奥数:1-2-3等差数列应用题
- 格式:doc
- 大小:726.00 KB
- 文档页数:8
1.3 简单的等差数列新知导航在加减法的混合计算中,存在一种情况:多个加数(或减数)按照固定的规律依次排列,并且这些数中任意两个相邻的数的差相同,这就是数学王国中最著名的故事“高斯求和”——等差数列求和。
一、等差数列的认识【基础过关】热身题:智慧老人觉得龟兔都是可造之才,所以邀请它们来到家里继续学习新的知识。
智慧老人给它们讲了数学王子高斯小时候的故事,随后在黑板上写下了这样的一个题:1+2+3+4+5+6+7+8+9+10的结果是多少?分析:观察发现:本题中的数按从小到大的顺序依次排列,可以使用首尾对应求和的方式变加法为乘法计算。
1+2+3+4+5+6+7+8+9+10=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)=11+11+11+11+11=11×5=55老师点睛当一组数字按照从小到大(或者从大到小)顺次排列且任意两个相邻的数的差相同,这组数被称之为“等差数列”。
若求这组等差数列的和,可以按照首尾对应相加的方式使用乘法计算。
二、等差数列的求和计算【综合提升】例题1:10+11+12+13+…+19分析:通过观察可得这是一组等差数列的求和计算,可以采用前面的首尾对应求和的方法。
10+11+12+13+…+19=(10+19)+(11+18)+…+(14+15)=29+29+29+…+29=29×(10÷2)=29×10÷2=290÷2=145老师点睛在连续自然数组成的等差数列求和计算中,可以将加法改为乘法计算:和=(第一个数+最后一个数)×数的个数÷2。
但首先要找到这组等差数列中数的个数,才能完成计算。
【巩固训练】(1)1+2+3+…+20(2)3+4+5+…+12(3)1+2+3+…+40(4)5+6+7+…+24例题2:3+6+9+…+60分析:通过观察可得:这组等差数列的数都是第一个数的倍数,因此在找数的个数时,可以借用倍数的特殊性。
小学奥数等差数列(新颖)
简介
本文档将介绍小学奥数中的等差数列,并提供一些新颖的思路和方法来解决相关问题。
等差数列的定义
等差数列是指一个数列中的任意两个相邻项之差相等的数列。
通常用字母a表示首项,d表示公差,n表示项数,第n项表示为an,等差数列的通项公式为:
an = a + (n - 1)d
求等差数列的和
常见的等差数列求和方法包括以下几种:
- 公式法:根据等差数列的求和公式,直接计算出和的值。
- 递归法:通过不断累加前面的项来求和。
- 等差数列性质法:利用等差数列的性质和规律,简化求和运算。
等差数列的特殊性质
等差数列具有一些特殊的性质,可以帮助我们更好地理解和解题:
- 首项和末项之和等于中间任意两项之和。
- 等差数列的前n项和等于首项与最后一项的和乘以项数的一半。
等差数列的应用举例
以下是一些新颖的等差数列应用示例:
1. 题目:某个等差数列的首项是3,公差是5,项数是10,请
问这个数列的前10项和是多少?
解析:根据等差数列求和公式,代入a=3,d=5,n=10,可以
得出该数列的和。
2. 题目:某个等差数列的前n项和是125,首项是2,公差是6,请问这个数列的项数是多少?
解析:利用等差数列的性质,可以得出项数n满足条件125 = (2 + an) * n / 2,通过简单的计算可以得到n的值。
总结
等差数列在小学奥数中是一个重要的概念,掌握等差数列的定义、求和方法和特殊性质,能够更好地解决相关问题。
该文档介绍了等差数列的基本知识和应用举例,希望对您有所帮助。
小学奥数教程:数列(一)全国通用(含答案)什么是数列?数列是按照一定的规律排列的一组数。
每个数在数列中被称为“项”,项的位置被称为“序号”。
数列的特点- 数列中的每个数都有一个确定的序号。
- 数列中的数之间存在着一定的规律,例如每个数都比前一个数大或小固定的数值。
- 数列中的规律可以用公式或递推式来表示。
数列的表示方法数列可以用不同的方式表示,常见的表示方法有:1. 列举法:直接将数列中的每个项写出来。
2. 递推法:通过规律得到前项和后项的关系,可以写出递推式。
3. 通项公式:通过找到数列中的某个规律,可以写出数列的通项公式,从而计算任意一项。
数列的常见类型1. 等差数列:数列中的每一项与前一项的差值相等。
2. 等比数列:数列中的每一项与前一项的比值相等。
3. 斐波那契数列:数列中的每一项都是前两项的和。
数列的练题1. 以下数列中,判断哪些是等差数列,哪些是等比数列?- 2, 4, 6, 8, 10- 3, 6, 12, 24, 48- 1, 3, 9, 27, 81答案:- 第一个数列是等差数列,公差为2。
- 第二个数列是等比数列,公比为2。
- 第三个数列既不是等差数列,也不是等比数列。
2. 求以下数列的通项公式:- 1, 5, 9, 13, 17答案:该数列是等差数列,公差为4。
通项公式为:$a_n = 1 + 4 \cdot (n-1)$,其中 $n$ 表示项的序号。
以上是关于数列的一些基础内容,希望能帮助你更好地理解和学习数列。
如果你还有其他问题,欢迎随时提问!。
等差数列应用题例题精讲【例 1】100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】100以内的自然数中是3的倍数的数有0,共33个,他们的和是3,6,9,99 ,则他们的平均数为1683÷34=49.5。
()09934179916832+⨯=⨯=【答案】49.5【例 2】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】平均每只猴分8个野果,所以最后一只猴摘了只果,共有15只猴.821=15⨯-【答案】只猴子15【例 3】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有(个);又因为从右边起学学报12,15105-=所以,学学的左边还有(个),(个)学学和思思中间排着5位同学.15123-=15645--=<考点> 排队问题【答案】位5【例 4】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】【解析】首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】(方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++ =2+10025=10325=2550⨯⨯()(方法二)根据,从这个和中减去的和,就12398991005050++++++= 1357...99+++++可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】【解析】也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第项首项公差,n =+1n ⨯-()所以,第102项;由“项数(末项首项)公差”,999所处的项数是:321021205=+⨯=(-)=-÷1+ 999321996214981499-÷+=÷+=+=()【答案】499【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
【例 1】 100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空 【关键词】希望杯,五年级,复赛,第3题,5分 【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。
【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴. 【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题 【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依例题精讲等差数列应用题次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550()⨯⨯(方法二)根据12398991005050+++++的++++++=,从这个和中减去1357 (99)和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n项=首项+公差(),⨯-n1所以,第102项321021205(-);由“项数=(末项-首项)÷公差1=+⨯=+”,999所处的项数是:()-÷+=÷+=+=999321996214981499【答案】499【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
等差数列像1,2,3,…,99,100这样的一串数我们称为“等差数列”,下面介绍有关等差数列的概念。
的概念。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后后项与前项之差后项与前项之差都相等的数称为等差数列,后项与前项之差一项称为末项。
从第一项开始,后项与前项之差都相等的数称为等差数列,称为公差,数列中数的个数称为项数。
称为公差,数列中数的个数称为项数。
等差数列的求和公式为:等差数列的求和公式为:数列和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差×(项数-1)[例1]计算1+2+3+ (1999)[例2]求首项是5,公差是3的等差数列的前1999项的和。
项的和。
[例3]计算3+7+11+ (99)[例4]计算(1)2000-3-6-9-…-51-54 (2)(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)[例5]2000×1999-1999×1998+1998×1997-1997×1996+…+4×3-3×2+2×1 [例6]在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?练习:1.计算:.计算:(1)1+2+3+…+76+77+78 (2)1+3+5+…+95+97+99 (3)2+6+10+14+…+202+206+210 (4)4+7+10+…+292+295+298 2.求首项是5,末项是93,公差是4的等差数列的和。
的等差数列的和。
3.求首项是13,公差是5的等差数列的前30项的和。
项的和。
4.计算:.计算:(1)4000-1-2-3-…-76-77-78 (2)560-557+554-551+…+500-497 (3)204-198+192-186+…+24-18+12-6 *5.计算:.计算:(1)(1+3+5+...+1999)-(2+4+6+ (1998)(2)1+2+3-4+5+6+7-8+9+10+11-12+…+25+26+27-28 6. 在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?是这个数列的第几项?7.一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有个座位,这个剧院共有 个座位。
第二节 等差数列【专题讲解】像(1)1,2,3,4,5,...(2)10,20,30,40,50,...(2)41, , ,1 , ,...这种从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d 表示。
在等差数列a 1,a 2,a 3,...a n 中,它的公差是d ,那么 a 2=a 1+da 3=a 2+d =(a 1+d )+d =a 1+2da 4=a 3+d =(a 1+2d )+d =a 1+3d......观察上述规律,我们不难发现下面的公式:a n =a 1+(n -1)d ,这就是等差数列的通项公式,我们可以用通项公式求出等差数列中任意一项。
例一求等差数列3,8,13,18,...的第38项和第69项。
2141143练习一1.求等差数列1,4,7,10,13,...的第20项和第80项。
2.超市工作人员在商品上依次编号,分别为4,8,12,16,...请问第34个商品上标注的是什么数字?第58个呢?3.商店中推行打包促销活动,每6个商品为一包。
第一包中每个商品的编号依次为3,6,9,12,15,18;第二包中商品编号依次为21,24,27,30,33,36。
以此类推,请问第20包的第3个商品编号为多少?例二36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习二1.仓库里有一叠被编上号的书,共40本。
已知每下面一本书都比上面一本书的编号多5,最后一本书的编号是225,问第一本书的编号是几?2.学校举办运动会,共54个人参加,每人都有参赛号码。
已知前一个人的号码比后一个人的号码总是少4,最后一个人的号码是215,第一个人的号码是多少?例三等差数列4,12,20,...中,580是第几项?练习三1.等差数列3,9,15,21,...中,381是第几项?2.糖果生产商为机器编号,依次为7,13,19,25,...问编号为433的机器是第几个?3.医院为病床编号,依次为8,14,20,26,...问编号为284的病床是第几张?例四一批货箱,上面的标号是按等差数列排列的,第一项是3.6,第五项是12,求它的第二项。
等差数列应用题目tM 怔 例题精讲【例1】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬 冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人? 【考点】等差数列应用题 【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17) £+1=20【答案】20【例2】 一个队列按照每排 2, 4, 6, 8人的顺序可以一直排到某一排有 100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例 1的学习可以知道,这个数列一共有50个数,再将和为102的两个数——配对,可配成 25对. 所以 2 4 696 98 100 = ( 2+100) 25=103 25= 2550(方法二)根据 1・2・3 . 98 99 10^5050,从这个和中减去 13 5 7 ... 99的和,就可得出此题的结果,这样从反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例3】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的•第一个雕塑有3只蝴蝶,第二个雕塑有 5只蝴蝶,第三个雕塑有 7只蝴蝶,第四个雕塑有 9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方, 学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式 一一第门项=首项+公差(n-1),所以,第102项=3+2(102-1) = 205;由 项数=(末项-首项尸公差十1”,999所处的项数是:(999—3)2+1 =996 斗 2 +1 =498+1 =499【答案】499【巩固】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根 ?【考点】等差数列应用题【难度】2星【题型】解答【解析】将每层圆木根数写出来,依次是:5, 6, 7, 8, 9, 10 ,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28•求的是第28项•我们可以用通项公式直接计算.解:a n =印(n — 1) d=5 (28 -1) 132(根)故最下面的一层有 32根.【答案】32【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多 4块砖,已知最下层 2106块砖,问中间一层多少块砖?这堆砖共有多少 块?【解析】项数=(2106-2)韶+1=527,因此,层数为奇数,中间项为(2+2106)吃=1054,数列和=中间项X项数=1054 >527=555458,所以中间一层有1054块砖,这堆砖共有555458块。
【例 1】 100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。
【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()例题精讲等差数列应用题(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是: 999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
等差数列三年级奥数题摘要:1.等差数列的概念和基本性质2.等差数列求和公式3.三年级奥数等差数列求和习题及答案4.提高等差数列求和题目的解题技巧正文:一、等差数列的概念和基本性质等差数列是指一个数列,其中每个相邻的元素之差相等。
等差数列的基本性质包括:1.等差数列中任意两个相邻元素的差值相等;2.等差数列中任意两个元素之差的值都是相同的;3.等差数列中元素的和与项数成正比。
二、等差数列求和公式等差数列求和公式是指将一个等差数列的所有元素相加得到的总和的计算公式。
等差数列求和公式为:S = n * (a1 + an) / 2其中,S 表示等差数列的和,n 表示等差数列的项数,a1 表示等差数列的第一个元素,an 表示等差数列的最后一个元素。
三、三年级奥数等差数列求和习题及答案1.习题:一个等差数列的前5 个元素分别为1, 3, 5, 7, 9,求这个等差数列的和。
答案:S = 5 * (1 + 9) / 2 = 252.习题:一个等差数列的前10 个元素分别为2, 4, 6, 8, 10, 12, 14, 16, 18, 20,求这个等差数列的和。
答案:S = 10 * (2 + 20) / 2 = 110四、提高等差数列求和题目的解题技巧1.观察题目中的已知条件,如元素个数、首项和末项等,确定等差数列的性质;2.利用等差数列求和公式,将已知条件代入公式计算;3.注意数列中可能出现的公差为0 的情况,此时等差数列的所有元素都相等,和为元素个数乘以任意一项。
通过以上提纲和正文内容,我们可以了解到等差数列的概念和基本性质,以及等差数列求和公式的应用。
同时,我们通过三年级奥数等差数列求和习题及答案,学会了如何利用等差数列求和公式解决实际问题。
小学奥数《等差数列公式》及其练习等差数列练习知识点1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项ΛΛ以此类推,最后一个数叫做这个数列的末项(我们将用n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。
如:2,4,6,8,Λ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用d 来表示),即:1122312----=-==-=-=n n n n a a a a a a a a d Λ例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么)练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差即:d n a a n ?-+=)1(1(2)项数公式:项数=(末项-首项)÷公差+1即:1)(1+÷-=d a a n n(3)求和公式:总和=(首项+末项)×项数÷2即:()21321÷?+=+++n a a a a a a n n Λ在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1:求等差数列3,5,7,Λ的第 10 项,第 100 项,并求出前100 项的和。
【解析】我们观察这个等差数列,可以知道首项1a =3,公差d=2,直接代入通项公式,即可求得21293)110(110=?+=?-+=d a a ,2012993)1100(1100=?+=?-+=d a a . 同样的,我们知道了首项3,末项201以及项数100,利用等差数列求和公式即可求和:3+5+7+Λ201=(3+201)?100÷2=10200.解:由已知首项 1a =3,公差d=2,所以由通项公式 d n a a n ?-+=)1(1,得到21293)110(110=?+=?-+=d a a2012993)1100(1100=?+=?-+=d a a 。
等差数列应用题例题精讲【例 1】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有位同学.【例 2】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【例 3】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【例 4】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【巩固】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【例 5】一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢?【例 6】一辆双层公共汽车有66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依此类推,第几站后,车上坐满乘客?【例 7】时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?【例 8】已知:13599101a=+++++,24698100b=+++++,则a、b两个数中,较大的数比较小的数大多少?【例 9】小明进行加法珠算练习,用1234++++,当加到某个数时,和是1000.在验算时发现重复加了一个数,这个数是多少?【例 10】编号为1~9的9个盒子里共放有351粒糖,已知每个盒子都比前一个盒子里多同样数量的糖.如果1号盒子里放11粒糖,那么后面的盒子比它前一个盒子里多放几粒糖?【巩固】例题中已知如果改为3号盒子里放了23粒糖呢?【例 11】小王和小高同时开始工作。
三年级奥数题及参考答案:等差数列基础练习编者导语:数学竞赛题代表了活的数学。
解竞赛题虽离不开一般的思维规律,离不开数学知识,也有一些使用频率较大的方法和技巧,但大都没有常规模式可套,也无万能范本可循。
且赛题内容不断更新,重要的是整体全局上的洞察力、敏锐的直觉和独创性的构思。
查字典数学网为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:等差数列基础练习,可以帮助到你们,助您快速通往高分之路!!1、一个递增(后项比前项大)的等差数列,第28项比第53项(多或少)个公差。
2、一个递增(后项比前项大)的等差数列,第53 项比第28 项(多或少)个公差。
3、一个递增(后项比前项大)的等差数列,第55 项比第37 项(多或少)个公差。
4、一个递增(后项比前项大)的等差数列,第55 项比第83 项(多或少)个公差。
5、一个递增(后项比前项大)的等差数列,第28项比第73项(多或少)个公差。
6、一个递增(后项比前项大)的等差数列,第90项比第73项(多或少)个公差。
7、一个递增(后项比前项大)的等差数列,首项比第73 项(多或少)个公差。
8、一个递增(后项比前项大)的等差数列,第87 项比首项(多或少)个公差。
9、一个递减(后项比前项小)的等差数列,第18项比第32 项(多或少)个公差。
10、一个递减(后项比前项小)的等差数列,第32项比第 18 项(多或少)个公差。
11、一个递减(后项比前项小)的等差数列,第74项比第26项(多或少)个公差。
12、一个递减(后项比前项小)的等差数列,第74项比第91 项(多或少)个公差。
13、一个递减(后项比前项小)的等差数列,第29项比第 86 项(多或少)个公差。
14、一个递减(后项比前项小)的等差数列,第123 项比第86项(多或少)个公差。
15、一个递减(后项比前项小)的等差数列,首项比第76 项(多或少)个公差。
16、一个递减(后项比前项小)的等差数列,第76项比首项(多或少)个公差。
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
等差数列应用题例题精讲【例 1】100以内的自然数中。
所有是3的倍数的数的平均数是。
【例 2】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【例 3】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有位同学.【例 4】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问:这列数中的第9个是多少?【例 8】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【例 9】一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢? 【例 10】有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?【例 11】某年4月所有星期六的日期数之和是54,这年4月的第一个星期六的日期数是。
【例 1】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 2】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 3】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是: 999321996214981499-÷+=÷+=+=()【答案】499【巩固】 有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 将每层圆木根数写出来,依次是:5,6,7,8,9,10,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.解: 1(1)n a a n d =+-⨯5(281)1=+-⨯32=(根)故最下面的一层有32根.【答案】32【巩固】 建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?例题精讲等差数列应用题【考点】等差数列应用题【难度】2星【题型】解答【解析】项数=(2106-2)÷4+1=527,因此,层数为奇数,中间项为(2+2106)÷2=1054,数列和=中间项×项数=1054×527=555458,所以中间一层有1054块砖,这堆砖共有555458块。
【答案】555458【例 4】一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【考点】等差数列应用题【难度】3星【题型】解答【解析】(方法一)不难发现,这堆钢管每一层都比上一层多1根,也就是从上到下每层钢管的数量构成了一个等差数列,而且首项为3,末项为10,项数为8.由等差数列求和公式可以求出这堆钢管的总数量:3108252()(根)+⨯÷=(方法二)我们可以这样假想:通过对几何图形进行旋转,从而达到配对的目的是解决问题的关键(如图)这个槽内的钢管共有8层,每层都有31013()+⨯=+=(根),所以槽内钢管的总数为:3108104(根).取它的一半,可知例题图中的钢管总数为:104252÷=(根)【答案】52【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【考点】等差数列应用题【难度】2星【题型】解答【解析】第一排座位数:702(201)32+⨯÷=(个).-⨯-=(个),一共有座位:(3270)2021020【答案】1020【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】如果我们把每排的座位数依次记下来,10、12、14、16、… 容易知道,是一个等差数列.210是第2101021101()排,那么中间一排有:+÷=()排,中间一排就是第1011251n=-÷+=⨯=()(个)座位.根据刚刚学过的中项定理,这个剧场一共有:11010111110+-⨯=105112110(块).【答案】11110【例 5】一辆双层公共汽车有66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依此类推,第几站后,车上坐满乘客?【考点】等差数列应用题【难度】2星【题型】解答【解析】通过尝试可得:1231111111266++++=+⨯÷=(),即第11站后,车上坐满乘客.记住自然数1~10的和对于解一些应用题很有帮助,需要尝试求解时能够较快找到大概的数.【答案】11【例 6】时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?【考点】等差数列应用题【难度】3星【题型】解答【解析】时钟每个白天敲打的次数是每个整点敲打次数的和加上12个半点敲打的一下,即:()((下),+++++=+⨯÷+=+=1231212112)12212781290所以一昼夜时钟一共敲打:902180⨯=(下).【答案】180【例 7】已知:13599101b=+++++,则a、b两个数中,较大的数比a=+++++,24698100较小的数大多少?【考点】等差数列应用题【难度】3星【题型】解答【解析】(方法一)计算:11015122601b=+⨯÷=(),所以a比b大,大a=+⨯÷=(),21005022550-=.2601255051(方法二)通过观察,a中的加数从第二个数起依次比b中的加数大1,所以a比b大,()()()()-=+-+-++-+-=a b13254999810110051【答案】51【例 8】小明进行加法珠算练习,用1234++++,当加到某个数时,和是1000.在验算时发现重复加了一个数,这个数是多少?【考点】等差数列应用题【难度】2星【题型】解答【关键词】第十一届,迎春杯【解析】通过尝试可以得到12344144442990().于是,重复计算的数是++++=+⨯÷=-=.100099010【答案】10【例 9】编号为1~9的9个盒子里共放有351粒糖,已知每个盒子都比前一个盒子里多同样数量的糖.如果1号盒子里放11粒糖,那么后面的盒子比它前一个盒子里多放几粒糖?【考点】等差数列应用题【难度】3星【题型】解答【解析】根据题意,灵活运用有关等差数列的求和公式进行分析与解答.由等差数列求和公式“和=(首项+末项⨯)项数2⨯÷项数-首项.÷”,可得:末项=和2则第9个盒子中糖果的粒数为:351291167⨯÷-=(粒)题目所求即公差6711915687()()(粒),则后面盒子比前一个盒子多放7粒糖.=-÷-=÷=【答案】7【巩固】例题中已知如果改为3号盒子里放了23粒糖呢?【考点】等差数列应用题【难度】3星【题型】解答【解析】等差数列有个规律:首项+末项=第2项+倒数第2项=第3项+倒数第3项=,所以我们可以得到等差数列求和公式的一个变形,假设等差数列有n项,则和=(第a项+第1n a-+项()个盒子中糖果的粒数为:351292355⨯÷-=(粒)-+)2÷,则倒数第3个盒子即第931⨯n题目所求即公差5523733248()()(粒),则后面盒子比前一个盒子多放8粒糖.=-÷-=÷=【答案】8【例 10】小王和小高同时开始工作。
小王第一个月得到1000元工资,以后每月多得60元;小高第一个月得到500元工资,以后每月多得45元。
两人工作一年后,所得的工资总数相差多少元?【考点】等差数列应用题【难度】3星【题型】解答【解析】小王:1000+60×(12-1)=1660,(1000+1660)×12÷2=15960小高:500+45×(12-1)=995,(500+995)×12÷2=8970,15960-8970=6990即一年后两人所得工资总数相差6990元。
【答案】6990【巩固】王芳大学毕业找工作。
她找了两家公司,都要求签工作五年的合同,年薪开始都是一万元,但两个公司加薪的方式不同。
甲公司承诺每年加薪1000元,乙公司答应每半年加薪300元。
以五年计算,王芳应聘公司工作收入更高。
【考点】等差数列应用题【难度】3星【题型】解答【关键词】2007年,第5届,走美杯,3年级,决赛【解析】甲公司五年之内王芳得到的收入为:100001100012000130001400060000++++=(元).乙公司五年之内王芳得到的收入为:1000053006009001200300950000300⨯++++++⨯=+⨯=(元).所以,王芳应聘乙公司工作收入更高.4563500【答案】63500【例 11】 在一次数学竞赛中,获得一等奖的八名同学的分数恰好构成等差数列,总分为656,且第一名的分数超过了90分(满分为100分)。
已知同学们的分数都是整数,那么第三名的分数是多少?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 他们的平均分为656÷8=8282+1、82+2、82+3……都有可能成为第四名,相对应的,公差分别为1×2=2、2×2=4、3×2=6…… 若第四名为82+1=83分,则第一名为83+(4-1)×2=89分,不符合题意,舍;若第四名为82+2=84分,则第一名为84+(4-1)×4=96分,不符合题意;若第四名为82+3=85分,则第一名为85+(4-1)×6=103分,不符合题意。