第10章_热力学第一定律
- 格式:ppt
- 大小:928.50 KB
- 文档页数:42
第二章 热力学第一定律 一、基本概念1. 系统与环境;状态与状态函数;过程与途径2. PVT 、相变化及化学变化独特的基本概念(略)3. 状态函数:内能、焓 →(H=U+pV )4. 途径函数:功、热★热——恒容热:Q V =ΔU →适用条件:封闭系统、恒容过程、W ’=0; 恒压热:Q p =ΔH →适用条件:封闭系统、恒压过程、W ’=0。
★功——W =-∫p amb d V :真空膨胀过程W =0 恒容过程W =0恒压过程W =-p ΔV ; 恒外压过程:W =-p amb ΔV5. pVT 变化基础热数据热容:C→C p , C V →C p,m ,C V ,m (理想气体的C p,m -C V ,m =R )6. 可逆相变化基础热数据摩尔相变焓:(),m p m p H T C βα∂∆=∆; ΔC p,m =C p,m (β)-C p,m (α) 7. 化学变化基础热数据:θθr m B f m B Δ(B)H H ν∆∑=; θθr m B c m BΔ(B)H H ν∆∑=-二、热力学第一定律:ΔU =Q + W 三、基本过程热数据计算 1. 理想气体pVT 变化过程恒容过程:W =0;,;V V m Q U nC T =∆=∆ ΔH=nC p,m ΔT恒压过程:,;P p m Q H nC T =∆=∆ ΔU=nC V ,m ΔT ;(W =ΔU — Q = — p ΔV ) 恒温可逆过程:ΔU=ΔH=0;—Q= W (可逆)=—nR T ln(V 2/V 1)=nR T ln(p 2/p 1) 恒温恒外压过程:ΔU=ΔH=0;—Q= W (不可逆)=—p amb ΔV绝热可逆过程:过程方程式(重要,自行总结,);Q=0;W =ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT绝热恒外压过程:Q=0;W =—p amb ΔV=ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT 节流膨胀:自行总结2. 相变化过程: 可逆相变(平衡温度及其平衡压力下的相变化过程):凝聚相相变化:W=0;ΔU =Q p =ΔH =m n H βα∆含气相相变化:Q p =ΔH = m n H βα∆;W =-p ΔV=-p (V 末-V 始);ΔU =Q p + W不可逆相变:状态函数法设计途径。
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =—p ΔV =-Δ(pV ),ΔU = Q —Δ(pV ) → ΔH = Q p 恒容+绝热(W '=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV )典型例题:3.11思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温:或或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等. C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:3。
18思考题第2,3,4题书2。
18、2.19三、 凝聚态物质的ΔU 和ΔH 只和温度有关或 典型例题:书2.15四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)U ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
101.325 kPa 及其对应温度下的相变可以查表。
ΔU = n C V , m d T T 2T 1∫ ΔH = n C p, md T T 2 T1∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = nC p, m d T T 2T 1∫ΔU ≈ ΔH = nC p, m (T 2-T 1)ΔH = Q p = n Δ H m αβ其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m计算。
第十章热力学定律10.1 功和内能1. 焦耳的实验(1)两个具有代表性的实验:①重物下落带动叶片搅拌容器中的水,引起水温上升。
②正在降落的重物使发电机发电,通过电流的热效应给水加热。
(2)实验结论:在各种不同的绝热过程中,如果使系统从状态1 变为状态2,所需外界做功的数量是相同的。
也就是说,要使系统状态通过绝热过程发生变化,做功的数量只由过程始末两个状态1、2 决定,而与做功的方式无关。
(3)绝热过程:系统只由于外界对它做功而与外界交换能量,它不从外界吸热,也不向外界放热,这样的过程叫做绝热过程。
2. 内能(1)定义:任何一个热力学系统都必定存在一个只依赖于系统自身状态的物理量,这个物理量在两个状态间的差别与外界在绝热过程中对系统所做的功相联系。
鉴于功是能量变化的量度,所以这个物理量必定是系统的一种能量,我们把它称为系统的内能。
(2)定义式:当系统从状态1经过绝热过程达到状态2时,内能的增加量ΔU=U2-U1就等于外界对系统所做的功W,即ΔU=W①当外界对系统做功,系统的内能增加,在绝热过程中,内能的增量就等于外界对系统做的功。
②当系统对外界做功,系统的内能减少。
在绝热过程中,系统对外界做多少功,内能就减少多少。
(3)内能微观定义:系统中所有分子热运动的动能和分子间的相互作用势能的总和叫做系统的内能。
系统的内能是由它的状态决定的。
10.2 热和内能1. 热传递(1)定义:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,我们说,热量从高温物体传到了低温物体。
这样的过程叫做热传递。
(2)热传递有三种方式:热传导、热对流和热辐射,如图所示。
(3)热传递的条件:①两个物体②存在温度差2. 热和内能(1)在外界对系统没有做功的情况下,热量是在单纯的传热过程中系统内能变化的量度。
吸收热量内能增加,放出热量内能减少。
当系统从状态1经过单纯的传热达到状态2,内能的增量ΔU=U2-U1就等于外界向系统传递的热量Q,即ΔU=Q(2)热量的概念也只有在涉及能量的传递时才有意义。
第1章热力学第一定律1.1 重要概念1.状态函数与过程量这是两类完全不同的物理量。
状态函数是系统的性质,如温度(T),压力(p),体积(V),内能(U),焓(H)和定压热容(C V)等,而过程量是指功(W)和热(Q),它们是过程的属性。
状态函数与过程量主要区别如下:(1)状态函数决定于系统的状态,而过程量取决于过程。
所以状态函数用来描述系统状态,而过程量用于描述过程。
(2)当系统中发生变化时,状态函数的变化只取决于系统的初末状态,而与变化的具体方式(过程)无关。
因而在计算状态函数变化时,若给定过程不能或不易求得,可通过设计途径进行计算,与此相反,过程量则不可以设计途径进行计算,因为对于不同途径,它们的值可能不同。
过程量,即功和热是在系统和环境之间的两种能量传递方式,在系统内部不能讨论功和热。
可见在计算W和Q时,首先要明确系统是什么,其次要搞清过程的特点。
(3)若y代表某个状态函数,任意一个过程的状态函数变为∆Y,功和热为W和Q。
假设该过程在相反方向进行时上述各量分别为∆Y逆、W逆和Q逆,则必有∆ Y=一∆Y逆一般W ≠一W逆Q≠一Q逆2.等温过程环境温度恒定不变的情况下,系统初态和末态温度相同且等于环境温度的过程,即T l=T2=T环=常数所谓等温过程,是指上式中三个等号同时成立的过程。
有人认为等温过程是系统温度始终不变的过程,这是一种误解。
诚然,在某一过程中如果系统温度始终不变,则过程必是等温过程,因为该过程服从上式。
但这并非等温过程的全部,只不过是等温过程的一种特殊情况。
3.等压过程外压(即环境压力)恒定不变的情况下,系统初态和末态的压力相同且等于外压的过程,即p1=p2=p外=常数所谓等压过程,是指式中三个等号同时成立的过程。
有人把等压过程说成是系统压力始终不变的过程,这是一种不全面的理解,因为这只是等压过程的一种特殊情况。
在热力学中会遇到p1=p2的过程,称为初末态压力相等的过程,还会遇到p外=常数的过程,称为恒外压过程,但它们都不是等压过程。