机械能守恒定律及其应用(二):单体机械能守恒问题
- 格式:pptx
- 大小:316.92 KB
- 文档页数:9
机械能守恒定律的应用在物理学中,机械能守恒定律是一条基本的物理定律,它描述了在一个孤立的力学系统中,总的机械能保持不变。
这个定律可以被广泛应用于各种物理现象和工程问题中。
本文将探讨机械能守恒定律的应用,并以实际例子加以说明。
一、弹簧势能和重力势能的转化机械能守恒定律可以应用于弹簧势能和重力势能的相互转化的问题。
考虑一个弹簧与一个质点连接,并将这个质点放置在重力场中。
当质点在弹簧的作用下沿着垂直方向运动时,弹簧的势能和重力势能会相互转化。
假设质点在某一时刻具有高度h,速度v,弹簧的劲度系数为k。
根据机械能守恒定律,质点的机械能E可以表示为:E = mgh + (1/2)mv^2 + (1/2)kx^2其中m是质点的质量,g是重力加速度,x是弹簧的伸缩量。
在运动过程中,如果质点在距离平衡位置的位置发生变化,即x不等于零,那么弹簧的势能和重力势能会发生相应的变化。
然而,总的机械能E在整个过程中保持不变。
二、轨道运动中的机械能守恒机械能守恒定律在轨道运动中也有重要的应用。
考虑一个质点在离心力和引力的作用下在一个假设无摩擦的平面上运动。
根据机械能守恒定律,质点的机械能E在整个运动过程中保持不变。
在一个闭合轨道上,质点具有速度v和离心力F_c,引力和重力力F_g。
根据机械能守恒定律,质点的机械能E可以表示为:E = (1/2)mv^2 - GmM/r其中M是引力中心的质量,r是质点与引力中心之间的距离,G是引力常数。
在闭合轨道上,质点的速度和距离会相应变化,但机械能E保持不变。
三、动能转化与物体碰撞机械能守恒定律还可以应用于动能转化和物体碰撞的问题。
在一个孤立的力学系统中,当两个物体碰撞时,它们的机械能可以部分转化为其他形式的能量,如热能或变形能。
考虑两个质量分别为m1和m2的物体,在碰撞前具有速度v1和v2。
根据机械能守恒定律,碰撞后物体的机械能E'可以表示为:E' = (1/2)m1v1'^2 + (1/2)m2v2'^2其中v1'和v2'是碰撞后物体的速度。
1页机械能守恒定律及其应用一、机械能守恒1.机械能守恒的条件:只有重力或系统内的弹力做功. 2.机械能守恒的判断方法(1)从机械能的定义直接判断:若物体动能、势能均不变,机械能不变.若一个物体动能不变,势能变化,或势能不变,动能变化或动能和势能同时增加(或减小),其机械能一定变化.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他外力,但其他外力不做功, 或其它力做功的代数和为零,机械能守恒.对单个物体就看是否只有重力做功,或者虽受其他力,但其他力不做功;对两个或几个物体组成的系统,就看是否只有重力或系统内弹力做功,若有其他外力或内力做功(如内部有摩擦等),则系统机械能不守恒.(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统的机械能守恒. 思维提升【例1】关于机械能是否守恒的叙述,正确的是 ( BD )A .作匀速直线运动的物体的机械能一定守恒B .作匀变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .只有重力对物体做功,物体机械能一定守恒[训练1]如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处自由 落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为( B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h )【训练2】如图所示,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a →b →c 的运动过程中,以下叙述正确的是 ( AD )A .小球和弹簧总机械能守恒B .小球的重力势能随时间均匀减少C .小球在b 点时动能最大D .到c 点时小球重力势能的减少量等于弹簧弹性势能的增加量二、机械能守恒定律及应用1.用守恒的观点表示,即系统在初状态的机械能等于末状态的机械能,表达式为 E k 1+E p 1=E k 2+E p 2或E 1=E 2.2.用转化的观点表示,即:系统减少(增加)的势能等于增加(减少)的动能,表达式为ΔE p =-ΔE k . 3.用转移的观点表示,即系统若由A 、B 两部分组成,A 部分机械能的减少量等于B 部分机械能的增加量,表达式为:ΔE A 减=ΔE B 增.4.对于多个物体组成的系统,研究对象的选取是解题的关键环节,若选单个物体为研究对象时,机械能可能不守恒,但选此物体与其他几个物体组成的系统为研究对象时,机械能却是守恒的.【例2】如下图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB 齐平,静止放于光滑斜面上,一长为L 的轻质细线一端固定在O 点,另一端系一质量为m 的小球,将细线拉至水平,此时小球在位置C ,由静止释放小球,小球到达最低点D 时,细绳刚好被拉断,D 点到AB 的距离为h ,之后小球在运动过程中恰好沿斜面方向将弹簧压缩,弹簧的最大压缩量为x ,重力加速度为g 。
第3讲机械能守恒定律及其应用学习目标 1.理解重力势能和弹性势能,知道机械能守恒的条件。
2.会判断研究对象在某一过程机械能是否守恒。
3.会用机械能守恒定律解决单个物体或系统的机械能守恒问题。
1.2.3.4.1.思考判断(1)重力势能的变化量与零势能参考面的选取无关。
(√)(2)被举到高处的物体重力势能一定不为零。
(×)(3)发生弹性形变的物体都具有弹性势能。
(√)(4)弹力做正功,弹性势能一定增加。
(×)(5)物体所受的合外力为零,物体的机械能一定守恒。
(×)(6)物体的速度增大时,其机械能可能减小。
(√)(7)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒。
(√)2.如图所示是“弹簧跳跳杆”,杆的上下两部分通过弹簧连接。
当人和跳杆从一定高度由静止竖直下落时,弹簧先压缩后弹起。
则人从静止竖直下落到最低点的过程中()A.弹簧弹性势能一直增加B.杆下端刚触地时人的动能最大C.人的重力势能一直减小D.人的机械能保持不变答案C考点一机械能守恒的理解与判断例1(多选)在如图1所示的物理过程示意图中,甲图中一端固定有小球的轻杆从右偏上30°角释放后绕光滑支点摆动;乙图中轻绳一端连着一小球,从右偏上30°角处自由释放;丙图中物体A正在压缩弹簧;丁图中不计任何阻力和定滑轮质量,A加速下落,B加速上升。
关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()图1A.甲图中小球机械能守恒B.乙图中小球机械能守恒C.丙图中物体A的机械能守恒D.丁图中A、B组成的系统机械能守恒答案AD解析甲图过程中轻杆对小球不做功,只有重力做功,小球的机械能守恒,故A 正确;乙图过程中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,故B错误;丙图中重力和系统内弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A 的机械能不守恒,故C错误;丁图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,故D正确。
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述机械能守恒定律是解决物理问题的重要定律。
利用机械能守恒定律解题,只涉及一个物体的始末,不涉及物理过程,简化了力学问题的求解。
介绍了机械能守恒定律及其表达式和守恒条件,并通过实例分析讨论了机械能守恒定律应用中的重点和难点问题。
关键词:机械能守恒定律重力势能变力做功稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 1机械能守恒定律是力学中重要的物理定律之一,是高中物理的重点和难点。
在高考中占有相当大的比重。
如果我们能巧妙地应用机械能守恒定律,我们就能很容易地解决运动学中的许多问题。
因此,正确理解和灵活运用机械能守恒定律是十分必要的。
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 2机械能守恒定律的研究对象是一个或多个物体与地球组成的系统,重力和弹性是系统的内力。
守恒的条件是系统中只有重力或弹性做功,其他所有的力都不做功。
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 5可以从以下两个方面理解:第一,一个物体只受重力影响。
比如在各种抛体运动中不考虑空气阻力时,物体的机械能守恒。
第二,只有重力或弹性做功,其他外力不做功或做功的代数和为零,所以机械能守恒。
比如物体从光滑的斜坡上滑下时,受到重力和斜坡支撑力的作用,斜坡支撑力不做功,所以物体的机械能守恒。
判定是否能守恒的方法:(1)工作判断。
分析系统的受力情况。
如果系统中只有重力或弹力做功,虽然受到其他力的作用,但不做功,机械能守恒。
(2)能量转换。
如果系统中存在势能和动能的相互转换,而机械能和其他形式的能量之间没有转换,那么机械能就是守恒的。
(3)对于像绳子的瞬时张力,物体间的非弹性碰撞这样的东西,除非题目另有说明,否则其机械能不守恒。
稳定受迫振动机械能守恒问题——兼谈机械能守恒条件的表述 3应用机械能守恒定律解题,一般需要以下五个步骤。
(1)确定研究对象――物体或系统。
当只有重力做功时,可选取一个物体为研究对象;当物体间存在弹力做功时,则要选取这几个物体构成的系统为研究对象。
机械能守恒定律及其应用教案第一章:机械能守恒定律的引入1.1 教学目标让学生了解机械能的概念引导学生理解机械能守恒定律的定义使学生能够运用机械能守恒定律进行简单问题的计算1.2 教学内容机械能的定义及表示方法机械能守恒定律的表述机械能守恒定律的证明1.3 教学方法通过实例引入机械能的概念,引导学生思考机械能的变化通过实验演示机械能守恒的现象,让学生直观地理解机械能守恒定律利用数学方法证明机械能守恒定律,加深学生对定律的理解第二章:机械能守恒定律的应用2.1 教学目标使学生能够运用机械能守恒定律解决实际问题培养学生运用物理学知识解决工程问题的能力2.2 教学内容机械能守恒定律在简单运动中的应用机械能守恒定律在复杂运动中的应用2.3 教学方法通过实例分析,让学生学会运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,模拟复杂运动情况,帮助学生理解和应用机械能守恒定律第三章:机械能守恒定律在力学问题中的应用3.1 教学目标让学生掌握机械能守恒定律在力学问题中的应用方法培养学生解决力学问题的能力3.2 教学内容机械能守恒定律在直线运动中的应用机械能守恒定律在曲线运动中的应用3.3 教学方法通过典型例题,引导学生学会运用机械能守恒定律解决力学问题利用物理实验设备,进行力学实验,帮助学生理解和应用机械能守恒定律第四章:机械能守恒定律在工程问题中的应用4.1 教学目标使学生能够运用机械能守恒定律解决工程问题培养学生运用物理学知识解决实际问题的能力4.2 教学内容机械能守恒定律在机械设计中的应用机械能守恒定律在能源转换中的应用4.3 教学方法通过实际案例,让学生学会运用机械能守恒定律解决工程问题利用计算机软件,进行模拟计算,帮助学生理解和应用机械能守恒定律第五章:机械能守恒定律的综合应用5.1 教学目标让学生能够综合运用机械能守恒定律解决复杂问题培养学生解决实际问题的能力5.2 教学内容机械能守恒定律在不同情境下的综合应用5.3 教学方法通过综合案例,让学生学会综合运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,进行模拟实验,帮助学生理解和应用机械能守恒定律第六章:非保守力与机械能守恒6.1 教学目标让学生理解非保守力的概念引导学生掌握非保守力作用下机械能守恒的条件使学生能够分析并解决非保守力作用下的机械能守恒问题6.2 教学内容非保守力的定义与特点非保守力作用下机械能守恒的条件非保守力作用下的机械能守恒问题分析与计算6.3 教学方法通过实例讲解非保守力的概念及其对机械能守恒的影响利用数学方法分析非保守力作用下的机械能守恒条件通过实际问题引导学生运用机械能守恒定律解决非保守力作用下的物体运动问题第七章:机械能守恒定律在碰撞问题中的应用7.1 教学目标让学生掌握机械能守恒定律在碰撞问题中的应用培养学生分析并解决碰撞问题的能力7.2 教学内容碰撞问题的基本概念与分类机械能守恒定律在弹性碰撞中的应用机械能守恒定律在非弹性碰撞中的应用7.3 教学方法通过实例分析碰撞问题,引导学生理解并应用机械能守恒定律利用物理实验设备进行碰撞实验,帮助学生直观地理解碰撞现象结合数学方法与计算机软件,模拟碰撞过程,加深学生对机械能守恒定律在碰撞问题中的应用第八章:机械能守恒定律在地球物理学中的应用8.1 教学目标使学生了解机械能守恒定律在地球物理学中的应用培养学生运用物理学知识解决地球物理学问题的能力8.2 教学内容地球物理学中机械能守恒定律的应用实例机械能守恒定律在地球内部运动中的应用机械能守恒定律在地表运动中的应用8.3 教学方法通过地球物理学实例,让学生了解机械能守恒定律在地球物理学中的应用利用计算机软件与物理实验设备,模拟地球内部与地表运动,帮助学生理解并应用机械能守恒定律第九章:机械能守恒定律在现代科技中的应用9.1 教学目标让学生了解机械能守恒定律在现代科技领域的应用培养学生运用物理学知识解决实际问题的能力9.2 教学内容机械能守恒定律在航空航天领域的应用机械能守恒定律在新能源开发中的应用机械能守恒定律在其他现代科技领域的应用9.3 教学方法通过实例介绍机械能守恒定律在航空航天等领域的应用,引导学生了解并应用机械能守恒定律解决实际问题利用计算机软件与物理实验设备,模拟相关科技领域的运动过程,帮助学生理解并应用机械能守恒定律第十章:机械能守恒定律的综合练习与拓展10.1 教学目标让学生能够综合运用机械能守恒定律解决复杂问题培养学生解决实际问题的能力10.2 教学内容机械能守恒定律在不同情境下的综合应用练习机械能守恒定律在实际工程问题中的应用拓展10.3 教学方法通过综合练习题,让学生学会综合运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,进行模拟实验与计算,帮助学生理解和应用机械能守恒定律重点解析本文主要介绍了机械能守恒定律及其应用,分为十个章节。
易错点12 机械能守恒定律及其应用易错总结1.机械能守恒定律的成立条件不是合外力为零,而是除重力和系统内弹力外,其他力做功为零。
2.机械能守恒定律是对系统而言的,单个物体没有所谓的机械能守恒,正常所说的某物体的机械能守恒只是一种习惯说法,实际为该物体与地球间机械能守恒。
3.用机械能守恒定律列方程时始、末态的重力势能要选同一个零势能面。
4.虽然我们常用始、末态机械能相等列方程解题,但始、末态机械能相等与变化过程中机械能守恒含义不尽相同。
整个过程中机械能一直保持不变才叫机械能守恒,始、末态只是其中的两个时刻。
5.机械能守恒定律是能量转换与守恒定律的一个特例,当有除重力和系统内弹力以外的力对系统做功时,机械能不再守恒,但系统的总能量仍守恒。
6.能量守恒定律不需要限定条件,对所有过程都适用,但用来计算时须准确列出初态的总能量和末态的总能量。
7.若从守恒的角度到关系式,要选取恰当的参考面,确定初末状态的机械能。
8.若从转化的角度到关系式,要考虑动能和势能的变化量,与参考面无关。
9.用做功判断机械能守恒,只有重力做功或系统内弹力做功。
10.研究多个物体机械能守恒时,除能量关系外,请找速度关系,根据物体沿绳(杆)方向的分速度相等,建立两个连接体的速度关系式。
解题方法1.对机械能守恒条件的理解(1)只有重力做功,只发生动能和重力势能的相互转化.(2)只有弹力做功,只发生动能和弹性势能的相互转化.(3)只有重力和弹力做功,发生动能、弹性势能、重力势能的相互转化.(4)除受重力或弹力外,其他力也做功,但其他力做功的代数和为零.如物体在沿斜面的拉力F的作用下沿斜面运动,若已知拉力与摩擦力的大小相等,方向相反,在此运动过程中,其机械能守恒.2.判断机械能是否守恒的方法(1)利用机械能的定义直接判断:若动能和势能中,一种能变化,另一种能不变,则其机械能一定变化.(2)用做功判断:若物体或系统只有重力(或弹力)做功,虽受其他力,但其他力不做功,机械能守恒.(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.3.机械能守恒定律常用的三种表达式(1)从不同状态看:E k1+E p1=E k2+E p2(或E1=E2)此式表示系统两个状态的机械能总量相等.(2)从能的转化角度看:ΔE k=-ΔE p此式表示系统动能的增加(减少)量等于势能的减少(增加)量.(3)从能的转移角度看:ΔE A增=ΔE B减此式表示系统A部分机械能的增加量等于系统剩余部分,即B部分机械能的减少量.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2019·云南省玉溪第一中学)如图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态。
机械能守恒定律及其应用教案一、教学目标1. 让学生理解机械能守恒定律的概念及意义。
2. 培养学生运用机械能守恒定律解决实际问题的能力。
3. 引导学生掌握机械能守恒定律的实验方法和技巧。
二、教学内容1. 机械能守恒定律的定义及表达式。
2. 机械能守恒定律的应用实例。
3. 机械能守恒定律的实验操作步骤及注意事项。
三、教学过程1. 导入:通过分析生活中常见的机械能转化现象,引发学生对机械能守恒定律的思考。
2. 讲解:详细讲解机械能守恒定律的定义、表达式及适用条件。
3. 案例分析:分析多个机械能守恒定律的应用实例,让学生理解并掌握定律的应用方法。
4. 实验演示:进行机械能守恒定律的实验演示,让学生直观地观察到能量的转化过程。
5. 学生实验:分组进行机械能守恒定律的实验,培养学生动手操作能力和观察能力。
6. 总结:对本节课的内容进行总结,强调机械能守恒定律在实际生活中的应用。
四、教学评价1. 课堂问答:检查学生对机械能守恒定律的理解程度。
2. 实验报告:评估学生在实验中的操作技能和观察能力。
3. 课后作业:检验学生对机械能守恒定律的应用能力。
五、教学资源1. 课件:制作精美的课件,帮助学生直观地理解机械能守恒定律。
2. 实验器材:准备充足的实验器材,确保每个学生都能动手操作。
3. 参考资料:提供相关的参考资料,方便学生课后进一步学习。
教案编写:教案编辑专员六、教学重点与难点重点:1. 理解机械能守恒定律的定义和表达式。
2. 掌握机械能守恒定律的应用方法。
3. 熟悉机械能守恒定律的实验操作步骤。
难点:1. 判断系统中哪些能量是守恒的。
2. 处理复杂的机械能转化问题。
3. 在实验中准确测量和计算机械能的变化。
七、教学方法1. 讲授法:讲解机械能守恒定律的理论基础。
2. 案例分析法:通过具体实例展示机械能守恒定律的应用。
3. 实验教学法:通过实验演示和学生动手实验,加深对机械能守恒现象的理解。
4. 讨论法:鼓励学生在课堂上提问和讨论,提高解决问题的能力。
§3 机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v,也是相对于地面的速度。
(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
(3)“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
【例1】如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?3.解题步骤⑴确定研究对象和研究过程。
⑵判断机械能是否守恒。
⑶选定一种表达式,列式求解。
4.应用举例【例2】 如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?【例3】如图所示,均匀铁链长为L ,平放在距离地面高为L2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?二、机械能守恒定律的综合应用【例4】 质量为0.02 kg 的小球,用细线拴着吊在沿直线行驶着的汽车顶棚上,在汽车 距车站15 m 处开始刹车,在刹车过程中,拴球的细线与竖直方向夹角θ=37°保持不变,如图所示,汽车到车站恰好停住.求:(1)开始刹车时汽车的速度;(2)汽车在到站停住以后,拴小球细线的最大拉力。