各种流量计的优缺点及适合介质
- 格式:doc
- 大小:28.50 KB
- 文档页数:5
各种流量计的优缺点和适合的介质流量计是一种广泛应用于流体工程领域的仪器,用于测量和监测流体的流量。
根据工作原理和结构特点的不同,流量计可以分为多种类型,每种类型都有其独特的优点、缺点和适用介质。
下面将详细介绍几种常见的流量计。
1.机械式流量计机械式流量计是一种基于机械原理测量流体流量的仪器。
最常见的机械式流量计包括涡轮流量计、叶片式流量计和齿轮式流量计等。
(1)涡轮流量计优点:结构简单,易于安装和维护;适用范围广,可用于测量各种液态介质的流量;测量精度高,可达到±1%;响应速度快。
缺点:对流体介质的温度、压力和粘度等参数要求较高;易受颗粒物质的干扰。
适用介质:适用于各种液态介质,如石油、天然气、化工介质等。
(2)叶片式流量计优点:测量精度高,可达到±0.5%;结构简单,价格相对较低;可承受较高的工作压力。
缺点:叶片易受颗粒物与粘度高的介质的磨损;不适用于气体介质;需要一定的直管段来保证测量精度。
适用介质:适用于各种液态介质,如清水、石油和化工介质等。
(3)齿轮式流量计优点:测量精度高,可达到±0.2%;结构简单,工作可靠;适用于高温和高粘度液体的测量。
缺点:对流体介质的温度和粘度等参数要求较高;不适用于气体介质的测量;对颗粒物质敏感。
适用介质:适用于各种液态介质,尤其是粘度较高的液体。
2.电磁式流量计电磁式流量计是利用法拉第电磁感应原理进行测量的仪器,广泛用于液体和气体的流量测量。
优点:可适用于各种导电介质的流量测量;测量范围广,可达到远高于其他流量计的比例;无需添加额外的压力损失装置。
缺点:对被测流体的电导率要求较高;易受磁场干扰。
适用介质:适用于液体和气体,如腐蚀性介质、污水、纯水等。
3.热式流量计热式流量计是通过测量流体对热能的吸收或带走来确定流量的仪器。
优点:对流体介质的温度、压力和粘度要求较低;适用于小流量测量;响应速度快。
缺点:对流体介质的热导率要求较高;易受气泡和颗粒物的干扰。
各种流量计工作原理及优缺点流量计是一种用于测量流体流量的设备,广泛应用于工业领域中的流体控制和监测过程中。
不同类型的流量计采用不同的工作原理,每种流量计都有其独特的优点和缺点。
下面将详细介绍几种常见的流量计及其工作原理、优缺点。
1. 质量流量计(Mass Flow Meter)质量流量计是通过测量流体通过流量计的质量来确定流量的一种流量计。
它通常使用热敏电阻或热电偶来测量流体的温度,并通过测量热量传递来计算质量流量。
质量流量计的优点是能够准确测量各种气体和液体的质量流量,不受流体密度、压力和温度的影响。
然而,质量流量计的缺点是成本较高,且对流体的物理性质要求较高。
2. 体积流量计(Volumetric Flow Meter)体积流量计是通过测量流体通过流量计的体积来确定流量的一种流量计。
常见的体积流量计包括涡轮流量计、液体顶管流量计和正交流量计等。
涡轮流量计通过测量流体通过涡轮的旋转来计算体积流量。
液体顶管流量计通过测量流体通过顶管的时间来计算体积流量。
正交流量计则通过测量流体通过正交管道的压力差来计算体积流量。
体积流量计的优点是结构简单、价格较低,但缺点是对流体的物理性质要求较高,且精度较低。
3.差压流量计(Differential Pressure Flow Meter)差压流量计是通过测量流体通过管道时产生的压力差来计算流量的一种流量计。
常见的差压流量计包括孔板流量计、喷嘴流量计和流体测速仪等。
孔板流量计通过在管道中设置孔板来产生压力差,并通过测量压力差来计算流量。
喷嘴流量计则通过流体通过喷嘴时产生的压力差来计算流量。
流体测速仪则通过测量流体通过测速仪时的速度来计算流量。
差压流量计的优点是结构简单、价格较低,适用于大流量的测量。
但缺点是对流体的物理性质要求较高,且存在一定的压力损失。
4. 超声波流量计(Ultrasonic Flow Meter)超声波流量计是通过测量超声波在流体中传播的速度来计算流量的一种流量计。
各类流量计工作原理优缺点与用途流量计是用来测量流体中的流量的仪器。
不同类型的流量计有不同的工作原理、优缺点和用途。
1.扬程罐:工作原理:扬程罐是一种基于液位高度来测量流量的设备。
它利用液位的变化来确定流体的流量。
当流体通过扬程罐时会造成液位变化,通过测量液位变化的速度来计算流体的流量。
优点:扬程罐结构简单,操作方便,适用于一般的低流速流体测量。
缺点:扬程罐不适用于高流速流体,精度有限。
用途:常用于低流速的物料流量测量,如水流量测量、油流量测量等。
2.差压流量计:工作原理:差压流量计是基于流体通过管道时,会产生差压的原理来测量流量。
通过测量流体通过流量计前后的压差来计算流体的流量。
优点:差压流量计精度高,可适用于各种流体和工况。
缺点:价格较高,需要定期校准。
用途:差压流量计适用于各种工况和流体,广泛应用于化工、石油、制药等行业中的流量测量。
3.涡街流量计:工作原理:涡街流量计是通过测量流体通过流量计时,产生的涡街频率和流体流速成正比的原理来测量流量。
利用流体通过流量计时形成的涡街产生的压力脉动,通过传感器将脉动转化为电信号,进而测量流体流速。
优点:具有良好的线性和重复性,可用于各种流体测量。
缺点:对液体含固体颗粒较大的流体不适用。
用途:涡街流量计适用于各种液体和气体的测量,广泛应用于供暖、供水、煤气等行业中的流量测量。
4.磁性流量计:工作原理:磁性流量计通过测量液体中的电磁感应来测量流体的流量。
当液体通过磁性流量计时,会在液体中产生垂直于流体流向的电磁感应,通过测量电磁感应的大小来计算流体流量。
优点:能够测量各种液体和气体,无压力损失。
缺点:对液体的电导率要求较高。
用途:磁性流量计适用于对液体和气体进行流量测量的场合,广泛应用于化工、石油、环保等行业中的流量测量。
5.超声波流量计:工作原理:超声波流量计利用超声波在流体中传播的速度来测量流体的流量。
通过向流体发送超声波信号,测量超声波传播的时间,根据传播时间来计算流体的流速和流量。
常用流量计分类及优缺点分析流量计是用于测量流体介质流量的仪器,广泛应用于工业生产和实验室研究等领域。
根据不同的原理和适用场景,流量计可以分为多种类型。
本文将对常用的流量计分类及其优缺点进行分析。
1.电磁流量计电磁流量计是利用法拉第电磁感应定律来测量导电液体流量的一种流量计。
优点是不受介质的压力、温度、密度、粘度等影响,适用于各种导电液体。
同时,电磁流量计没有活动零件,使用寿命长,可靠性高,维护方便。
缺点是价格较高,对介质的电导率要求较高。
2.涡街流量计涡街流量计是根据流体通过涡街产生旋涡的频率与流量成正比关系而设计的一种流量计。
优点是响应速度快,精度高,适用于不同介质的流量测量。
涡街流量计结构简单、体积小,不易堵塞,维护简单。
缺点是高压下的应用有限,且对介质的温度和粘度有一定要求。
3.超声波流量计超声波流量计利用超声波在流体内传播速度与流速成一定比例关系的原理进行流量测量。
优点是适用于各种液体和气体,无需接触介质,不会对流体产生压降,具有较低的能耗。
超声波流量计精度高,响应速度快,可靠性好。
缺点是价格较高,对传感器的安装和使用环境要求较高。
4.质量流量计质量流量计是通过测量介质受力或传感器受振动的质量变化来实现流量测量的。
质量流量计不受温度、压力、粘度等影响,适用于各种气体和液体的流量测量。
质量流量计响应速度快,精度高,具有大量自检和自校验功能。
然而,质量流量计价格较高,对安装条件和环境的要求严格。
综上所述,不同类型的流量计各有优劣。
在选择流量计时,应根据具体的应用场景和要求选取合适的类型。
各流量计工作原理优缺点分析流量计是一种用于测量液体、气体或蒸汽流量的仪器设备。
根据其工作原理的不同,可分为机械式流量计、电磁式流量计、超声波流量计、涡街流量计和热式流量计等几类。
下面将对各流量计的工作原理、优缺点进行详细分析。
1.机械式流量计:机械式流量计利用内部装置的机械元件来测量流体通过的体积或质量。
常见的机械流量计有滑片式、齿轮式和涡轮式等。
优点:-适用于各种介质和管道尺寸。
-精度相对较高,可满足一般工况需求。
-刻度清晰易读,操作简单。
缺点:-机械运动件容易磨损,需要定期维护和更换。
-容易受到介质特性的影响,对介质流速和密度有一定要求。
-在高粘度介质或低流速情况下,精度可能受到影响。
2.电磁式流量计:电磁式流量计利用涡流感应原理来测量导电介质流体的流量。
通过涡流感应器内的电磁场和流体中的电导率产生的涡流来计算流量。
优点:-能广泛适用于各种导电液体,包括腐蚀性介质。
-无移动部件,耐磨损,使用寿命长。
-测量稳定,精度高,可达到±0.5%~±2%。
-测量范围广,可适应大流量和小流量需求。
缺点:-对导电介质有一定要求。
-对电磁场干扰敏感,需保持环境清洁。
-相对较高的价格。
3.超声波流量计:超声波流量计是利用超声波在流体中传播速度与流速成反比关系来测量流量的原理。
优点:-无需与流体接触,适用于各种介质,包括蒸汽和高纯度液体。
-非侵入式安装,不会对流体产生压力损失。
-易于安装和维护。
-测量范围广,适用于大流量和小流量。
缺点:-对介质中颗粒、气泡等的干扰较敏感,影响测量精度。
-价格较高。
4.涡街流量计:涡街流量计利用介质通过涡街传感器产生的涡旋来计算流量。
优点:-测量精度高,可达到±0.5%~±1%。
-响应速度快。
-对介质的要求较低。
-耐压性好,适用于高压流体测量。
缺点:-对于粘度较高的介质测量精度会有影响。
-不能直接测量蒸汽流量。
5.热式流量计:热式流量计利用流体通过传感器的热丝时对流体进行冷却从而测量流速的原理。
常见流量计的测量原理及优缺点
流量计是一种直接测量流体流量的仪器,其测量原理主要有体积法、重力法、质量法等。
其中,体积法是流量计测量中最常用的方法,通过测量流体通过流量计时的体积来计算流量。
重力法是利用流体受到重力作用时流速的变化来测量流量。
质量法是通过测量流体通过流量计时的质量来计算流量。
1. 压差式流量计:压差式流量计是通过测量流体通过管道时的压差来计算流量的一种仪器。
其测量原理基于伯努利定理,即当流体通过管道时,流速越大,压力越小。
因此,通过在管道中设置压差传感器来测量流体通过管道时的压差,再根据伯努利定理计算流量。
2. 磁流量计:磁流量计是一种利用磁场感应原理测量导电流体流量的仪器。
其测量原理基于法拉第电磁感应定律,即当导电流体通过磁场时,会在流体中产生感应电动势。
通过在管道中设置磁场和电极,测量导电流体通过管道时感应电动势的大小和方向,再根据法拉第电磁感应定律计算流量。
3. 超声波流量计:超声波流量计是一种利用超声波传播速度和方向来测量流体流量的仪器。
其测量原理基于多普勒效应,即当超声波穿过流体时,会受到流体流动的影响,导致超声波频率的变化。
通过在管道中设置超声波发射器和接收器,测量超声波在流体中传播的时间
和频率,再根据多普勒效应计算流量。
4. 涡街流量计:涡街流量计是一种利用流体通过涡街时产生的旋涡频率来测量流量的仪器。
其测量原理基于卡门涡街定律,即当流体通过涡街时,会产生旋涡。
通过在管道中设置涡街和传感器,测量涡街旋涡的频率,再根据卡门涡街定律计算流量。
以上是常见的流量测量原理,不同的测量原理适用于不同的流体和应用场景。
各种流量计工作原理及优缺点测量流体流量的仪表统称为流量计或流量表。
流量计是工业测量中重要的仪表之一。
随着工业生产的发展,对流量测量的准确度和范围的要求越来越高。
流量测量技术日新月异,为了适应各种用途,各种类型的流量计相继问世,目前已投入使用的流量计己超过IOO 种。
每种产品都有它特定的适用性,也都有它的局限性。
按测量原理分为力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。
按流量计的结构原理进行分类,有容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计。
按测量对象划分,就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。
因此,以严格意义来分流量计和总量表己无实际意义。
一、按测量原理分类1.力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。
2.电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。
3.声学原理:利用声学原理进行流量测量的有超声波式、声学式(冲击波式)等。
4.热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。
5.光学原理:激光式、光电式等是属于此类原理的仪表。
6.原子物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。
7.其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。
二、按流量计结构原理分类按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型:1、差压式流量计差压式流量计是根据安装于管道中流量检测件产生的差压、己知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。
各种流量计优缺点流量计是一种用于测量液体、气体或蒸汽流量的仪器。
不同类型的流量计在不同的工作环境和应用中有各自的优缺点。
以下是常见的几种流量计的优缺点:1. 体积流量计(Positive Displacement Flowmeter)优点:-非常准确,适用于测量低流量。
-适用于高粘度和高温介质。
-不需要修正。
缺点:-需要频繁的校准和维护。
-由于流体必须通过一个移动的部件,流体中可能会存在一些污染物。
2. 旋转翅片流量计(Rotary Vane Flowmeter)优点:-测量响应时间快。
-体积小巧,安装方便。
-可用于粘度较高的流体。
缺点:-测量范围有限。
-没有液体密度的自动修正功能。
-翅片容易磨损。
3. 涡街流量计(Vortex Flowmeter)优点:-可以测量稳定的流体和蒸汽。
-几乎不受流体温度和压力的影响。
-长期可靠性高。
缺点:-对于液体中含有较高含固体颗粒的情况,可能会产生误差。
-较低的精度和准确度。
4. 质量流量计(Mass Flowmeter)优点:-可以直接测量液体或气体的质量流量。
-流体密度对测量结果没有影响。
-可以测量多种介质。
缺点:-高精度、高性能的质量流量计价格昂贵。
-对于高压、高温和腐蚀性介质,选择适合的传感器材料和结构变得困难。
5. 超声波流量计(Ultrasonic Flowmeter)优点:-不接触流体,无压降和泄漏。
-适用于大流量的液体和气体测量。
-耐压性能好。
缺点:-测量误差可能会受到气泡、颗粒物的干扰。
-对于含有杂质或气泡的流体测量效果差。
6. 磁性流量计(Magnetic Flowmeter)优点:-适用于大流量、腐蚀性液体的测量。
-不受温度和压力变化的影响。
-对于含固体颗粒的液体也有较好的测量效果。
缺点:-对于非导电液体无法进行准确测量。
-当液体的电导率较低时,测量结果可能有较大误差。
7. 系统测速仪(Pitot Tube)优点:-适用于测量气体和液体的流速。
流量计的选型与优缺点分析流量计是一种用于测量液体、气体以及蒸汽等流体流量的仪器。
它广泛应用于石油化工、电力、冶金、建筑、水务等行业中。
选型一个合适的流量计需要考虑多个因素,包括流体性质、流量范围、精度要求、可靠性、经济性以及环境适应能力等。
本文将对流量计的选型和优缺点进行分析。
首先,根据测量原理的不同,流量计主要分为机械式、电磁式、超声波式、热式和涡街式等几类。
机械式流量计是一种传统的流量计,常见的有涡轮流量计和轴流式流量计。
涡轮流量计通过测量液体通过设备时旋转的涡轮次数来计算流量。
轴流式流量计则通过螺旋线内径和外径差异引起的压力差来测量流量。
优点是结构简单、可靠性高、测量范围宽,适用于各种液体和气体。
缺点是机械磨损较大,精度较低,需要定期维护和校准。
电磁式流量计是一种基于法拉第电磁感应原理的流量计,通过测量导电液体的磁感应强度来计算流速。
优点是结构简单、精度高、适用于大流量和腐蚀性液体。
缺点是价格较高,对液体电导率要求较高,易受外界磁场干扰。
超声波式流量计是一种利用超声波传播速度的变化来计算流速的流量计。
分为声速表面振荡型和多普勒效应型两种。
优点是不受液体杂质影响、精度高、无需运输中断、适用于各种清洁液体。
缺点是价格较高、对超声波传播介质有要求。
热式流量计是一种通过测量液体传热量或传热时间来计算流速的流量计。
分为恒温差式和恒功率式两种。
优点是适用于各种液体和气体、无需移动部件、测量稳定可靠。
缺点是需要消耗大量热能、对流体温度和热导率有较高要求。
涡街式流量计是一种通过涡街频率与流速成正比关系来测量流速的流量计。
优点是结构简单、可靠性高、适用于高温高压和粘稠液体等。
缺点是价格较高、受液体中的杂质和颗粒物影响较大。
15种流量计的工作原理及特点流量计是一种用于测量流体流量的装置,广泛应用于化工、石油、食品、医药、环保等行业。
根据不同的工作原理和特点,可以将流量计分为以下15种。
1.流通容积式流量计:通过测量流体通过流量计的容积来计算流量。
特点是简单易于使用,适用于低粘度流体。
2.风轮式流量计:利用流体的动能转化为旋转动能,通过测量风轮的旋转速度来计算流量。
特点是结构简单、精度较高,适用于液体和气体测量。
3.涡轮式流量计:通过测量涡轮的旋转速度来计算流量。
特点是精度高,适用于高粘度流体和腐蚀性介质。
4.涡街式流量计:利用涡流的产生和消失来测量流量。
特点是可测量各种流体,适用于高温、高压和腐蚀性介质。
5.鞭频式流量计:利用鞭状物在流体中产生的频率变化来测量流量。
特点是结构简单、精度较高,适用于高粘度和高粒度的流体。
6.背压式流量计:通过测量流体压力差来计算流量。
特点是适用于高粘度和腐蚀性介质。
7.电磁式流量计:利用涡流感应原理测量电磁流量。
特点是适用于各种液体和气体,精度高,可以测量高温、高压和腐蚀性介质。
8.超声波流量计:利用超声波在流体中的传播速度差来测量流量。
特点是非侵入性、不受流体性质影响,适用于各种液体和气体。
9.热式流量计:通过测量流体传热能力的变化来计算流量。
特点是适用于高温、高粘度的流体。
10.漩涡流量计:通过测量由漩涡产生的压力差来计算流量。
特点是结构简单、不易堵塞,适用于高温、高压和腐蚀性介质。
11.比重式流量计:根据流体密度的变化来测量流量。
特点是适用于测量液体和气体,可测量高粘度和腐蚀性介质。
12.光电式流量计:利用光的传播速度差来测量流量。
特点是非侵入性、不受流体性质影响,适用于各种液体和气体。
13.压差式流量计:通过测量流体通过管道时的压力差来计算流量。
特点是结构简单、价格低廉,适用于液体和气体测量。
14.阻塞式流量计:通过测量流体通过阻塞装置时的压力差来计算流量。
特点是适用于高温、高压和腐蚀性介质。
四种常用流量计的优缺点一、孔板流量计孔板流量计是将标准孔板与多参量差压变送器(或差压变送、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及天然气的流量。
广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。
孔板流量计被广泛适用于煤炭、化工、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具在国民经济中占有重要的地位。
在过程自动化仪表与装置中,流量仪表有两大功用:作为过程自动化控制系统的检测仪表和测量物料数量的总量表。
(一)优点:1.标准节流件是全用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量传感器中也是唯一的;2.结构易于复制,简单、牢固、性能稳定可靠、价格低廉;3.应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆可以测量;4.检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产。
(二)缺点:1.测量的重复性、精确度在流量传感器中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高;2.范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1~4∶1;3.有较长的直管段长度要求,一般难于满足。
尤其对较大管径,问题更加突出;4.压力损失大;5.孔板以内孔锐角线来保证精度,因此传感器对腐蚀、磨损、结垢、脏污敏感,长期使用精度难以保证,需每年拆下强检一次;6.采用法兰连接,易产生跑、冒、滴、漏问题,大大增加了维护工作量。
二、容积式流量计容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类。
它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。
容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双转子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计、湿式气量计及膜式气量计等。
四种常见流量计的应用范围流量计是工业自动化中常用的一种仪表,它通常用来测量液体或气体的流量。
随着技术的不断发展和进步,现今市场上出现了很多种流量计,各种流量计的适用场景也有所不同。
本文将介绍四种常见流量计的应用范围。
涡轮流量计涡轮流量计是一种常见的流量计,它利用涡轮转子转动的原理来测量液体或气体的流速。
它适用于较干净的液体,例如水和汽油等。
涡轮流量计的特点是精度高,可以测量较小的流量,而且响应速度比较快。
因此,涡轮流量计广泛应用于工业和实验室的测量领域,例如化学实验中的物质流速测量以及各种流体系统的流速控制。
磁性流量计磁性流量计是另一种常见的流量计,它是通过液体中的电导率变化来测量流速的。
磁性流量计适用于导电液体,如水和混合液等。
磁性流量计的优点是精度高,而且不受液体的粘度、密度及温度的变化影响。
磁性流量计广泛应用于石油、化学、医药、食品和饮料工业等。
超声波流量计超声波流量计是一种通过超声波测量液体或气体流速的流量计。
这种流量计适用于各种液体和气体,而且不会影响液体的流动。
超声波流量计的优点是精度高、测量范围广、响应时间短、维护简单等。
因此,超声波流量计适用于各种流量测量需求严格的场合,例如水电站、石油化工、市政工程等。
振荡管流量计振荡管流量计是利用振荡管内振动的原理来测量液体或气体流动的一种流量计。
这种流量计适用于低粘度的气体和液体,例如水和油。
振荡管流量计的优点是响应速度快、精度高、结构简单、维护方便等。
振荡管流量计广泛应用于航空、冶金、制药、石油和化工等领域。
综上所述,四种常见流量计各有其适用场景。
涡轮流量计和磁性流量计适用于不同种类的液体或气体测量,超声波流量计适用于各种流量测量需求严格的场合,振荡管流量计适用于低粘度气体和液体。
在选择流量计的时候,需要根据具体的测量需求和实际情况进行选择。
10种流量计的说明流量计是用于测量液体、气体、蒸汽等流体在管道内的流量的设备。
根据测量原理的不同,流量计也可以分为多种类型。
本文将介绍10种常见的流量计,并分别从其原理、优缺点等方面进行说明。
1. 纯浮子式流量计纯浮子式流量计的主要原理是利用一根垂直的管道,内部设置有一个浮子,并用取压孔来测量压力差,从而推算出流量大小。
纯浮子式流量计的特点是测量简单、成本较低,但测量范围较窄。
2. 激磁式流量计激磁式流量计是一种电磁测量流量的装置,主要由测量管、电极、激磁线圈和送信器等组成。
其工作原理是通过电磁感应作用,测量液体或气体在管道中的流量。
使用时需要被测流体具有一定的导电性。
3. 转子式流量计转子式流量计是一种利用液体或气体的动力作用测量流量的装置,主要由转子、测量管、传感器等组成。
其工作原理是通过液体或气体的旋转作用,驱动转子旋转并从而测量流量。
转子式流量计优点是测量准确,缺点是易被介质中的固体颗粒等物质卡住。
4. 涡街流量计涡街流量计是利用流体的惯性作用来完成流量测量的装置,主要由测量管、涡轮、传感器等组成。
其优点是适用范围广,可以精确地测量多种流体,但对介质粘度等性质有一定的要求。
5. 爆破片流量计爆破片流量计是一种由一般管道中可以容纳的气体产生爆炸所以能的流量计。
其主要原理是当管道内的气体流量达到一定程度时,会产生滞留作用,促使元件产生爆炸,再通过测量声音或振动等参数来推算流量大小。
爆破片流量计的优点是精度较高,但因其设置有爆破装置,使用时较为危险。
6. 落体式流量计落体式流量计利用重力来完成测量液体流量的装置,主要由测量管、落体装置等组成。
其工作原理是通过让被测液体自由落体,并通过时间和液体测量管的标定来计算流量大小。
落体式流量计的主要优点是结构简单、适用于粘度较高的液体,但数据处理较为麻烦。
7. 均质器流量计均质器流量计是利用液体在均质器中的压力平衡来测量流量的装置,主要由均质器、流量计、变送器等组成。
各种流量计的优缺点及适合的介质一、电磁流量计1、优点(1)电磁流量计可用来测量工业导电液体或浆液。
(2)无压力损失。
(3)测量范围大,电磁流量变送器的口径从到。
(4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。
2、缺点(1)电磁流量计的应用有一定的局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。
另外在高温条件下其衬里需考虑。
(2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。
按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。
如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。
(3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。
变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。
在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。
安装地点不能有振动,不能有强磁场。
在安装时必须使变送器和管道有良好的接触及良好的接地。
变送器的电位与被测流体等电位。
在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。
(4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。
(5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。
如100mm口径仪表内径变化1mm会带来约2%附加误差。
(6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。
为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。
应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。
常用流量计的基础知识和比较流量计是一种用于测量流体流动速度和体积的仪器。
常用的流量计主要有:差压式流量计、涡街式流量计、电磁式流量计、超声波流量计和质量流量计。
本文将为您介绍这些常用流量计的基础知识和比较。
一.差压式流量计差压式流量计是通过测量绕流体管道的压差(即扩压器前后的压差)来计算流量的。
其优点是测量范围较宽,从小到几毫升/分钟到大量的水/秒不等,测量误差较小、可靠性高。
但是,差压式流量计对管道结构和管道粗糙度的要求较高,对于粘度和密度变化较大的流体,测量误差会增大。
涡街式流量计是通过测量涡轮绕轴线自转的角速度来计算流量的。
其优点是测量范围广泛,可以适应不同流体粘度的测量,并且安装与使用方便。
但是,涡街式流量计对流体在管道中的流动方向要求比较苛刻,具有一定的压力损失,且易受流体中颗粒物的影响。
电磁式流量计是通过测量液体通过磁场产生的电动势来测量液体的流量,其优点在于测量范围非常广泛,测量误差小,使用寿命长,对于含有颗粒物和腐蚀性强的流体,电磁式流量计有很好的稳定性和精度。
但是,其安装必须采用同轴式电极或成对电极,仪器成本较高,也需要较高的安装精度。
四.超声波流量计超声波流量计是通过测量超声波传播速度和方向,来测量流量的。
其优点在于测量范围广泛,不易受流体颜色、浊度、气泡和颗粒物的影响,具有使用方便等优点。
但是,超声波流量计在某些情况下会受到流体波动和结构振动的影响,其测量精度和稳定性有待更进一步改善。
五.质量流量计质量流量计是一种基于质量守恒原理和热力学平衡原理测量瞬时流量的仪器。
其优点在于可以不受温度、压力和流体密度等参数的影响,能够精确测量几乎所有的流体,并且可以反映温度、压力等流体参数变化的影响,具有系统灵敏性和速度性能高等优点。
但是,质量流量计具有高昂的价格和较高的维护成本,需要使用优质的精密元器件,并需要高级的使用和维护技术人员。
总体来看,不同的流量计具有不同的优缺点,一般应根据实际需要选择合适的流量计。
各种流量计的优缺点及适合介质资料流量计是用来测量液体、气体或蒸汽等流体的体积流量、质量流量、速度或总量的仪器。
根据不同的工作原理和应用场景,流量计可分为多种类型,下面将介绍一些常见的流量计及其优缺点以及适用介质资料。
1. 浮子流量计(Rotameter)浮子流量计是一种基于安培力平衡原理的流量计。
其优点是结构简单,可视化好,适用于不同介质类型。
但它的缺点是测量准确度相对较低,对流体的粘度和温度变化敏感。
适用介质:液体、气体。
2. 电磁流量计(Electromagnetic flowmeter)电磁流量计是通过测量流体中感应电动势的变化来计算流量的仪器。
它的优点是对流体的导电性要求较低,可以测量各种介质的流量,并且具有较高的测量准确度。
缺点是对流体的温度和压力变化较为敏感。
适用介质:液体、气体。
3. 质量流量计(Mass flow meter)质量流量计可以直接测量流体的质量流量,而不受压力、温度和密度等因素的影响。
它的优点是测量准确度高,适用于高温、高压和腐蚀性介质的测量。
缺点是价格较高。
适用介质:气体、液体。
4. 旋涡流量计(Vortex flowmeter)旋涡流量计是通过测量流体中旋涡频率来计算流量的仪器。
它的优点是结构简单、可靠性高、适用于各种介质的测量。
缺点是低流速下精度较低,对介质的粘度和温度变化敏感。
适用介质:液体、气体。
5. 热式流量计(Thermal mass flow meter)热式流量计通过测量流体冷却层和加热丝的温差来计算流量的仪器。
它的优点是测量范围广,不受压力和温度的影响,适用于各种气体介质。
缺点是不适用于液体介质,且较高的价格。
适用介质:气体。
6. 超声波流量计(Ultrasonic flowmeter)超声波流量计是利用超声波在液体或气体中传播的速度来计算流量的仪器。
它的优点是无需直接接触流体,适用于各种介质类型,并且具有较高的测量准确度。
缺点是较高的价格和对介质中的气泡和杂质敏感。
电磁流量计和超声波流量计哪个更好用电磁流量计和超声波流量计各有其优势和局限性,哪个更好用取决于具体的应用场景和需求。
以下是对两者优缺点的详细比较:电磁流量计优点高精度测量:电磁流量计不受流体密度、粘度、温度、压力变化的影响,在一定电导率范围内,测量精度高。
宽量程比:量程比宽,可达1:100,适用于不同的流量测量需求。
无压力损失:由于测量管内无阻碍流动部件,不会对流体造成额外的压力损失。
良好的耐腐蚀性:可选用不同的电极和衬里材料,适合测量多种腐蚀性介质。
无机械惯性:响应灵敏,可以测量瞬时脉动流量,线性好。
安装简便:直管段要求相对较低,安装和维护相对简单。
局限性对介质电导率有要求:不能测量电导率很低的液体介质,如蒸馏水、石油制品或有机溶剂等。
不能测量非导电介质:如气体、蒸汽等,仅限于测量导电液体。
受温度限制:由于测量管绝缘衬里材料受温度的限制,不能测量高温高压流体。
易受电磁干扰:流量计的传感器信号较小,易受外界电磁干扰的影响。
维护需求:如果测量介质中含有污垢,电极上污垢物达一定厚度可能导致仪表测量误差加大。
成本问题:相比于某些其他类型的流量计,电磁流量计的购置和维护成本可能较高。
超声波流量计优点非接触式测量:不会改变流体的流动状态,不会产生压力损失,且便于安装。
测量范围广:可以测量不易接触、不易观察的流体流量和大管径流量。
可测非导电介质:能够测量强腐蚀性介质和非导电介质的流量。
测量不受流体物性参数影响:测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。
局限性稳定性较差:长时间测量下,换能器可能产生疲劳,影响稳定性。
直管段要求高:如果直管段不能满足标准,测量精度会受到影响。
抗干扰能力差:易受气泡、结垢、泵及其它声源混入的超声杂音干扰,影响测量精度。
温度测量范围有限:一般只能测量温度低于200℃的流体。
安装不确定性:安装的不确定性会给流量测量带来较大误差。
结论综上所述,电磁流量计和超声波流量计各有优劣,选择哪个更好用需要根据具体的应用场景和需求来决定。
仪表精度等级:一、国家是用仪表的最大相对百分误差的绝对值作为准确度等级,其中:一级标准仪表的准确度是:0.005 0.02 0.05二级标准仪表的准确度是:0.1 0.2 0.35 0.5一般工业用仪表的准确度是:1. 1.5 2.5 4.0相对百分误差=(北测参数的测量值-北侧参数的标准值)/(标尺上限值-标尺下限值)*100% 二、我国仪表精度等级是如何划分的?基本误差:基本误差又称引用误差或相对误差,是一种简化的相对误差。
仪表的基本误差定义为:基本误差=(最大绝对误差/仪表量程)*100==(检测仪表的指示值-被测量真值)MAX /(测量上限-测量下限)*100%精确度(简称精度)为了便于量值传递,国家统一规定了仪表的精确度(精度)等级系列。
将仪表的基本误差去掉“±”号及“%”号,便可以套入国家统一的仪表精确度等级系列。
目前,我国生产的仪表常用的精确度等级有0.005,0.02,0.05,0.1,0.2,0.4,0.5,1.0,1.5,2.5,4.0等。
如果某台测温仪表的基本误差为±1.0%,则认为该仪表的精确度等级符合1.0级。
如果某台测温仪表的基本误差为±1.3%,则认为该仪表的精确度等级符合1.5级。
级数越小,精度(准确度)就越高。
科学实验用的仪表精度等级在0.05级以上;工业检测用仪表多在0.1~4.0级,其中校验用的标准表多为0.1或0.2级,现场用多为0.5~4.0级。
工业检测用仪表多在0.1~4.0级。
我在不同的地方看到如下3种不同的说法:1.我国工业仪表等级分为0.1,0.2,0.5,1.0,1.5,2.5,5.0七个等级,并标志在仪表刻度标尺或铭牌上。
2.我国电工仪表共分0.1,0.2,0.5,1.0,1.5,2.5,5.0七个等级。
3.按国家统一划分的仪表精度等级有:0.005、0.02、0.05、0.1、0.2、0.35、0.4、0.5、1.0、1.5、2.5、4.0等.总之没有一种所谓完美的流量计,针对于特定的工况总有种最适宜的流量计倒是不可否认!一、电磁流量计1、优点(1)电磁流量计可用来测量工业导电液体或浆液。
(2)无压力损失。
(3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。
(4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。
2、缺点(1)电磁流量计的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。
另外在高温条件下其衬里需考虑。
(2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。
按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。
如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。
(3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。
变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。
在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。
安装地点不能有振动,不能有强磁场。
在安装时必须使变送器和管道有良好的接触及良好的接地。
变送器的电位与被测流体等电位。
在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。
(4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。
(5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。
如100mm口径仪表内径变化1mm会带来约2%附加误差。
(6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。
为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。
应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。
但改进的仪表结构复杂,成本较高。
(7)价格较高二、超声波流量计1、优点(1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。
它不会改变流体的流动状态,不会产生压力损失,且便于安装。
(2)可以测量强腐蚀性介质和非导电介质的流量。
(3)超声波流量计的测量范围大,管径范围从20mm~5m.(4)超声波流量计可以测量各种液体和污水流量。
(5)超声波流量计测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。
可以做成固定式和便携式两种形式。
2、缺点(1)超声波流量计的温度测量范围不高,一般只能测量温度低于200℃的流体。
(2)抗干扰能力差。
易受气泡、结垢、泵及其它声源混入的超声杂音干扰、影响测量精度。
(3)直管段要求严格,为前20D,后5D。
否则离散性差,测量精度低。
(4)安装的不确定性,会给流量测量带来较大误差。
(5)测量管道因结垢,会严重影响测量准确度,带来显著的测量误差,甚至在严重时仪表无流量显示。
(6)可靠性、精度等级不高(一般为1.5~2.5级左右),重复性差。
(7)使用寿命短(一般精度只能保证一年)。
(8)超声波流量计是通过测量流体速度来确定体积流量,对液体应该测量它的质量流量,仪表测量质量流量是通过体积流量乘以人为设定的密度后得到的,当流体温度变化时,流体密度是变化的,人为设定密度值,不能保证质量流量的准确度。
只能在测量流体速度的同时,又测量了流体密度,才能通过运算,得到真实质量流量值。
(9)价格较高。
三、涡街流量计1、优点(1)涡街流量计无可动部件,测量元件结构简单,性能可靠,使用寿命长。
(2)涡街流量计测量范围宽。
量程比一般能达到1:10。
(3)涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。
一般不需单独标定。
它可以测量液体、气体或蒸汽的流量。
(4)它造成的压力损失小。
(5)准确度较高,重复性为0.5%,且维护量小。
2、缺点(1)涡街流量计工作状态下的体积流量不受被测流体温度、压力、密度等热工参数的影响,但液体或蒸汽的最终测量结果应是质量流量,对于气体,最终测量结果应是标准体积流量。
质量流量或标准体积流量都必须通过流体密度进行换算,必须考虑流体工况变化引起的流体密度变化。
(2)造成流量测量误差的因素主要有:管道流速不均造成的测量误差;不能准确确定流体工况变化时的介质密度;将湿饱和蒸汽假设成干饱和蒸汽进行测量。
这些误差如果不加以限制或消除,涡街流量计的总测量误差会很大。
(3)抗振性能差。
外来振动会使涡街流量计产生测量误差,甚至不能正常工作。
通道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。
大管径影响更为明显。
(4)对测量脏污介质适应性差。
涡街流量计的发生体极易被介质脏污或被污物缠绕,改变几何体尺寸,对测量精度造成极大影响。
(5)直管段要求高。
专家指出,涡街流量计直管段一定要保证前40D后20D,才能满足测量要求。
(6)耐温性能差。
涡街流量计一般只能测量300℃以下介质的流体流量。
四、孔板流量计1、优点(1)标准节流件是全世界通用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量计中亦是唯一的。
(2)结构易于复制,简单、牢固、性能稳定可靠、价格低廉;(3)应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆有产品。
(4)检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产;2、缺点(1)测量的重复性、精确度在流量计中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高。
(2)范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1 ~ 4∶1。
(3)有较长的直管段长度要求,一般难于满足。
尤其对较大管径,问题更加突出;(4)压力损失大;通常为维持一台孔板流量计正常运行,水泵需要附加动力克服孔板的压力损失。
该附加耗电量可直接由压力损失和流量计算确定。
一年约需多耗电数万度,折合人民币数万元。
下表中列出了孔板在正常压力损失情况下的能耗计算结果。
其中运行天数按三百五十天计算,电价按0.35元/度计算。
由表中计算电耗数据可见,孔板的附加运行费用是极高的,而采用弯管流量计该运行费用为零!(5)孔板以内孔锐角线来保证精度,因此对腐蚀、磨损、结垢、脏污敏感,长期使用精度难以保证,需每年拆下强检一次。
(6)采用法兰连接,易产生跑、冒、滴、漏问题,大大增加了维护工作量。
五、热式质量流量计(恒温差)- 优点1. 球阀安装,安装拆卸方便。
并可以带压安装。
2. 基于金氏定律,直接测量质量流量。
测量值不受压力和温度影响。
3. 响应迅速。
4.量程范围大,管道式安装最小可以测量8.8mm管道的流量,最大可以测到30’’5. 插入式类型的流量计,一支流量计可以用于测量多种管径。
- 缺点1.精度不及其他类型流量计,一般为3%。
2.适用范围窄,只能用于测量干燥的非爆炸性的气体,如压缩空气、氮气、氩气及其他中性气体。