地图投影与GIS
- 格式:ppt
- 大小:159.00 KB
- 文档页数:29
地图投影应用的是什么原理1. 地图投影的背景在地理信息系统(GIS)领域中,地图投影是将地球表面上的曲面投影到平面上的过程。
由于地球是一个球体,为了将其表面展示在平面上,需要进行地图投影。
地图投影的原理是通过将地球三维表面的经纬度坐标映射到二维平面上的坐标系统,以便能够准确表示地球上各个地点的位置和空间关系。
2. 地球的形状与地图投影地球是一个近似于椭球体的球体,其形状并非完全规则。
在进行地图投影时,需要选择某种基准椭球体或基准球体作为参考。
常用的基准椭球体有WGS84、GRS80等。
利用这些基准椭球体,可以确定地球的大致形状和大小,并进行地图投影的计算。
3. 地图投影的分类根据地球表面的特性和投影需求的不同,地图投影可以分为以下几种类型:3.1 地心投影地心投影是将地球表面投影到球面上的一种投影方式。
通过将地球表面上的点映射到球体上,再将球体展开为平面,得到地图的投影。
地心投影常用于全球范围的地图制作,如国际上广泛使用的Mercator投影。
3.2 柱面投影柱面投影是指将地球表面投影到一个柱体上,再将柱面展开为平面的一种投影方式。
柱面投影的特点是纬线和经线都是直线,保持了地图上的形状,但是有些地方存在面积的形变。
柱面投影通常用于中纬度地区的地图制作,如UTM投影。
3.3 锥面投影锥面投影是将地球表面投影到一个锥体上,再将锥面展开为平面的一种投影方式。
锥面投影在某个特定的纬线上会有最小的形变,但是远离该纬线的地方形变会增大。
锥面投影常用于纬度范围较大的地图制作,如Lambert投影。
3.4 平面投影平面投影是指将地球表面投影到一个平面上的一种投影方式。
平面投影在局部地图制作中较为常见,如城市地图、航空地图等。
在平面投影中,地球表面上的点到平面上的距离和角度会产生较大的变化,所以平面投影的适用范围较小。
4. 地图投影的应用地图投影在现代社会中具有广泛的应用。
以下列举几个常见的应用领域:4.1 地图制作与导航地图投影是创建地图的基础,通过地图投影可以将地球上的各个地理要素准确地绘制在地图上,帮助人们了解地理空间关系,从而进行导航、规划路线等操作。
测绘工程技术专业地理信息系统(GIS)学习指南一、引言地理信息系统(Geographic Information System,简称GIS)是一种用来存储、管理、分析和展示地理空间数据的技术。
在测绘工程技术专业中,GIS已经成为不可或缺的工具。
本文将为测绘工程技术专业的学生提供一个学习指南,来帮助他们更好地掌握GIS技术。
二、GIS的概述GIS是一种将地理空间数据与非地理属性数据相结合的信息系统。
它可以用来处理和分析地理空间数据,同时还可以进行数据的可视化呈现。
GIS主要包括数据输入、数据管理、数据分析和数据输出等基本功能。
三、GIS的基础知识1. 地图投影:地图投影是将地球上的三维地理信息转化为二维平面地图的过程。
学习GIS的同学需要了解不同的地图投影方法以及投影的应用场景。
2. 坐标系统:坐标系统是GIS中用来表示地理空间位置的方法。
学习GIS的同学需要了解不同的坐标系统,包括经纬度坐标和投影坐标系统。
3. 空间数据类型:GIS中的空间数据有点、线、面等不同类型。
学习GIS的同学需要了解不同的空间数据类型及其在地理信息系统中的应用。
4. 数据获取与处理:学习GIS的同学需要学会获取地理空间数据,并对数据进行处理和清理,以保证数据的准确性和完整性。
四、GIS的应用领域GIS在许多领域都有广泛的应用。
以下是GIS在测绘工程技术专业中的几个重要应用领域:1. 地图制图:GIS可以用来制作各种类型的地图,包括道路地图、土地利用地图和地形图等。
学习GIS的同学需要具备地图制作和编辑的能力。
2. 空间分析:GIS可以进行空间分析,帮助分析空间数据之间的关系,并提供决策支持。
学习GIS的同学需要学会使用GIS软件进行空间数据的分析和建模。
3. 土地规划:GIS可以用来进行土地规划和土地管理。
通过GIS,可以对土地资源进行有效的管理和利用。
4. 环境保护:GIS可以用来进行环境监测和环境评估。
通过GIS,可以对环境污染和自然资源的变化进行监测和分析。
GIS中坐标系统的理解理解坐标系统关键要明确两个概念:Geographic coordinate system和Projected coordinate system。
1. 首先理解Geographic coordinate systemGeographic coordinate system为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate system是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,要将数据信息以科学的方法存放到椭球上,这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位.在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954 (表示大地基准面是D_Beijing_1954.)有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用.下面是地理坐标系统的完整参数:Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_Beijing_1954Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.3000000000000100002. 接下来是Projection coordinate systemProjection coordinate system即投影坐标系统,首先看看投影坐标系统中的一些参数.Projection: Gauss_KrugerParameters:False_Easting: 500000.000000False_Northing: 0.000000Central_Meridian: 117.000000Scale_Factor: 1.000000Latitude_Of_Origin: 0.000000Linear Unit: Meter (1.000000)Geographic Coordinate System:Name: GCS_Beijing_1954Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_Beijing_1954Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。
GIS常见的基本算法GIS(地理信息系统)领域中使用的基本算法非常多样化,可以分为数据处理算法、空间分析算法和地理可视化算法等方面。
以下是一些常见的基本算法:1.地图投影算法:地图投影是将地球表面上的经纬度坐标映射到平面坐标系上的过程。
常见的地图投影算法包括经纬度转换为平面坐标的算法,如墨卡托投影、等距圆柱投影、兰勃托投影等。
2.空间索引算法:空间索引算法是对空间数据进行高效存储和检索的关键。
常见的空间索引算法包括四叉树、R树、k-d树等。
这些算法能够将空间数据分割成多个子区域,并建立索引结构,以便在查询时快速定位目标数据。
3.空间插值算法:空间插值算法用于在已知或有限的观测点上估算未知点的值。
常见的空间插值算法包括反距离加权插值(IDW)、克里金插值和径向基函数插值等。
4.空间分析算法:空间分析算法用于研究地理现象之间的空间关系。
常见的空间分析算法包括缓冲区分析、空间叠置分析、网络分析、空间聚类分析等。
5.地图匹配算法:地图匹配是将实际观测点与地理信息数据库中的地理对象进行匹配的过程。
常见的地图匹配算法包括最短路径算法、马尔可夫链算法、HMM(隐马尔可夫模型)等。
6.空间平滑算法:空间平滑算法用于消除地理数据中的噪声和不规则性。
常见的空间平滑算法包括高斯滤波、均值滤波、中值滤波等。
7.空间插值算法:空间插值算法用于对连续型地理现象进行预测和估计。
常见的空间插值算法包括反距离加权插值(IDW)、克里金插值和径向基函数插值等。
8.地理网络算法:地理网络算法用于在地理网络上找到最短路径、最小生成树等。
常见的地理网络算法包括迪杰斯特拉算法、弗洛伊德算法等。
9.地理可视化算法:地理可视化算法用于将地理信息以可视化的形式展现出来。
常见的地理可视化算法包括等值线绘制算法、色彩映射算法、3D可视化算法等。
10.遥感图像分类算法:遥感图像分类是将遥感图像中的像素分配到不同的类别中的过程。
常见的遥感图像分类算法包括最大似然分类、支持向量机(SVM)分类、随机森林分类等。
如何进行地图投影的变换与配准地图投影的变换与配准是地理信息系统(GIS)中一个重要的环节。
地球是一个三维的球体,而我们的地图是平面的二维表示,因此需要将地球的曲面投影到平面上,以便于我们更好地理解和分析地理信息。
本文将探讨如何进行地图投影的变换与配准,以及其在GIS中的应用。
一、地图投影的基本原理地理表面的投影是将地球上的点和区域映射到平面上去,以便于呈现和分析。
在投影的过程中,我们需要选择合适的投影方法和参数,以保证地图的准确性和可视性。
1. 大地测量学与投影大地测量学是测量地球形状、尺寸和重力场的学科,它提供了地图投影的基础。
投影的目标是将地球表面的点映射到平面上,这需要选择适当的地理坐标系统和投影方法。
2. 坐标系统地理坐标系统是用于确定位置的标准,它由水平和垂直坐标组成。
水平坐标通常使用经度和纬度来表示,而垂直坐标则表示高程。
3. 投影方法地图投影的方法有很多种,常用的有等角、等积和等距投影等。
每种方法都有其适用的情况和缺点,选择合适的投影方法是确保地图准确性的关键。
二、地图投影的变换与配准地图投影的变换与配准是将不同投影坐标系统的地图进行转换和对齐的过程。
在GIS中,常常需要将不同尺度、不同投影和不同时间的地图配准在一起,以获得一致性的地理信息。
1. 变换地图投影的变换是将一个投影坐标系统转换为另一个投影坐标系统的过程。
变换通常涉及到坐标的缩放、旋转和平移等操作,以保证地图的几何特征一致。
2. 配准地图配准是将不同地图的空间参考对齐的过程。
在配准过程中,需要确定共同的地物特征或控制点,并通过地物匹配或空间变换的方式来实现对其的调整和对齐。
三、地图投影的应用地图投影在GIS中有着广泛的应用,它不仅仅是为了美化地图,更是提供准确地理信息的基础。
1. 地图显示与可视化地图投影可以改变地图的外观和形状,使得地理信息更加直观和可视化。
选择合适的投影方法和参数对于地图的可读性和信息表达至关重要。
2. 空间分析与决策支持地图投影的变换与配准为GIS的空间分析和决策支持提供了基础。
地理信息系统原理第九版第三章课后答案第3章GIS的地理数学基础1、什么是地图投影,它与GIS的关系如何?答:将地球面上的点投影到平面上,而使其误差最小的各种投影方法称为地图投影。
其实质就是建立地球椭球面上的点的坐标(φ,λ)与平面上对应的坐标(x,y)之间的函数关系。
地图投影对GIS有较大的影响,其影响是渗透在地理信息系统建设的各个方面的,如数据输入,其数据包括地图投影数据;数据处理,需要对投影进行变换;数据应用中的检索、空间分析依据数据库投影数据;输出应有相应投影的地图。
2、地图投影的变形包括哪些?答:地图投影的变形,通常可分为长度、面积和角度三种变形,其中长度变形是其它变形的基础。
3、地图投影的分类方法有几种?它们是如何进行分类的?答:地图投影的分类方法很多,总的来说,基本上可以依外在的特征和内在的性质进行分类。
(1)根据地图投影的变形(内蕴的特征)分类根据地图投影中可能引入的变形的性质,可以分为等角、等面积和任意(其中包括等距离)投影。
(2)根据投影面与地球表面的相关位置分类根据投影面与地球表面的相对位置将投影区分为正轴投影(极点在两地极上,或投影面的中心线与地轴一致)、横轴投影(极点在赤道上,或投影面的中心线与地轴垂直)及斜轴投影(极点既不在两地极上又不在赤道上,或投影面的中心线与地轴斜交)。
4、我国地理信息系统中为什么要采用高斯-克吕格投影和正轴等角圆锥投影?答:是因为:(1)我国基本比例尺地形图(1∶5千,1∶1万,1∶2.5万,1∶5万,1∶10万,1∶25万,1∶50万和1∶100万)中大于等于1∶50万的图均采用高斯—克吕格投影为地理数学基础;(2)我国1∶100万地形图采用正轴等角割圆锥投影,其分幅与国际百万分之一所采用的分幅一致;(3)我国大部分省区图多采用正轴等角割圆锥投影和属于同一投影系统的正轴等面积割圆锥投影;(4)正轴等角圆锥投影中,地球表面上两点间的最短距离(即大圆航线)表现为近于直线,这有利于地理信息系统中空间分析和信息量度的正确实施。
地理信息系统教程第一章绪论1.信息系统:能对数据和信息进行采集、存储、加工和再现,并能回答用户一系列问题的系统。
具有采集、管理、分析和表达数据的能力。
2.地理信息系统:GIS是由计算机硬件、软件和不同的方法组成的系统,该系统设计用来支持空间数据的采集、管理、处理、分析、建模和显示,以便解决复杂的规划和管理问题3.GIS与IS之间的区别:GIS是空间数据和属性数据的联合体。
4.GIS系统五个基本组成部分:⑴硬件系统,各种设备-物质基础;⑵软件系统,支持数据采集、存储、加工、回答用户问题的计算机程序系统;⑶数据,系统分析与处理的对象、构成系统的应用基础;⑷应用人员,GIS服务的对象,分为一般用户和从事建立、维护、管理和更新的高级用户;⑸应用模型,解决某一专门应用的应用模型,是GIS技术产生社会经济效益的关键所在5.地理信息系统基本功能:⑴数据采集与编辑;⑵数据存储与管理;⑶数据处理和变换;⑷空间分析和统计;⑸产品制作与显示;⑹二次开发和编程6.地理信息系统应用功能:资源管理;区域规划;国土监测;辅助决策第二章地理信息系统的空间数据结构和数据库1.地理实体:指自然界现象和社会经济事件中不能再分割的单元,它是一个具有概括性,复杂性,相对性的概念。
2.地理实体的特征:⑴属性特征——用以描述事物或现象的特性;⑵空间特征——用以描述事物或现象的地理位置以及空间相互关系;⑶时间特征——用以描述事物或现象随时间的变化3.地理实体数据的类型:⑴属性数据——描述空间对象的属性特征的数据;⑵几何数据——描述空间对象的空间特征的数据;⑶关系数据——描述空间对象之间的空间关系的数据4.点:有特定位置;线:具有相同属性的点的轨迹,由一系列的有序坐标表示;面:对湖泊、岛屿、地块等一类现象的描述。
由封闭曲线加内点来表示;体:用于描述三维空间中的现象与物体,它具有长度、宽度及高度等属性5.空间数据结构:是指空间数据适合于计算机存储、管理、处理的逻辑结构,也就是指空间数据以什么形式在计算机中存储和处理。
地图投影技术的使用指南随着社会的发展和科技的进步,地理信息系统(GIS)在各个领域得到了广泛的应用。
而地图投影技术作为GIS中的一项重要技术,对于地理数据的表达和呈现起到了至关重要的作用。
本文将为读者介绍地图投影技术的基本概念、分类以及在实际应用中的一些指导原则。
一、地图投影技术概述地图投影技术是将三维的地球表面投影到二维的地图上的过程。
由于地球的表面是一个不规则的椭球体,无法完全展示在一个平面上,因此就需要使用地图投影技术来解决这个问题。
地图投影产生的图像通常是平面、圆柱或锥面的,这些图像被称为地图投影。
二、地图投影的分类地图投影根据投影面的不同可以分为圆柱投影、圆锥投影和平面投影。
1. 圆柱投影圆柱投影是将地球的表面投影到一个圆柱面上,然后再将圆柱面展开为一个平面。
依据圆柱面与地球相交的位置,圆柱投影可分为正轴等积圆柱投影、割线等积圆柱投影、正轴等角圆柱投影等。
圆柱投影最常用的是墨卡托投影,它是一种等积圆柱投影,经度线和纬度线呈直角交叉。
2. 圆锥投影圆锥投影是将地球的表面投影到一个圆锥面上,然后再将圆锥面展开为一个平面。
依据圆锥面与地球相交的位置,圆锥投影可分为正轴等积圆锥投影、割线等积圆锥投影、正轴等角圆锥投影等。
兰勃特等积圆锥投影是其中最经典的一种,它在纬线方向上保持了等距离。
3. 平面投影平面投影是将地球的表面投影到一个平面上,可以简单理解为将地球展开成一个平面地图。
平面投影可以根据投影中心的不同分为正专门投影、斜轴直角投影、斜轴等角投影等。
等距平面投影是一种常用的平面投影,它在某一方向上保持了等距离。
三、地图投影的选择原则1. 根据需求选择最合适的投影不同的地图投影适用于不同的实际应用场景。
在选择地图投影时,需要根据具体的需求,比如需要保持面积的相对大小关系、需要保持角度的相对大小关系或者需要保持比例尺的一致,来选择最合适的投影。
2. 考虑区域的位置和大小地球是一个不规则的椭球体,不同的地区在地球上的位置和大小有所不同。