行四边形ABCD中,AB=26,AD=6,将平行四边形ABCD绕点A旋转,当点D的对应点D'落在AB边上时,点C的对应点C',恰好与点B、C在同一直线上,则此时△C'D'B的面积为()A.240B.260C.320D.480二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填写在答题卡相应位置上.)11.(2分)若二次根式有意义,则x的取值范围为.12.(2分)一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有人.13.(2分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是.14.(2分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=.15.(2分)如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k=.16.(2分)如图,△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F.AB=24,EF=18,则DF的长是.17.(2分)如图,正方形ABCD的边长为5cm,E是AD边上一点,AE=3cm.动点P由点D向点C运动,速度为2cm/s,EP的垂直平分线交AB于M,交CD于N.设运动时间为t秒,当PM∥BC时,t的值为.18.(2分)如图,在菱形ABCD中,∠ABC=120°,AB=6,点E在AC上,以AD为对角线的所有平行四边形AEDF中,EF最小的值是.三、解答题:(本大题共10小题,共64分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(6分)计算或化简(1)(2)20.(6分)解下列方程:(1)x2﹣6x+8=0(2)21.(4分)化简并求值:,其中a=.22.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B中心对称的△A1BC1,并直接写出点C1的坐标.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧画出△ABC放大后的△A2B2C2,并直接写出点C2的坐标.23.(6分)昆明市某校学生会干部对校学生会倡导的“牵手滇西”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a=,本次调查样本的容量是;(2)先求出C组的人数,再补全“捐款人数分组统计图1”;(3)根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在20至40元之间.24.(6分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)已知AB=1,∠ABE=45°,求BC的长.25.(6分)某旅游纪念品店购进一批旅游纪念品,进价为6元.第一周以每个10元的价格售出200个、第二周决定降价销售,根据市场调研,单价每降低1元,一周可比原来多售出50个,这两周一共获利1400元.(1)设第二周每个纪念品降价x元销售,则第二周售出个纪念品(用含x代数式表示);(2)求第二周每个纪念品的售价是多少元?26.(6分)已知:如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.直线PE从B点出发,以2cm/s的速度向点A方向运动,并始终与BC平行,与线段AC交于点E.同时,点F从C点出发,以1cm/s的速度沿CB向点B运动,设运动时间为t(s)(0<t<5).(1)当t为何值时,四边形PFCE是矩形?(2)当△ABC面积是△PEF的面积的5倍时,求出t的值.27.(8分)如图,点P为x轴负半轴上的一个点,过点P作x轴的垂线,交函数的图象于点A,交函数的图象于点B,过点B作x轴的平行线,交于点C,连接AC.(1)当点P的坐标为(﹣1,0)时,求△ABC的面积;(2)若AB=BC,求点A的坐标;(3)连接OA和OC.当点P的坐标为(t,0)时,△OAC的面积是否随t的值的变化而变化?请说明理由.28.(10分)如图,矩形OABC的两条边OA、OC分别在y轴和x轴上,已知点B坐标为(4,﹣3).把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为D、F、E.(1)线段AC=;(2)求点D坐标及折痕DE的长;(3)若点P在x轴上,在平面内是否存在点Q,使以P、D、E、Q为顶点的四边形是菱形?若存在,则请求出点Q的坐标;若不存在,请说明理由.2018-2019学年江苏省苏州市高新区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡相应的位置上.)1.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.2.【解答】解:A、了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验;B、调查你所在班级同学的身高,要求精确、难度相对不大、实验无破坏性,应选择普查方式;C、了解环保部门调查沱江某段水域的水质情况,会给调查对象带来损伤破坏,应该选取抽样调查的方式才合适;D、调查全市中学生每天的就寝时间,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可;故选:C.3.【解答】解:根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A、李东夺冠的可能性较大,故本选项正确;B、李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C、李东夺冠的可能性较大,故本选项错误;D、李东可能会赢,故本选项错误.故选:A.4.【解答】解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=﹣1.8(不合题意,舍去);答:平均每次降价的百分率是20%.故选:C.5.【解答】解:由题意,得x=﹣1满足方程nx2+mx+2=0(n≠0),所以,n﹣m+2=0,解得,m﹣n=2.故选:B.6.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.7.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.8.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣25°﹣90°=65°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣65°﹣40°=75°,∵四边形ABCD为平行四边形,∴∠B=∠D=75°(平行四边形对角相等).故选:D.9.【解答】解:∵k2+3>0,∴反比函数在每个象限内,y随x的增大而减小,A(﹣2,y1)、B(﹣1,y2)在第三象限内,∵﹣1>﹣2,∴y1>y2,∴y3>y1>y2,故选:C.10.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=26,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=26,AD=6,∴BD′=20,∴D′H=10,∴C′H=,∴△C′D′B的面积=BD′•C′H=×20×24=240.故选:A.二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填写在答题卡相应位置上.)11.【解答】解:根据题意得,x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.【解答】解:∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故答案为:20.13.【解答】解:∵α,β是一元二次方程x2+x﹣2=0的两个实数根,∴α+β=﹣1、αβ=﹣2,则α+β﹣αβ=﹣1+2=1,故答案为:1.14.【解答】解:∵:l1∥l2∥l3,∴=,∵AB=6,DE=5,EF=7.5,∴BC=9,∴AC=AB+BC=15,故答案为:15.15.【解答】解:作DE⊥x轴,垂足为E,连OD.∵∠DAE+∠BAO=90°,∠OBA+∠BAO=90°,∴∠DAE=∠OBA,又∵∠BOA=∠AED,AB=DA,∴△BOA≌△AED(HL),∴OA=DE.∵y=﹣2x+2,可知B(0,2),A(1,0),∴OA=DE=1,∴OE=OA+AE=1+2=3,=•OE•DE=×3×1=,∴S△DOE∴k=×2=3.故答案为:3.16.【解答】解:作CM ⊥AB 交EF 于N ,垂足为M .∵EF ∥AB ,∴△CEF ∽△CBA ,∴===,设CN =3h ,CM =4h ,则MN =h ,∵S △ABC =S △CED ,∴S 四边形ABEF =S △DFC ,∴(AB +EF )•MN =•DF •CN ,∴(18+24)•h =•DF •3h ,∴DF =14,故答案为:14.17.【解答】解:如图,连接ME ,∵MN 垂直平分PE ,∴MP =ME ,当MP ∥BC 时,四边形BCPM 是矩形,∴BC =MP =5,∴ME =5,又∵AE =3,∴AM =4=DP ,∴t=4÷2=2(s),故答案为:2.18.【解答】解:∵在菱形ABCD中,∠ABC=120°,AB=6,∴AD=6,∠EAD=30°,以AD为对角线的所有▱AEDF中,当EF⊥AC时,EF最小,即△AOE是直角三角形,∵∠AEO=90°,∠EAD=30°,OE=OA=,∴EF=2OE=3,故答案为:3.三、解答题:(本大题共10小题,共64分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.【解答】解:(1)原式=2+3﹣3﹣4=﹣﹣;(2)原式=+1﹣1﹣=﹣.20.【解答】解:(1)(x﹣2)(x﹣4)=0,x﹣2=0或x﹣4=0,所以x1=2,x2=4;(2)去分母得x+3=3x﹣3,解得x=3,检验:当x=3时,x﹣1≠0,则x=3是原方程的解,所以原方程的解为x=3.21.【解答】解:原式===当a=时,∴原式==1﹣.22.【解答】解:(1)△A1BC1如图所示,点C1的坐标(1,6).(2)△A2B2C2如图所示,点C2的坐标(﹣6,4).23.【解答】解:(1)a=100×=20,本次调查样本的容量是:(100+20)÷(1﹣40%﹣28%﹣8%)=500,故答案为:20,500;(2)∵500×40%=200,∴C组的人数为200,补全“捐款人数分组统计图1”如右图所示;(3)4 500×(40%+28%)=3060(人),答:该校4 500名学生中大约有3060人捐款在20至40元之间.24.【解答】解:(1)△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,由勾股定理得:BE==,即BC=BE=.25.【解答】解:(1)设第二周每个纪念品降价x元销售,则第二周售出(200+50x)个旅游纪念品,故答案是:(200+50x);(2)根据题意得:(10﹣6)×200+(10﹣6﹣x)(200+50x)=1400,整理得:x2﹣4=0,解得:x1=2,x2=﹣2(不符题意,舍去),∴10﹣x=8.答:第二周每个纪念品的销售价格为8元.26.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AC=8,BC=6,∴AB==10,∵PE∥BC,∴=,∴=,∴PE=(10﹣2t),AE=(10﹣2t)当PE=CF时,四边形PECF是矩形,∴t=(10﹣2t),解得t=.(2)∵当△ABC面积是△PEF的面积的5倍时,∴24=5×××[8﹣(10﹣2t)]∴t=27.【解答】解:(1)点P(﹣1,0)则点A(﹣1,1),点B(﹣1,4),点C(﹣,4),S=BC×AB=(﹣+1)(4﹣1)=;△ABC(2)设点P(t,0),则点A、B、C的坐标分别为(t,﹣)、(t,﹣)、(,﹣),AB=BC,即:﹣=,解得:t=±2(舍去2),故点A (﹣2,);(3)过点A 作AM ⊥y 轴于点M ,过点C 作CN ⊥y 轴于点N ,各点坐标同(2),S △OAC =S 梯形AMNC =(﹣﹣t )(﹣)=,故△OAC 的面积是否随t 的值的变化不变化.28.【解答】解:(1)∵四边形OABC 是矩形,点B 坐标为(4,﹣3).∴∠AOC =90°.OA =3,OC =4,∴AC ==5.故答案为:5;(2)由折叠可得:DE ⊥AC ,AF =FC =,∵∠FCD =∠OCA ,∠DFC =∠AOC =90°,∴△DFC ∽△AOC .∴==,∴==,∴DF =,DC =,∴OD =OC ﹣DC =4﹣=.∴D (,0);∵四边形OABC 是矩形,∴AB ∥DC ,∴∠EAF=∠DCF,在△AFE和△CFD中,,∴△AFE≌△CFD(ASA).∴EF=DF.∴DE=2DF=2×=.即折痕DE的长为.(3)如图所示:由(2)可知,AE=CD=∴E(,﹣3),D(,0),①当DE为菱形的边时,DP=DE=,可得Q(,﹣3),Q1(﹣,﹣3).②当DE为菱形的对角线时,P与C重合,Q与A重合,Q2(0,﹣3),③当点Q在第一象限,E与Q关于x轴对称,Q(,3)综上所述,满足条件的点Q坐标为(,﹣3)或(﹣,﹣3)或(0,﹣3)或(,3).。
2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠24.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤335.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣59.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.12.若分式的值为0,则x的值为.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.16.先化简,再求值:(﹣1)÷,其中x=2020.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=.22.关于x的不等式组的整数解共有6个,则a的取值范围是.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)【分析】根据分式的定义(注意分式的分母中不含有字母,)逐个判断即可.解:A、分母中不含有字母,不是分式,故本选项不符合题意;B、分母中不含有字母,不是分式,故本选项不符合题意;C、分母中含有字母,是分式,故本选项符合题意;D、分母中不含有字母,不是分式,故本选项不符合题意;故选:C.2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.解:A、是轴对称图形,但不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:A.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【分析】根据分式有意义的条件列出不等式,解不等式得到答案.解:由题意的,2﹣x≠0,解得,x≠2,故选:D.4.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤33【分析】最高气温与最低气温之间的气温即为当天气温t(℃)的变化范围.解:当天气温t(℃)的变化范围是25≤t≤33,故选:D.5.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【分析】利用平移中点的变化规律求解即可.解:在平面直角坐标系中,将三角形各点的横坐标都加上3,纵坐标保持不变,所得图形与原图形相比,向右平移了3个单位.故选:B.6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB【分析】根据平行四边形的判定方法即可判断;解:∵AB∥CD,AB=CD,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故选:A.8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣5【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为x=﹣4,∴把x=﹣4代入整式方程,得m=﹣5,故选:D.9.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】观察函数图象得到当x≤﹣1时,函数y1=x+b的图象都在y2=kx﹣1的图象下方,所以不等式x+b≤kx﹣1的解集为x≤﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解:根据题意得当x≤﹣1时,y1≤y2,所以不等式x+b≤kx﹣1的解集为x≤﹣1.故选:D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.二、填空题(共4个小题)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:360÷40=9,即这个多边形的边数是9.12.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为65°.【分析】利用三角形的中位线的性质解决问题即可.解:∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠B=65°,∵AE=EC.CF=BF,∴EF∥AB,∴∠CFE=∠B=65°,故答案为65°.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.【分析】根据旋转的性质,知:旋转角度是90°,根据旋转的性质得出AP=AP′=3,即△PAP′是等腰直角三角形,腰长AP=3,则可用勾股定理求出斜边PP′的长.解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴△ABP≌△ACP′,即线段AB旋转后到AC,∴旋转了90°,∴∠PAP′=∠BAC=90°,AP=AP′=3,∴PP′=3.三、解答题(共6小题).15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.【分析】(1)利用提公因式、公式法进行因式分解即可;(2)利用解不等式组的解法步骤进行解答即可.解:(1)ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2;(2),解不等式①得,x≥﹣1,解不等式②得,x<3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x<3:∴非负整数解有:0,1,2.16.先化简,再求值:(﹣1)÷,其中x=2020.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式=[﹣1]÷=(﹣)÷=•=﹣,当x=2020时,原式=﹣=﹣.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【分析】(1)利用点A和A1坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1A2,B1B2,C1C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)【分析】(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)根据所需要材料的总长度l=甲的材料的总长度+乙的材料的总长度,列出函数关系式;再根据“乙种边框的数量不少于甲种边框数量的2倍”列出不等式并解答.解:(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,由题意,得﹣1=,解得:x=2,经检验x=2是原方程的解,∴(1+20%)x=2.4(米),答:制作每个甲种用2.4米材料;制作每个乙种用2米材料.(2)设应安排制作甲种边框需要a米,则安排制作乙种边框需要(640﹣a)米,由题意,得≥×2.解得a≤240,则≤100.答:应最多安排制作甲种边框100个.20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.【分析】(1)如图①,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(2)如图②,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(3)由全等三角形的性质可得∠ABP=∠AMD=30°,可得∠BMD=∠AMB+∠AMD =90°,可得点D在BA的延长线上,由直角三角形的性质和等边三角形的性质可求AP 的长.解:(1)如图①,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC﹣∠CAP,∠MAD=∠PAD﹣∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(2)如图②,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°=∠AMB,由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC+∠CAP,∠MAD=∠PAD+∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(3)∵BC为等边△ABM的高,∴∠ABC=30°,∵△BAP≌△MAD,∴∠ABP=∠AMD=30°,∴∠BMD=∠AMB+∠AMD=90°,∴∠BMD=90°,∵∠BDM=30°,∴∠DBM=60°,∴点D在BA的延长线上,如图③,∵∠BDM=30°,∠BMD=90°,∴BD=2BM=10,∴AD=BD﹣AB=5∵PA=PD=AD,∴AP=AD=5.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=0.【分析】将m3﹣3mn+4m提取公因式m,得到原式=m(m2﹣3n+4),把m2+4=3n代入,计算即可.解:∵m2+4=3n,∴m3﹣3mn+4m=m(m2﹣3n+4)=m(3n﹣3n)=0.故答案为:0.22.关于x的不等式组的整数解共有6个,则a的取值范围是﹣6≤a<﹣5.【分析】解不等式得出其解集为a<x<1,根据不等式组的整数解有6个得出其整数解得情况,从而得出字母a的取值范围.解:解不等式x﹣a>0,得:x>a,解不等式3﹣3x>0,得:x<1,则不等式组的解集为a<x<1,∵不等式组的整数解有6个,∴不等式组的整数解为0、﹣1、﹣2、﹣3、﹣4、﹣5,则﹣6≤a<﹣5,故答案为:﹣6≤a<﹣5.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.【分析】先把分式方程化为整式方程,解整式方程得到x=且x≠2,利用有理数的整除性得到a=2或3,然后根据概率公式求解.解:把分式方程﹣1=去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x=且x≠2,∴a=2或3,∴a的值使得关于x的分式方程﹣1=有整数解的概率==.故答案为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.【分析】根据函数图象中的数据可以分别求得平行四边形的边AB的长和边AB边上的高的长,从而可以求得平行四边形的面积.解:作DM⊥AB于点M,如右图1所示,由图象和题意可得,AE=7﹣4=3,EB=8﹣7=1,DE=3,∴AB=3+1=4,∵直线DE平行直线y=﹣x,∴DM=ME,∴DM=DE•sin45°=,∴平行四边形ABCD的面积是:4×=.故答案为:.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【分析】如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC =PE,推出当EP⊥AC时,QC的值最小;解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?【分析】(1)根据总运费=每件运费×运往该地的件数,即可用含x的代数式表示总运费y元;(2)根据“运往B地的件数不多于运往C地的件数,总运费不超过4000元”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出运输方案的次数,再利用一次函数的性质即可解决最值问题.解:(1)∵安排x件产品运往A地,∴安排2x件产品运往C地,安排(200﹣x﹣2x)件产品运往B地,∴总运费y=30x+8(200﹣x﹣2x)+25×2x=56x+1600.(2)依题意,得:,解得:40≤x≤42.又∵x为正整数,∴x可以取40,41,42,∴共有3种运输方案.∵在y=56x+1600中k=56>0,∴y随x的增大而增大,∴当x=40时,y取得最小值,最小值=56×40+1600=3840,此时2x=80,200﹣x﹣2x =80.即当运往A地40件、运往B地80件、运往C地80件时,总运费最低,最低总运费是3840元.27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.【分析】(1)过点B作BH⊥AD于H,先求出∠ABH=30°,进而求出BH,由平行四边形的面积公式即可得出结论;(2)先判断出∠BAE=∠CAF,进而判断出△ABE≌△ACF,即可得出结论;(3)延长AE交DC延长线于P,过点F作FG⊥AP于G,证△ABE≌△PCE(ASA),得出AE=PE,PC=AB=CD=4,求出PF=7,由含30°角的直角三角形的性质得出AG=3,由勾股定理得FG=3,PG=,则AP=AG+PG=3+,即可得出答案.【解答】(1)解:过点B作BH⊥AD于H,如图1所示:在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH===,∴S▱ABCD=AD×BH=AF×BH=5×=5;(2)证明:连接AC,如图2所示:∵AB=BC,∠B=∠EAF=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠BAE=∠CAF,∵四边形ABCD是平行四边形,AB=AC,∴四边形ABCD是菱形,∴∠ACF=∠ACB=60°,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF;(3)解:延长AE交DC延长线于P,过点F作FG⊥AP于G,如图3所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B=∠ECP,在△ABE和△PCE中,,∴△ABE≌△PCE(ASA),∴AE=PE,PC=AB=CD=4,∵CF=3DF,∴CF=3,∴PF=7,在Rt△AFG中,AF=6,∠EAF=60°,∴∠AFG=30°,∴AG=AF=3,FG===3在Rt△PFG中,由勾股定理得:PG===,∴AP=AG+PG=3+,∴AE=PE=AP=.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)由于y=﹣x+m交x轴于点A(4,0),求出m的值,可得出OA=4,OB=3,则可得出答案;(2)根据勾股定理得到AB=5=BC,得到点C(0,﹣2),求出直线AC解析式为y =x﹣2,由于P在直线y=﹣x+3上,可设点P(t,﹣t+3),即可得到结论;(3)过点M作MG⊥PQ于G,根据全等三角形的性质得到QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,推出四边形GHRM是矩形,根据矩形的性质得到HR=GM=4,可设GH=RM=k,根据全等三角形的性质得到HN=RM=k,NR=QH=2+k,得到N(t+1,t+1)根据N在直线AB:y=﹣x+3上,即可得出答案.解:(1)∵y=﹣x+m交x轴于点A(4,0),∴0=﹣×4+m,解得m=3,∴直线AB解析式为y=﹣x+3,令x=0,y=3,B(0,3);∵A(4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴==6;(2)∵OA=4,OB=3,∴AB═=5=BC,∴OC=2,∴点C(0,﹣2),设直线AC解析式为y=kx+n,∴,∴,∴直线AC解析式为y=x﹣2,∵P在直线y=﹣x+3上,∴可设点P(t,﹣t+3),∵PQ∥y轴,且点Q在y=x﹣2上,∴Q(t,t﹣2),∴d=(﹣t+3)﹣(t﹣2)=﹣t+5(0<t<4);(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ(AAS),∴QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=4,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QNM=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN(AAS),∴HN=RM=k,NR=QH=2+k,∵HR=HN+NR,∴k+2+k=4,∴k=1,∴GH=NH=RM=1,∴HQ=3,∵Q(t,t﹣2),∴N(t+1,t﹣2+3)即N(t+1,t+1),∵N在直线AB:y=﹣x+3上,∴t+1=﹣(t+1)+3,∴t=1,∴P(1,),N(2,)。
2018—2019学年度下期半期学业质量检测试题
八 年 级 数 学
(时间:120分钟,总分:150分)
A 卷(共100分)
一 、选择题(每题3分,共30分)
1.在下列英文大写正体字母中,是中心对称图形的选项是(▲)
V W X Y
A B C D 2.下列不等式变形正确的是(▲)
A .由a >b ,得a +1<b +1
B .由a b >,得33a b -<-
C .由a >b ,得22a b <
D .由a b >,得2323a b -<-
3.下列各式,从左到右的变形是因式分解的是(▲)
A .()a x y ax ay +=+
B .22(21)x x x x -=-
C .244(4)4x x x x ++=++
D .29(9)(9)x x x -=+- 4.下列命题正确的是(▲)
A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.
B .两个全等的图形之间必有平移关系.
C .三角形经过旋转,对应线段平行且相等.
D .将一个封闭图形旋转,旋转中心只能在图形内部. 5. 若分式
1
2
x x --有意义,则实数x 的取值范围是(▲) A .一切实数 B .1x ¹ C . 2x ¹ D . 1x ¹且2x ¹ 6. 用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中(▲) A .有两个角是直角 B .有另个角是钝角 C .有两个角是锐角 D .三个角都是直角
7.如图,一次函数y kx b =+的图象经过点A (1,0),B (2,1),当因变量y >0时,自变量x 的取值范围是 A . 0x <
B .0x <
C . 1x >
D . 1x <
8.下列分式从左到右的变形正确的是(▲)
A .2=2x x y y ++
B .22=x x y y
C .22
=x x x x
-+- D .515(2)2x x =++ 9.如图,在△ABC 中,AB 边垂直平分线MD 交BC 于点D ,AC 边垂直平分线EN 交BC 于点E ,连接AD ,AE .若∠BAC =110°,则∠DAE 的度数为(▲) A .70°
B .55°
C .45°
D .40°
第16题图 第14题图
10.已知关于x 的不等式组32x m
x m ì+>ïïí
ï<ïî
有解,则m 的取值范围为(▲) A .6m > B .6m ³ C .6m < D .6m £
二、填空题(每空4分,共16分)
11.在等腰△ABC 中,AB =AC ,若∠A =80°,则∠C 的度数为 . 12. 若关于x 的不等式组2x m
x n ì>ïïí
ï-<ïî
的解集为13x <<,则m +n = . 13. 若29x kx ++是一个完全平方式,则k = . 14. 如图,在△ABC 中,∠B =90°, BC =5cm , AB =12cm , 则图中4个小直角三角形周长的和为 cm. 三、解答题(共54分)
15(12分).(1)解不等式:521123x x ++-<
(2)因式分解:228ax a - (3)计算:22
26y xy x ¸
16(8分).如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,△ABC 的顶点均在格点上,三个顶点的坐标分别是A (-3,4),B (-2,1),C (-4,2).
(1)将△ABC 先向右平移7个单位长度,再向上平移2个单位长度,画出第二次平移后的△111A B C ; (2)以点O (0,0)为对称中心,画出与△ABC 成中心对称的△222A B C ; (3)将点B 绕坐标原点逆时针方向旋转90°至点3B , 则点3B 的坐标为( , )
17(8分).先化简,再求值:2222
24369x x x x x x x --¸--+,其中x 为不等式组112
3x x x ì>-ïïïí-ï£ïïî 的整数解.
18(8分).如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC边的垂线,垂足为N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若,AB=2,AC=8,求BM的长.
第18题图
19(8分).某学校计划购买若干台电脑,现从甲、乙两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:
(1)分别写出甲、乙两商场的收费y(元)与所买电脑台数x之间的关系式;
(2)什么情况下到甲、乙两商场购买更优惠?什么情况下两家商场的收费相同?
商场优惠条件
甲商场第一台按原价收费,其余每台优惠25%
乙商场每台优惠20%
20(10分).如图,在△ABC中,AB=AC=4,∠BAC=120°,AD为BC边上的高,点P从点B以每秒3个单位长度的速度向终点C运动,同时点Q从点C以每秒1个单位长度的速度向终点A运动,其中一个点到达终点时,两点同时停止.(1)求BC的长;(2)设△PDQ的面积为S,点P的运动时间为t秒,求S与t 的函数关系式,并写出自变量的取值范围;(3)在动点P、Q的运动过程中,是否存在PD=PQ,若存在,求出△PDQ的周长,若不存在,请说明理由.
图1 备用图
第23题图
B 卷(共50分)
一、填空题。
(每题4分,共20分)
21.若多项式23x x k -+的一个因式是2x -,则k 的值为 .
22.已知关于x 的不等式组231x a x ì£ïïí
ï->ïî
只有三个整数解,则实数a 的取值范围是 . 23.如图,△ABC 的周长为12,OB 、OC 分别平分∠ABC 和∠ACB ,过点O 作OD ⊥BC 于点D ,OD =3,则△ABC 的面积为 .
24.阅读材料:分离整数法就是将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
如:①112122
111111
x x x x x x x x +-+-==+=+
-----,②222191091010333333x x x x x x x x x +-+-==+=++----- 解答问题.已知x 为整数,且分式
34
2
x x --为整数,则x 的值为 . 25.如图,Rt △ABC 中,AB =AC =8,BO =
1
4
AB ,点M 为BC 边上一动点,将线段OM 绕点O 按逆时针方向旋转90°至ON ,连接AN 、CN ,则△CAN 周长的最小值为 .
二、解答题:
26(8分).为了全面推进素质教育,增强学生体质,丰富校园文化生活,高新区某校将举行春季特色运动会,需购买A ,B 两种奖品.经市场调查,若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品1件和B 种奖品3件,共需55元.(1)求A 、B 两种奖品的单价各是多少元;(2)运动会组委会计划购买A 、B 两种奖品共100件,购买费用不超过1160元,且A 种奖品的数量不大于B 种奖品数量的3倍,运动会组委会共有几种购买方案?(3)在第(2)问的条件下,设计出购买奖品总费用最少的方案,并求出最小总费用.
第25题图
27(10分).在△OAB 中,OA =OB ,∠AOB =30°,将△OAB 绕点O 顺时针旋b °(30150b <<)转至△OCD ,点A 、B 的对应点分别为C 、D ,连接BD 、AC ,线段BD 与线段AC 交于点M ,连接OM . (1)如图1,求证AC =BD ;(2)如图1,求证OM 平分∠AMD ;(3)如图2,若b =90,AO =232+,求CM 的长.
28(12分).如图,点A 为平面直角坐标系第一象限内一点,直线y =x 过点A ,过点A 作AD ⊥y 轴于点D ,点B 是y 轴正半轴上一动点,连接AB ,过点A 作AC ⊥AB 交x 轴于点C .(1)如图1,当点B 在线段OD 上时,求证:AB =AC ;(2)①如图2,当点B 在OD 延长线上,且点C 在x 轴正半轴上, OA 、OB 、OC 之间的数量关系为 (不用说明理由);②当点B 在OD 延长线上,且点C 在x 轴负半轴上,写出OA 、OB 、OC 之间的数量关系,并说明原因;(3)直线BC 分别与直线AD 、直线y =x 交于点E 、F ,若BE =5,CF =12,直接写出AB 的长.
图1
图2
备用图
图1
图2。