超长结构楼板温度应力分析
- 格式:pdf
- 大小:3.00 MB
- 文档页数:6
本项目位于沈阳市沈北新区,占地为34880m 2的住宅小区,采用异形柱框架-剪力墙结构,地上6层,无地下室,层高均为2.9m,其中3#、5#、8#、9#楼长度均超规范规定的50m 限值,以3#为例分析超长带来的温度应力影响。
根据当地气象资料统计发现,气温多年平均为7.9℃,最高为35.7℃,最低为-30.5℃,同时《建筑结构荷载规范》附录E 给出了沈阳最低气温-24℃,最高气温33℃。
项目场地的土层情况从上到下分布为:①杂填土;②粉质粘土;③粉质粘土;④粉质粘土;⑤粉质粘土;⑥粉质粘土;⑦粉质粘土;⑧粉质粘土;⑨圆砾。
冻土深度市区一般为1.0米,标准冻结深度为1.2米。
建筑功能:多层住宅,结构形式为异形柱框架剪力墙结构,基础类型为预应力管桩基础,楼板厚度130mm,使用年限为50年,多层住宅不设永久变形缝的混凝土结构长度超过《超长混凝土结构防裂技术规范》中规定的60米(框剪)。
本工程在后续施工时,考虑温度效应对结构的影响,根据规范要求长方向设置后浇带。
环境温差的含义是后浇带封堵合拢时,后浇带温度与施工期间所能达到的温度极值的温度差值,即:y=max-0上式中:y为环境温差,0为后浇带封堵合拢时的温度,max 为施工期间的最高温度[1]。
根据施工进度安排,预计2018年10月主体完工,后浇带封堵时间定为2019年4月,并于2019年11月前完成外墙保温、门窗安装等施工项目,2020年交付使用。
因此后浇带合拢温度取10.2℃,进入冬季施工期后,应采取一定的取暖措施,保证地上部分室内温度不低于-5℃。
根据规范相关部分并通过上面的公式计算可得本工程环境温差为:y=10.2℃-(-5℃)=15.2℃(降温)根据规范,混凝土的收缩变形可以根据下列式子进行计算:εy (t )=ε0y (1-e-0.01t )·M1·M2·M3······M11式中:εy (t ):龄期t 时,混凝土收缩引起的相对变形值;ε0y :标准状态下混凝土最终收缩引起的相对变形值,对于C40以下混凝土为3.24x10-4;M1·M2·M3······M11:考虑各种非标准条件下的修正系数;根据相关规范,M1·M2·M3······M11可以取为1.0。
超长混凝土结构温度应力分析及裂缝控制发布时间:2022-08-24T06:54:55.317Z 来源:《建筑创作》2022年1月第1期作者:潘选进[导读] 随着社会经济和科技的发展,我国建筑工程行业得到了极大的提升潘选进身份证号码:35262519751117****摘要:随着社会经济和科技的发展,我国建筑工程行业得到了极大的提升,正是由于建筑工程行业规模的扩大使得大体积的混凝土工程变得越来越多,其中大坝、桥墩等都是日常生活中常见的大体积混凝土工程,大体积混凝土的施工由于具有一定的特殊性,在施工的过程中其温度的变化所引起的拉应力在超过混凝土本身的极限抗拉强度时就会导致裂缝和开裂的问题出现,这些问题都会给工程整质量产生影响,因此为了保障工程的质量,在超长混凝土的施工中就要对温度应力和裂缝问题进行控制。
本篇文章,主要就是对超长混凝土结构温度应力分析以及裂缝进行的控制和分析。
关键词:超长混凝土,结构温度应力,裂缝问题,控制分析引言超长混凝土的施工中其温度的变化是对施工质量产生影响的重要因素,所以为了对工程的质量进行保障,就要做好温度应力分析和控制的工作,这样才能从减小温度应力对超长混凝土带来变化中减小混凝土表面裂缝问题的出现。
一、超长混凝土温度应力分析在建筑的施工过程中不论是哪种建筑,只要是处在自然环境中必然会受到各种不良因素的影响,这些因素会贯穿于整个施工的过程,通过研究可以得知,在建筑工程超长混凝土的施工中其温度变化对施工质量产生的影响最为严重,因此,为了对超长混凝土的施工质量进行提升,就要对其温度因素应力进行控制,超长混凝土施工中所受到的温度影响通常主要可以从以下几个方面中来表现:(一)日照温度荷载由于自然界的温度处在不断的变化中,所以日照温度也会对超长混凝土的施工带来影响,在超长混凝土的施工过程中,一天之内不论是太阳的照射角度和气温变化以风速的变化都是处在不断变化中,所以日照温度能对超长混凝土的结构表面温度和内部的温度产生改变,在以往的超长混凝土中,由于日照温度对施工所造成的影响主要有混凝土温度不均匀,当混凝土自身的局部温度具有不均匀性时就会由于热涨冷缩的问题而产生裂缝的出现。
混凝土超长结构温度应力分析全精通
一、分析原理
1.热应力原理:根据材料的线膨胀系数及温度差,可以计算出温度应力。
当结构受到温度变化的影响时,混凝土会产生相应的应力。
2.纵横向温度应力不平衡原理:由于混凝土超长结构的尺寸很大,在温度变化作用下,结构的不同部位会有不同的温度变形,从而引起不平衡的应力分布。
3.材料特性:混凝土作为一种复合材料,其特性会受到温度的影响。
根据材料的热学性能参数,可以计算出具体的温度应力。
二、分析工具
混凝土超长结构温度应力分析通常使用有限元分析方法进行求解。
有限元分析是一种针对复杂结构的数值计算方法,可以较为准确地模拟结构的温度变化,并计算出相应的应力分布。
常用的有限元分析软件包有ANSYS、ABAQUS等,这些软件具有强大的计算能力和可视化效果,可以对混凝土超长结构进行全面的温度应力分析。
三、分析方法
1.平衡温度法:假设混凝土超长结构处于其中一温度状态下的平衡。
通过对结构进行瞬态热传导和力学分析,可以计算出结构在温度变化时的应力分布。
2.数值分析法:通过数值计算的方法,将混凝土超长结构划分为若干网格单元,根据其热传导和力学特性,计算出结构在不同温度下的应力变化。
3.经验公式法:根据混凝土的力学特性和温度变化规律,通过经验公式的方法来估计结构的温度应力分布。
这种方法相对简单,适用于一些简单结构和初步设计。
总结起来,混凝土超长结构温度应力分析对于工程设计来说是非常重要的一项工作。
通过深入了解分析原理、使用分析工具和熟练掌握分析方法,可以准确地评估结构的稳定性和安全性,为工程的设计和施工提供科学依据。
Construction & Decoration建筑与装饰2023年12月下 169超长混凝土结构温度应力影响分析聂行中铁上海设计院集团有限公司南昌院 江西 南昌 330000摘 要 温度应力是超长结构设计中重点探讨的问题之一。
本文介绍了某体育馆超长框架结构温度应力分析及设计,探讨了温度荷载的确定,并通过YJK建模计算,分析了温度应力下结构变形及楼板应力分布,根据分析结果提出来相关控制温度应力的措施,为今后类似工程设计提供一定的借鉴作用。
关键词 温度应力;超长结构;温度荷载Analysis on Influence of Temperature Stress of Ultra-Long Concrete StructuresNie XingChina Railway Shanghai Design Institute Group Co. Ltd. Nanchang Institute, Nanchang 330000, Jiangxi Province, ChinaAbstract Temperature stress is one of the key problems in the design of ultra-long structures. In this paper, the analysis and design of temperature stress of ultra-long frame structure of a gymnasium are introduced, the determination of temperature load is discussed, and the structural deformation and floor stress distribution under temperature stress are analyzed through YJK modeling calculation, and relevant measures to control temperature stress are proposed according to the analysis results, which provides a certain reference for similar engineering design in the future.Key words temperature stress; ultra-long structure; temperature load引言近20年来,我国经济实力的不断增长逐步推动着现代城市的高速发展,我国建筑行业也取得了长足的发展,人们对建筑使用功能、建筑美感也提出了更高的要求,大空间、大跨度的体育场馆、会展中心、城市枢纽中心等建筑应运而生。
超长结构楼板温度应力分析主体结构温度作用分析在结构设计时,往往不能准确确定施工时间。
即使确定了施工日期,也不能作为标准,因此,结构合拢温度通常是一个区间值。
我们给出的合拢温度:取某城市的近30年的最高、最低的月平均温度(最高月平均温度37℃,最低月平均温度-5℃),并按3:4:3的比例划分,取中间40%的区间值为合拢温度区间(7.5℃~24.5℃),得出结构的最大升温工况为29.5℃,结构的最大降温工况为-29.5℃。
此外,由于真实季节性温差是一个缓慢加载过程,而程序是瞬间降温计算,考虑到混凝土材料的徐变特性后,实际结构产生的温度应力要小得多,在程序中可以通过松弛系数H来考虑,根据《工程结构裂缝控制》,对于不允许开裂的情况,H=0.3~0.5,对于允许开裂的情况,H=0.5×(0.3~0.5),本报告在计算时取0.3。
图1~图8分别列出了少年宫1层和2层在升温工况和降温工况下楼板最大主应力和最小主应力值。
图9~图16分别列出了少年宫1层和2层在升温工况和降温工况下剪力墙最大轴力和最小轴力值。
图1**结构1层楼板升温工况最大应力(Mpa)图2**结构1层楼板升温工况最小应力(Mpa)图3**结构1层楼板降温工况最大应力(Mpa)图4**结构1层楼板降温工况最小应力(Mpa)图5**结构二层楼板升温工况最大应力(Mpa)图6**结构二层楼板升温工况最小应力(Mpa)图7**结构二层楼板降温工况最大应力(Mpa)图8**结构二层楼板降温工况最小应力(Mpa)图9**结构一层剪力墙降温工况最大轴力(Mpa)图10**结构一层剪力墙降温工况最小轴力(Kn)图11**结构一层剪力墙升温工况最大轴力(Kn)图12**结构一层剪力墙升温工况最小轴力(Kn)图13**结构二层剪力墙降温工况最大轴力(Kn)图14**结构二层剪力墙降温工况最小轴力(Kn)图15**结构二层剪力墙升温工况最大轴力(Kn)图16少年宫结构二层剪力墙升温工况最小轴力(Kn)分析图中计算结果可知,1层、2层楼板的大部分区域在升温工况和降温工况下楼板最大主应力和最小主应力值均在C35混凝土的抗拉、抗压强度设计允许值范围内。
某超长连体结构温度应力计算摘要:连接体刚性连接的连体结构,由于平面狭长会形成较大的温度应力,应进行温度应力计算。
通过计算得到连体结构在温度应力作用下的应力大小与分布,分析楼板的变形与应力。
最终可见温度应力带来的楼板配筋的增大不可忽略,设计时应针对温度应力,采取相应的计算,构造加强措施。
关键词:连体结构;温度应力;温差连体结构因其独特的建筑造型而备受建筑师的喜爱,但由于连接体结构一般为平面狭长结构,并且这种狭长并不能通过设置伸缩缝等方式进行处理,因此很难满足规范对于伸缩缝最大间距的要求[1]。
连接体属于受力复杂结构构件,且结构超长,有必要对楼板温度应力进行计算分析。
一、楼板温度应力分析本工程地下一层,地上北塔12层和南塔15层,北塔五层及以上楼层与南塔同标高同层数,五层以下楼层,北塔为4层层高分别为6m、5m、4.5m、4.5m,首层相对建筑标高为±0.000,南塔为7层(相较于北塔多三层,这里以北塔楼层数作为计数层数,南塔多出的三层以夹层计数),每层层高均为3m,首层相对建筑标高为-1.000m。
两栋塔楼在7F-ROOF用连接体采用强连接方式连成一个整体。
连接体为下承式桁架,桁架跨度为30.450m,连接体每层高度均为4.5m。
塔楼平面尺寸详见表1。
结构立面及平面示意图如下图1、图2、图3所示。
连接体及相临一跨楼板厚度为150mm,其余楼板板厚为120mm。
结构梁板混凝土强度等级采用C30,钢筋采用HRB400。
由于连接体与塔楼之间采用刚性连接,因此,两塔楼之间通过连接体实现变形协调。
利用YJK软件对楼板中震下温度应力进行计算,7F-10F以全层考虑温度荷载,全层楼板属性采用弹性膜(仅计算温度应力时,其余工况仅连接体部分设置为弹性膜单元),11F-ROOF由于东西方向收进,因此仅连接体考虑温度荷载(仅连接体部分设置为弹性膜单元)。
这里分别以7F和ROOF温度应力计算为例。
图1 结构立面示意图图2 7F结构平面示意图图3 ROOF结构平面示意图表1 塔楼体型表二、温度作用取值由于季节温差作用于结构的时间更长且影响更大,这里不考虑骤降温差与日照温差的作用,温差计算过程如下。
地下车库超长楼盖温度应力分析本工程地下车库东西向最大平面尺寸约为50m,南北向最大平面尺寸约为130m,南北向尺寸远大于规范规定的框架结构伸缩缝最大间距55m的要求,为尽可能减小对建筑功能的影响,未设置伸缩缝。
故在结构计算分析时,需考虑温度作用对结构受力的影响。
一、收缩应力的分析方法目前工程界对超长混凝土结构收缩应力的分析,最常用的方法是将混凝土收缩等效成温度收缩,与最大季节温差相加,作为最不利温差施加于结构,对整个结构进行弹性有限元分析,得到楼面中均匀分布的最大拉应力。
再将该拉应力乘以0.3的徐变应力折减系数,作为结构设计的最终依据。
而《建筑结构荷载规范》(GB50009)规定:混凝土结构分析时,考虑温度作用的结构刚度折减以及混凝土材料的徐变和收缩作用等,可参考有关资料考虑,如《公路桥涵设计通用规范》(JTGD60)及《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62)等。
综合考虑,本工程收缩应力分析与控制分为两个阶段:1主体结构浇筑至后浇带浇筑前(浇筑后60天),此阶段的收缩应力主要为混凝土的自身收缩、塑形收缩、碳化收缩以及干缩,而温度变化不大,温度应力不明显,同时此时间段存在着混凝土的徐变。
此阶段应力控制主要为后浇带设置以及施工控制。
2.后浇带浇筑时至结构温度变化最大(与后浇带浇筑季节相反),此阶段混凝土仍存在收缩应力,并伴随着温差引起的温度应力,同时存在着混凝土的徐变。
此阶段的应力控制为计算出考虑徐变的收缩应力,根据计算结果指导设计。
二、温度荷载取值根据《建筑结构荷载规范》(GB50009-2012)并结合以往工程经验,本工程温度荷载取值如下:根据上表,采用20,-20℃的温差进行温度作用计算(定义为TEMP+、TEMP-工况)。
三、温度作用下计算结果在温度荷载作用下的车库顶板应力分布如下图1〜图2所示:图1地下车库顶板主应力图(升温工况)图2地下车库顶板主应力图(降温工况)由上述计算结果可知:在升温和降温两个工况作用下,地下车库顶板的温度应力较小,绝大部分楼板最大主拉应力小于2.39MPa,小于C40混凝土的抗拉强度标准值,温度作用下混凝土楼板不出现裂缝。
超长混凝土结构温度应力分析摘要:改革开放以来,随着中国经济的快速发展和城市建设的不断扩大,已经有许多大型公共建筑及工业与民用建筑应运而生。
其长度超过规范要求的限制,但未设置相应的伸缩缝,这些结构通常被称为超长结构。
本文重点介绍了超长混凝土结构年温差作用分析以及水平瞬时温差作用分析,以供同行参考。
关键词:超长混凝土结构,温度应力,分析前言近年来,随着社会的不断发展,超长超高的建筑物越来越趋于平常,人民更加追求建筑物的外观美。
当结构超过一定长度时,按照规范的要求,必须设置伸缩缝,这样势必会影响建筑物的外观和使用,因此,由于温度等因素对超长钢筋混凝土结构造成的一系列问题开始引起研究者们的重视,分析超长结构的温度作用的影响是很有必要的,国内的很多学者一直致力于研究此问题,并希望通过采取合理的措施达到减少伸缩缝或不设伸缩缝的目的。
1、超长混凝土结构年温差作用分析对于超长混凝土结构,设计时主要应该考虑季节温差也即年温差的作用,在结构未设后浇带或后浇带留设时间较短的情况下,应同时计及混凝土收缩作用的影响。
季节温差一般取结构混凝土凝结硬化时的温度(初始温度)与使用期间温度极值的差值,由于混凝土材料的抗拉强度远小于其抗压强度,控制季节温差应取初始温度与使用期间所能达到的温度极小值的差值,即可取但是,很多工程在设计时不能预先确定混凝土的浇筑时间,也不可能精确得到使用期间的温度最低值,所以一般可取结构使用中夏天的最高气温与冬天的最低气温之差作为控制季节温差。
1.1收缩作用分析混凝土在空气中凝结和硬化过程中会产生收缩变形,当收缩变形受到外部条件或其他构件的约束时,混凝土构件便不能自由变形而形成收缩应力,该应力与年温差作用下的结构应力的特性相像,所以可以把收缩变形等效为温差并与年温差叠加而成为结构的计算温差。
混凝土收缩公式很多,对于素混凝土或低配筋率混凝土的收缩公式,可以采用下式:超长混凝土结构往往采用多种措施来控制裂缝的产生和开展,设置后浇带是一种释放早期温度和收缩变形以降低温度收缩应力的有效方法。
实例分析超长建筑物结构温度应力结构温度应力分析采用midas/Gen Ver.800软件进行计算。
图1.1 平面布置简图表1主要结构布置表格柱子800x800/600x600/500x500mm梁400x700/250x600/350x700板100mm/120mm关键词超长结构温度应力温度筋2.气象条件当结构为跨年度施工时,按照《建筑结构荷载规范》GB50009-2012附录E 规定辽宁省抚顺市最高温度33℃、最低温度-28℃。
当不跨年时,由于抚顺市离沈阳较近,参考沈阳市地方规范《超长混凝土结构防裂技术规范》(DB2101/TJ013-2013)的规定:表2 沈阳地区月平均气温温度(℃)1月2月3月4月5月6月7月8月9月10月11月12月月平均氣温-11.0 -6.9 1.2 10.2 17 22 24.6 23.6 17.4 9.5 0.3 -7.5最高月平均气温-4.9 -0.9 6.7 16.5 23 27.2 29 28.4 23.6 15.7 5.7 -1.9最低月平均气温-16.2 -12.2 -4.0 4.1 11.2 17.0 20.6 19.3 12.1 4.2 -4.2 -12.23.温差取值由于混凝土的热惰性,短时间内的温度变化不会对结构产生很大影响,温差的取值主要由月平均温度控制。
使用阶段室内温度介于10-25度之间,整个结构处于升温状态,混凝土不产生拉应力,因此温差效应不起控制作用,仅对施工阶段的温差效应进行分析。
施工阶段分析主要考虑地上结构主体合拢后(即温度后浇带封闭以后)至正常使用前的温差工况。
本工程在2014年3月份设计完成,同年地下室施工完毕。
2014年5月份开始施工上部结构,同年6月30日主体完成,同年9月1日开始浇筑后浇带主体合拢,根据表2取地上结构的合拢温度取8月和9月平均月气温的平均值为9月1日的气温,近似取为20℃。
本工程预计2014年11月1日开始采暖投入使用,取10月和11月平均月气温的平均值为11月1日的气温,近似取5℃,因此温差为-15℃。
大空间超长框架结构温度应力的研究随着现代建筑的迅速发展以及建设规模的不断扩大,大空间超长框架结构的应用越来越广泛。
在这些超长框架结构中,由于结构的巨大尺寸以及特殊形态,温度应变变化的影响会更加明显,从而可能导致结构的不稳定性和安全性问题。
因此,研究大空间超长框架结构的温度应力,对于确保结构的稳定性,保证建筑物的安全和可靠性方面有着非常重要的意义。
在大空间超长框架结构中,由于其巨大的尺寸,结构变形和应力分布的影响会更加显著。
结构材料在不同温度下的热膨胀系数也会因此发生变化,从而导致结构的扭曲和变形。
顶部屋盖下部的构件由于热膨胀会发生上升,而建筑物底部的构件则会发生下降,这些不同应力的分布将会使得结构受到很大的挑战。
同时,随着气温的变化,不同材料的热膨胀系数也会发生变化,这种变化还会对结构的稳定性和形变产生影响。
要探究大空间超长框架结构中的温度应力问题,需要先进行一系列的试验研究和理论分析,来揭示结构在不同温度变化下的应力分布变化规律。
大量的试验研究表明,在不同的温度下,结构内部会出现不同的应力分布。
此外,根据试验结果,可以得出结构的热膨胀系数随着温度升高,其数值会逐渐增大,从而导致结构受到更大的温度应力。
对于大空间超长框架结构的温度应力的研究和控制,需要进行以下的措施:1.通过合理的结构设计和选择适当的材料,可以使结构材料在不同温度下的热膨胀系数最小化,从而降低结构受到的温度应力。
2.对于超长框架结构的结构部件,可以采用降温、通风等目标性控制气温的措施进行,来避免温度波动和结构材料的膨胀。
3.定期进行结构检测和维护,及时发现和提前解决结构的异常变形问题,以避免结构受到更大的温度应力,从而保证结构的稳定和可靠性。
总之,大空间超长框架结构温度应力的研究对于确保结构的稳定性,保证建筑物的安全和可靠性方面有着非常重要的意义。
因此,应加强对大空间超长框架结构的温度应力的研究,从而在结构的设计,建造,维护等各个方面都进行充分的控制和调节,实现结构稳定与可靠性的高度保障。
超长结构温度应力计算比如说,咱们夏天吃冰棒的时候,刚从冰箱里拿出来,冰棒是硬邦邦的。
可是过一会儿,在热空气里,冰棒就会慢慢化掉,还会滴答滴答地流水呢。
这是因为温度变高了,冰棒的状态就发生了变化。
超长结构也会这样哦。
想象一下有一个很长很长的铁轨,就像一条长长的大蛇躺在地上。
在寒冷的冬天,铁轨变得特别冷,就像我们冷得缩成一团的时候。
这时候铁轨会收缩,要是没有足够的空间让它收缩,它就会很难受,就像我们穿着小鞋挤脚一样。
到了炎热的夏天呢,铁轨被太阳晒得滚烫,就像我们在大太阳下跑了一圈浑身发热。
这时候铁轨就会膨胀,要是周围的东西限制它膨胀,它内部就会产生一种力量,这就是温度应力啦。
那怎么去计算这个温度应力呢?咱们可以把超长结构想象成是由很多小部分组成的。
就像搭积木一样,每一块积木就像是结构里的一小部分。
当温度变化的时候,这些小部分有的想变大,有的想变小。
如果它们不能自由地变化,就会互相挤压或者拉扯。
再举个例子,我们有一串长长的珠子项链。
如果把这串项链放在很冷的地方,珠子之间的距离可能会变小一点;要是放在很热的地方,珠子之间的距离可能就会变大一点。
如果我们把项链两端固定住,不让珠子自由地改变距离,那珠子之间就会有力量产生,这就有点像超长结构的温度应力啦。
在计算的时候呢,我们要考虑很多东西。
比如说温度到底变化了多少度,就像我们要知道冰棒从冰箱里拿出来后温度升高了多少度一样。
还有这个超长结构是什么材料做的,不同的材料就像不同的东西一样,有的东西很容易热胀冷缩,有的就没那么容易。
就像橡皮和木头,橡皮很容易被拉长或者压扁,木头就相对难一些。
超长结构温度应⼒计算探讨超长结构温度应⼒计算探讨⼀、温度作⽤的特点:温度作⽤是在规定时期内结构或结构构件由于温度场变化所引起的作⽤,具有以下特点:1)温度作⽤是由结构材料“热胀冷缩”效应被结构内、外约束阻碍⽽在结构内产⽣的内⼒作⽤,属于间接作⽤;2)温度作⽤随外界环境的变化⽽变化,有明显的时间性,属于可变作⽤;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因⽽温度作⽤伴随着结构的⽣命全周期过程;4)引起结构温度变化因素很多,有⽓候季节变化、太阳暴晒辐射和其它⼈为因素(如⽕灾)等,诱因多样性使温度作⽤有别于其它(荷载)作⽤。
⼆、温度作⽤的规范规定:2.1什么时候需要进⾏温度作⽤计算根据温度作⽤的特点可知,结构中产⽣的温度作⽤⼤⼩主要与结构材料线膨胀系数和结构长度有关。
表1为常⽤材料线膨胀系数αT,可见结构钢和混凝⼟的线膨胀系数⾮常接近。
正因为如此,在计算钢筋混凝⼟结构的温度作⽤时才可以只按混凝⼟⼀种材料近似考虑。
材料确定的情况下,长度越长,温度作⽤越⼤。
在完全没有约束的情况下,总长为100m、截⾯为600x600的普通混凝⼟梁温度每升⾼或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产⽣约2160KN(按强度等级为C30计算)的轴向压⼒或拉⼒,该⼒约为混凝⼟轴向抗拉强度标准值的3倍。
T实际结构不可能没有约束,总会在结构中产⽣温度应⼒,当结构长度较⼩时,可忽略温度应⼒和温度变形对结构的影响。
现⾏规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进⾏温度作⽤计算。
表2: 钢筋混凝⼟结构伸缩缝最⼤间距(m)建筑结构设计时,应⾸先采取有效构造措施来减少或消除温度作⽤效应,如设置结构的活动⽀座或节点、设置温度缝、采⽤隔热保温措施等。
当结构或构件在温度作⽤和其他可能组合的荷载共同作⽤下产⽣的效应(应⼒或变形)可能超过承载能⼒极限状态或正常使⽤极限状态时,⽐如结构某⼀⽅向平⾯尺⼨超过伸缩缝最⼤间距或温度区段长度、结构约束较⼤、房屋⾼度较⾼等,结构设计中⼀般应考虑温度作⽤。
超长建筑结构温度应力分析摘要随着我国国民经济的持续发展,在国内已经出现越来越多的超长建筑物,但是受限于功能上的使用,大多规定排除温度伸缩缝或者只设置极少的温度伸缩缝。
由于超长建筑结构的温度影响进行不恰当的处理,结构将会产生比较大的损失,甚至可能会影响正常的使用。
我国混凝土的结构设计规范排除了温度的因素,只从构造进行了分析与处理。
所以,分析超长建筑结构的温度应力特点,显得尤为重要,不仅可以为工程设计提供依据,也可以为以后的实际工程设计提供参考价值。
如何更好的利用温度应力分析技术成了其中的重难点问题,本文详细的说明了温度应力对结构的影响和温度应力分析,希望可以抛砖引玉。
关键字超长;建筑结构;温度应力解决超长建筑结构的温度应力问题需要考虑多方面的因素,包括综合设计和施工方面的因素。
综合考虑建筑结构的各个时期温度作用的特性,完善温度作用,更加有利于提高设计的合理性与规范性。
对于超长建筑物的设计必须采用预防结构温度收缩变形的方法。
本文主要就是介绍超长建筑结构温度应力的特点,设计方面的可行性措施,希望借此对超长建筑结构的普及和推广贡献一点微不足道的力量。
1 温度应力对结构的影响1.1 温度应力首先,我们要对温度应力的概念有一定的了解,由于温度变化,结构或者构件产生伸长或缩短,在伸缩由于受到限制时,构件或者结构的内部就会产生应力,称为温度应力。
由于不同的超长建筑物有着不同的结构形式,同时不同时间段的温度作用会产生不同的温度荷载。
一般而言,由自然环境变化而产生的的温差荷载可分为3种形式:1)骤然下降导致的温度差;2)季节变化导致的温度差;3)白天照明强度的变化导致的温度差。
1.2 从设计角度提出的可行性方案从设计角度我们可以提出的可行性方案就是建立超长建筑结构温度问题有限元模型研究。
首先通过分析建筑结构各时期温度效应的特点,其次完善温度效应的影响和温差取值的计算准则,最终挑选出在工程设计中起到控制作用的温差取值,有利于设计时的采用。
基于杭州某超长结构项目的温度应力分析与控制发布时间:2021-06-25T08:27:27.033Z 来源:《防护工程》2021年6期作者:冯飞1 唐婷婷2[导读] 近年来,随着社会经济的飞速发展,各种大型的建筑工程项目不断涌现。
在大型建筑工程项目施工中,超长、超宽建筑已成为建筑行业的新趋势,这些超长混凝土结构在不同温度的作用下内部应力变化较大,如果温差较大可能会导致结构内部的拉应力大于结构的抗拉能力,从而产生结构构件裂缝。
冯飞1 唐婷婷21华润置地杭州公司;2新鸿基地产杭州公司浙江杭州 310000摘要:近年来,随着社会经济的飞速发展,各种大型的建筑工程项目不断涌现。
在大型建筑工程项目施工中,超长、超宽建筑已成为建筑行业的新趋势,这些超长混凝土结构在不同温度的作用下内部应力变化较大,如果温差较大可能会导致结构内部的拉应力大于结构的抗拉能力,从而产生结构构件裂缝。
为了避免温度应力病害问题,在涉及超长结构的建筑工程项目设计中,要采取有效的措施来尽量降低温度应力对于超长结构的影响,减少温度应力造成的裂缝。
本文基于杭州某超长结构项目的温度应力计算进行分析,并提出相应控制建议。
关键词:超长结构;温度应力;控制杭州某超长结构项目为商业裙房,地上5层,地下3层,为混凝土框架结构。
项目Y方向长度约为260米,X方向长度约为180米,由于建筑使用功能需求,未设置结构缝。
1超长结构温度应力分析结构初始温度T0取后浇带合拢温度,根据《荷载规范》第9.3.3条规定:“混凝土结构的合拢温度一般取后浇带封闭时的月平均气温”,查找气象资料显示,杭州地区的12月、1月、2月、3月平均气温均可在10度以下,因此应采取措施将后浇带合拢时间安排在这4个月中。
温度场设定初始温度考虑误差±5度,即T01=15度,T02=5度混凝土收缩在混凝土内部产生拉应力,后浇带封闭后的残余收缩等效为结构的整体降温。
混凝土收缩比例随时间延长快速降低,推迟后浇带的封带时间可有效减少混凝土的残余收缩变形,对超长结构的温度应力控制意义重大。
主体结构温度作用分析
在结构设计时,往往不能准确确定施工时间。
即使确定了施工日期,也不能作为标准,因此,结构合拢温度通常是一个区间值。
我们给出的合拢温度:取某城市的近30年的最高、最低的月平均温度(最高月平均温度37℃,最低月平均温度-5℃),并按3:4:3的比例划分,取中间40%的区间值为合拢温度区间(7.5℃~24.5℃),得出结构的最大升温工况为29.5℃,结构的最大降温工况为-29.5℃。
此外,由于真实季节性温差是一个缓慢加载过程,而程序是瞬间降温计算,考虑到混凝土材料的徐变特性后,实际结构产生的温度应力要小得多,在程序中可以通过松弛系数H来考虑,根据《工程结构裂缝控制》,对于不允许开裂的情况,H=0.3~0.5,对于允许开裂的情况,H=0.5×(0.3~0.5),本报告在计算时取0.3。
图1~图8分别列出了少年宫1层和2层在升温工况和降温工况下楼板最大主应力和最小主应力值。
图9~图16分别列出了少年宫1层和2层在升温工况和降温工况下剪力墙最大轴力和最小轴力值。
图1**结构1层楼板升温工况最大应力(Mpa)
图2**结构1层楼板升温工况最小应力(Mpa)
图3**结构1层楼板降温工况最大应力(Mpa)
图4**结构1层楼板降温工况最小应力(Mpa)
图5**结构二层楼板升温工况最大应力(Mpa)
图6**结构二层楼板升温工况最小应力(Mpa)
图7**结构二层楼板降温工况最大应力(Mpa)
图8**结构二层楼板降温工况最小应力(Mpa)
图9**结构一层剪力墙降温工况最大轴力(Mpa)
图10**结构一层剪力墙降温工况最小轴力(Kn)
图11**结构一层剪力墙升温工况最大轴力(Kn)
图12**结构一层剪力墙升温工况最小轴力(Kn)
图13**结构二层剪力墙降温工况最大轴力(Kn)
图14**结构二层剪力墙降温工况最小轴力(Kn)
图15**结构二层剪力墙升温工况最大轴力(Kn)
图16少年宫结构二层剪力墙升温工况最小轴力(Kn)
分析图中计算结果可知,1层、2层楼板的大部分区域在升温工况和降温工况下楼板最大主应力和最小主应力值均在C35混凝土的抗拉、抗压强度设计允许值范围内。
结构1层楼板降温工况下最大主应力大部分区域在0.2~1.57MPa范围内,由图可以看出剪力墙周边区域出现较大的应力,但分布范围不大,一方面可能存在有限元数值模拟时的应力集中现象,另一方面对周边楼板增加补强钢筋。
其余工况下均存在类似现象。
另外局部开洞处角部边缘位置应力较大,该区域周围楼板同样加强钢筋配置。
结构2层楼板同样的在楼板局部开洞处角部边缘位置应力较大,施工图配筋时将针对上述区域进行针对性的补强。
结构3层以及以上楼板温度影响较小,温度引起的内力均小于混凝土抗拉强度。
此外温度工况下,对存在较大拉应力的楼板相关范围内的梁纵筋以及腰筋配置予以针对性的加强。
对剪力墙以及框架柱而言,温度工况较地震工况产生的内力较小,对墙柱不起控制作用。
上述分析结果表明本结构能够承受使用过程中温度变化作用带来的各种不利影响。