什么是红外对管电路
- 格式:doc
- 大小:206.00 KB
- 文档页数:3
红外对管一、简介红外对管是红外线发射管与光敏接收管,或者红外线接收管,或者红外线接收头配合在一起使用时候的总称。
红外线在光谱中波长自0。
76至400微米的一段称为红外线,红外线是不可见光线。
所有高于绝对零度(-273、15℃)的物质都可以产生红外线。
现代物理学称之为热射线。
医用红外线可分为两类:近红外线与远红外线。
红外线发射管红外线发射管在LED封装行业中主要有三个常用的波段,如下850NM、875NM、940NM。
根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备,875NM主要用于医疗设备,940NM波段的主要用于红外线控制设备。
EG:红外线遥控器、光电开关、光电计数设备等。
二、功能说明光敏接收管光敏接收管它是一个具有光敏特征的PN结,属于光敏二极管,具有单向导电性,因此工作时需加上反向电压。
无光照时,有很小的饱和反向漏电流(暗电流)。
此时光敏管不导通。
当光照时,饱和反向漏电流马上增加,形成光电流,在一定的范围内它随入射光强度的变化而增大。
红外线接收管红外线接收管功能与光敏接收管相似只是不受可见光的干扰,感光面积大,灵敏度高,属于光敏二极管,一般只对红外线有反应。
红外线接收头红外线接收头就是在红外线接收管的基础上增加了对微弱信号进行放大的处理的电路,类似与三极管的放大效果。
三、实际应用红外对管电路连接图(对不同型号红外对管,可适当调整电阻以达到相关电气参数)1、AD采样实现避障功能针对一些红外接收管容易受到可见光的影响,从而改变其阻值,容易造成系统的误判。
可以考虑采用上面的电路。
100-100k欧姆,是红外接收管在不同光线条件下(室内-阳光直射)的阻值的大小。
在正常的光线下通过IOA0口A、D采集到一个电压值作为一个参考电压。
当随着光线变化时,IOA0口读进来的电压值也就发生变化。
这个使用通过IOA4、IOA5、IOA6、IOA7依次选通,选择最接近参考值的电压作为判断电压。
红外对管特性简介:直径:3mm,波长:940nm,工作电压:1.2V,工作电流:20mA,测量距离:<20cm。
波段为红外光,受可见光干扰小。
红外对管电路连接图(对不同型号红外对管,可适当调整电阻以达到相关电气参数)1、AD采样实现避障功能针对一些红外接收管容易受到可见光的影响,从而改变其阻值,容易造成系统的误判。
可以考虑采用上面的电路。
100-100k欧姆,是红外接收管在不同光线条件下(室内-阳光直射)的阻值的大小。
在正常的光线下通过IOA0口A/D采集到一个电压值作为一个参考电压。
当随着光线变化时,IOA0口读进来的电压值也就发生变化。
这个使用通过IOA4、IOA5、IOA6、IOA7依次选通,选择最接近参考值的电压作为判断电压。
该电路可以避免可见光带来的干扰,检测障碍物的距离在0-15cm。
效果不错。
缺点是引用占用IO口较多,操作较为复杂。
2、直流驱动避障电路直流驱动红外探测器电路的设计与参数计算电路如图所示。
W1和R1及V1构成简单直流发光二极管驱动电路,调节W1可以改变发光管的发光光强,从而调节探测距离,NE555及其外围元件构成施密特触发器,其触发电平可通过W2 控制,接收管V2和电阻R2构成光电检测电路。
通过NE555第3脚输出的TTL电平可以直接驱动单片机I/O口。
由于555输出信号为TTL电平,单片机检测方便。
缺点同样是容易受可见光干扰。
3、交流调制驱动避障电路LM567及其外围芯片构成音频检频器,其检频频率f0由R4、C5决定:。
其中f0为检频频率,当R4=10K,C5=222时,f0=41KHz。
这一振荡信号经过V3扩流后,驱动发光管,这样处理后可以保证发光频率与检频频率严格一致使LM567的输出仅与光强有关。
为进一步提升探测距离,我们还设立了一级交流放大器,其增益约为240倍,虽然这样大的放大倍数放大器的线性和稳定性会较差,但对于频率检测不会造成太大的影响。
4、检测液滴电路无液滴落下时,接收管与发射管正对,接收管接收到的光强较强,有液滴滴下时,下落中的水滴对红外光有较强的漫反射、吸收及一定的散射作用,导致接收光强的较大改变,接收管接收到的信号经一级施密特触发器,送单片机的中断口,据此就可以正确的探测出液滴的滴落。
红外对管使用说明1. 红外对管的概述红外对管(Infrared Detector,简称IR)是一种能够感测红外线辐射并输出电信号的器件。
它在人们日常生活中被广泛应用于红外传感、红外遥控以及红外通信等方面。
本文将对红外对管的原理、使用方法以及注意事项进行详细介绍。
2. 红外对管的工作原理红外对管的工作原理是基于光电效应。
当红外辐射照射到管子的光敏区域时,管子内部产生电压信号。
红外对管内部通常由光敏电阻、电压比较器和输出电路组成。
3. 红外对管的使用方法3.1 连接电路首先,将红外对管的接收端和发送端分别与电路板上的相应引脚连接。
注意在连接时要遵循正确的极性,一般红线为正极,黑线为负极。
3.2 供电红外对管通常需要外部供电,可以通过直流电源或电池进行供电。
确保供电电压与红外对管的额定电压一致,以免损坏设备。
3.3 设置工作模式红外对管一般具有多种工作模式可供选择,例如连续工作模式和脉冲工作模式。
根据需求设置合适的工作模式,并通过电路板上的开关或控制接口进行设置。
3.4 防护措施在使用红外对管时,需要避免与其他光源产生干扰,以免影响正常工作。
同时,要注意保护红外对管的光敏区域不受外界杂光照射,避免误判。
4. 红外对管的应用领域红外对管由于其高灵敏度和快速响应的特点,在很多领域得到广泛应用。
4.1 红外传感红外对管可以用于温度检测、人体感应、烟雾传感等领域。
例如,在智能家居系统中,红外对管可以通过感知人体的红外辐射来实现自动照明和安防监控功能。
4.2 红外遥控红外对管常用于电器遥控器中,通过发送和接收红外信号来实现对电器设备的遥控操作。
用户只需按下遥控器上的按钮,红外对管就能够感应到红外信号并将其转换成电信号,然后通过电路实现相应的功能。
4.3 红外通信红外对管在无线通信领域也有着广泛的应用。
通过发送和接收红外信号,可以实现手机之间的数据传输、电脑与电视之间的文件传输等。
5. 红外对管的注意事项5.1 温度环境红外对管对温度环境比较敏感,应确保在合适的工作温度范围内使用。
红外对管原理红外对管是一种常用的红外传感器,具有高灵敏度、快速响应和相对较低的成本等特点。
该传感器主要由红外发光二极管(IR LED)和红外接收二极管(IR Photodiode)组成。
红外对管的工作原理基于光电效应,即将红外光转化为电信号。
首先,红外发光二极管会发射一定频率的红外光束。
这些红外光束通过氮化镓(GaN)或砷化镓(GaAs)等材料制成的发光器件,其能带宽度与所释放的光子的波长相匹配。
红外发光二极管的工作电流通过在PN结上的注入和偏置,使电流流过发光材料,从而激发产生光子。
接下来,红外光束会穿过环境传播到红外接收二极管。
红外接收二极管一般采用硅(Si)或锗(Ge)等材料,其材质特性与红外光波长相匹配,因此能够高效地吸收红外光。
当红外光照射到红外接收二极管上时,它会产生一个光电流,这是由于光子能量转化为材料中的电子能量所引起的。
接下来,该电流信号会被传感器的电路进行放大和处理。
常见的处理电路包括放大电路、滤波电路和输出电路。
放大电路通常用于放大由红外接收二极管产生的微弱电流信号,以便进行后续处理。
滤波电路主要用于滤除噪声信号,提高传感器的信噪比。
输出电路则可以将处理后的电信号转换为数字信号或模拟信号。
最后,经过处理的信号被送至控制器或微处理器进行进一步的分析和判断,以实现不同的应用需求。
例如,可以通过监测红外发射二极管和接收二极管之间的反射和干扰来检测到物体的存在与否。
当有物体进入传感器的感知范围时,红外光线将被物体吸收或反射,从而改变接收二极管上的光电流大小,进而被传感器检测到。
通过监测光电流的变化,可以判断物体的存在与否,并进行相应的控制操作。
红外对管主要应用于人体检测、自动照明、安防系统、无人驾驶、自动门禁系统等领域。
通过感知物体的红外特征,红外对管可以实现对环境的快速反应和准确控制。
在人体检测领域,红外对管可以通过检测人体的红外辐射来实现人体的识别和跟踪。
在自动照明领域,红外对管可以通过感知到人体或动物的存在来自动开启或关闭照明设备。
红外对管特性简介:直径:3mm,波长:940nm,工作电压:1.2V,工作电流:20mA,测量距离:<20cm。
波段为红外光,受可见光干扰小。
红外对管电路连接图(对不同型号红外对管,可适当调整电阻以达到相关电气参数)1、AD采样实现避障功能针对一些红外接收管容易受到可见光的影响,从而改变其阻值,容易造成系统的误判。
可以考虑采用上面的电路。
100-100k欧姆,是红外接收管在不同光线条件下(室内-阳光直射)的阻值的大小。
在正常的光线下通过IOA0口A/D采集到一个电压值作为一个参考电压。
当随着光线变化时,IOA0口读进来的电压值也就发生变化。
这个使用通过IOA4、IOA5、IOA6、IOA7依次选通,选择最接近参考值的电压作为判断电压。
该电路可以避免可见光带来的干扰,检测障碍物的距离在0-15cm。
效果不错。
缺点是引用占用IO口较多,操作较为复杂。
2、直流驱动避障电路直流驱动红外探测器电路的设计与参数计算电路如图所示。
W1和R1及V1构成简单直流发光二极管驱动电路,调节W1可以改变发光管的发光光强,从而调节探测距离,NE555及其外围元件构成施密特触发器,其触发电平可通过W2 控制,接收管V2和电阻R2构成光电检测电路。
通过NE555第3脚输出的TTL电平可以直接驱动单片机I/O口。
由于555输出信号为TTL电平,单片机检测方便。
缺点同样是容易受可见光干扰。
3、交流调制驱动避障电路LM567及其外围芯片构成音频检频器,其检频频率f0由R4、C5决定:。
其中f0为检频频率,当R4=10K,C5=222时,f0=41KHz。
这一振荡信号经过V3扩流后,驱动发光管,这样处理后可以保证发光频率与检频频率严格一致使LM567的输出仅与光强有关。
为进一步提升探测距离,我们还设立了一级交流放大器,其增益约为240倍,虽然这样大的放大倍数放大器的线性和稳定性会较差,但对于频率检测不会造成太大的影响。
4、检测液滴电路无液滴落下时,接收管与发射管正对,接收管接收到的光强较强,有液滴滴下时,下落中的水滴对红外光有较强的漫反射、吸收及一定的散射作用,导致接收光强的较大改变,接收管接收到的信号经一级施密特触发器,送单片机的中断口,据此就可以正确的探测出液滴的滴落。
红外线发射二极管驱动电路[资料] 红外线发射二极管驱动电路红外线发光二极管驱动电路使用红外线发光二极管时,驱动电路的设计相当重要,好的设计能使红外线发光二极管的发光效率最高,且使用寿命增长,所以在此要特别介绍驱动电路。
1.电阻负载驱动:红外线发射二极管在使用时,须由电流驱动,又其发光强度是与电流成比例变化,所以电流控制方式的重要性就相对的增加了。
图8所示为其电阻负载驱动方式,这是最简单的驱动方式,驱动电源是以直流为之,根据图9所示的正向电压、电流特性可绘出其负载线,并求出其工作点。
该工作点所对应的电压、电流分别为VF及IF ,其算式为:图8发光二极管的驱动电路图9发光二极管正向电流,电压特性及工作点在进行设计时,最重要的是在IF电流的控制,设计出的IF不能太大,若大于IF(max)则元件有烧毁之虑,IF若太小,则其发射束就会变小。
另外在电源电压的取得亦须注意其稳定性,为求得发射光束的稳定,电源电压的稳定要求相对的提高,所以在精密的红外线控制中,应尽量做到电源的稳定,有时为求其稳定性也可将电源提高,电源提高之后,为保持电流的不变,所使用的限流电阻亦相对的提高,此时电源的微量变动,对电流影响就不大了,以下就介绍电阻负载驱动设计例:假设电源电压VCC=5V,电流IF取小于IF (max)为20mA,由图8的特性曲线求得电压VF=1.2V代入驱动公式可得:得R =190Ω,此时R须采用190Ω,红外线发射二极管即可取得20mA的驱动电流。
2.多个红外线发射二极管的串、并联驱动有时候用一个发光二极管的发射,其输出能力是不够的,因此也可同时采用多个发光二极管做发射,以加强其输出能力,多个红外线发光二极管的驱动有两种,一是串联,一是并联。
图10是串联驱动的方式,图11是并联驱动的方式,每一支路电流,所以电源总共提供了N×If的电流。
图10串联的发光二极管的驱动方式图11并联的发光二极管之驱动方式3.用晶体管做为定电流的驱动电路为求红外线发光二极管所发射出光束的稳定,也可借定电流电路驱动之,定电流电路的设计可采用如图12所示三种方式为之,图中采用稳压二极管做定电压,可以得到IE电流,又,所以IF?(Vz-VBE)/RE,式中VZ,VBE,RE皆为定数,所以IF固定不变,因此可以在晶体集极串接很多个红外线发光二极管。
红外对管判断及常用电子元器件检测方法与经验现在,我们习惯把红外线发射管与红外线接收管称之红外对管。
红外对管的外形与普通圆形的发光二极管类似。
初次接触红外对管者。
较难区分发射管与接收管。
本文介绍几种简便的识别方法。
通过在网上收集的资料与自己的实践整理的一些方法,希望对大家有一点用处。
第一种方法红外发射管通常是透明的,红外接收管是黑色的。
万用表推断:数字表二极管档红笔接的是正极时通(发射管),接收管反之。
第二种方法红外发射管,管芯中央凹陷,类似聚光罩的形状红外接收管,管芯中央的平台上有红外感光电极。
红外对管的两引脚1长1短,长引脚是正极,与普通二极管相同。
第三种方法用三用表测量识别可用500型或者其它型号指针式三用表的Rx1k电阻档测量红外对管的极间电阻,以推断红外对管。
判据:一.在红外管的端部不熟光线照射的条件下调换表笔测量,发射管的正向电阻小,反向电阻大,且黑表笔接正极(长引脚)时,电阻小的(1ki-20k)是发射管。
正反向电阻都很大的是接收管。
二.黑表笔接负极(短引脚)时电阻大的是发射管,电阻小同时三用表指针随着光线强弱时,指针摆动的是接收管。
(注:1.黑表笔接正极红表笔接负极时测量正向电阻,2.电阻大是指三用表指针基本不动。
)第四种方法:1.白色的是发射管,蓝色的是接收管2.长的一脚是(阳极)正极,短的一脚是(阴极)负极。
3.接收管是三极管,长的是c,短的是e。
有光时正向导通。
原理:当发光二极管发出的光反射回来时,三极管导通输出低电平。
补充:Prp220反射型红外对管引脚判别:你能够用两只万用表的R*10档分别接它们得两端电表显示都较小时黑表笔是阳极、集电极。
你也能够用通电得方法。
再用手机摄像头看哪个在发光。
这方法最直接。
常用电子元器件检测方法与经验元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的有关参数,推断元器件的是否正常,不是一件千篇一律的事,务必根据不一致的元器件使用不一致的方法,从而推断元器件的正常与否。
红外对管的典型应用电路红外对管是一种常见的红外接收器件,广泛应用于红外遥控、红外测距、红外反射传感等领域。
本文将介绍红外对管的典型应用电路。
一、红外对管的基本原理红外对管是一种具有红外敏感元件的光电转换器件。
它的工作原理基于红外光的吸收和转换。
当红外光照射到红外对管上时,红外光被红外敏感元件吸收,并产生电流信号。
通过对这个电流信号的处理和分析,可以实现对红外光的检测和测量。
红外对管的典型应用电路主要包括信号检测电路、放大电路、滤波电路以及输出电路等部分。
1. 信号检测电路红外对管的信号检测电路主要用于检测红外光的存在与否。
它通常由一个光敏二极管和一个电阻组成。
当红外光照射到光敏二极管上时,光敏二极管产生电流,通过电阻产生的电压信号可以检测到红外光的存在。
2. 放大电路红外对管输出的电流信号比较微弱,需要经过放大电路进行放大。
放大电路通常采用运放作为放大元件,通过调节运放的增益大小,可以实现对红外光信号的放大。
3. 滤波电路由于红外对管对其他频段的光也有一定的响应,为了减少干扰和提高检测精度,需要在电路中加入滤波电路。
滤波电路可以通过选择合适的滤波器件,如电容、电感等,来滤除非红外光信号。
4. 输出电路红外对管经过信号检测、放大和滤波等处理后,最终需要输出一个电压或电流信号。
输出电路可以根据具体的应用需求选择合适的电路设计,如电压输出、电流输出或开关输出等。
三、红外对管的典型应用场景1. 红外遥控红外对管广泛应用于遥控器中,用于接收和解码遥控器发送的红外信号。
当用户按下遥控器上的按键时,遥控器会发送一个特定的红外信号,红外对管接收到这个红外信号后,将其转换为电信号,通过解码电路解码后,可实现对电视、空调、音响等家电的遥控操作。
2. 红外测距红外对管还可以用于测量物体的距离。
通过发射红外光,并接收反射回来的红外光,可以计算出物体与红外对管的距离。
这种红外测距技术被广泛应用于自动门、机器人导航、智能驾驶等领域,实现对物体距离的快速测量和定位。
红外收发对管1、红外收发对管就是一种利用红外线的开关管,接受管在接受与不接受红外线时电阻发生明显的变化,利用外围电路可以时输出产生明显的高低电平的变化,高低电平的变化输入单片机就可使之识别,从而实现智能控制。
我们使用的单片机就是凌阳61板,经过我们试验,在输入电压小于1、5伏时单片机识别为低电平,在输入电压大于1、85伏时单片机识别为高电平。
2、用途:蔽障、计数(记液体点滴的个数、记玻璃小球的个数、记小车轮子的转数)、寻迹3、红外发射接收电路:3.1输入信号采用38KHz的调制波红外发射电路由电阻R2、三极管Q2、电阻R3与红外发射二极管D1构成,如图接收电路由红外接收管与放大电路组成,如图2、2。
Q4接收到红外信号后,经过三极管Q1进行第一级放大,放大后的信号送入三极管Q3进行第二级放大,通过Rx就可以得到放大后的红外接收信号。
为了降低干扰, Tx一般采用调制方式,这里,其波形如图2、3。
图2、3 38KHz调制波对应图2、3的调制波,如果VCC为5V,发射接收对管的有效距离(单片机可检测)大概为20cm;如果VCC为3V,发射接收对管的有效距离(单片机可检测)大概为10cm。
3.2直接采用直流电源本电路电路简单,性能稳定,安装方便,但距离比较近。
当阻挡了接收管接收红外线的强度时,产生一个低电平的脉冲信号,由于对管的发射口径较小,单光束发射,小球相对红外装置正交落下时,很容易检测处理。
使用此电路寻迹实现小车跟黑色轨道行驶,在行驶过程中不超出该线。
考虑到黑线与白纸组合,我们采用红外对管辨认路面的黑白两种不同状态。
由于红外对管对黑白色的感应比较明显,又不需要很高的精度,适用于简单的寻迹。
但外部影响比较大,所以须将接收头用黑皮套套上以提高信号的接受率。
该小车采用三对红外对管, 通过她们送入单片机信号的不同,将其逻辑组合后向小车的各个电机发送启动信号,从而,驱动小车实现寻迹功能。
红外对管的工作原理
红外对管是一种特殊的电子元件,它主要由两个特殊的半导体器件组成:一个发射红外光的红外发射二极管(LED)和一个接收红外光的红外检测二极管(PD)。
它们分别被封装在一个小的玻璃管内,加上一个金属外壳,形成了一个小型的电子元件——红外对管。
红外对管的工作原理是依靠红外发射二极管(LED)不断地发出红外光束,而红外检测二极管(PD)将红外光束反射给LED,当LED发出的红外光束命中目标物体时,部分红外光束会被物体反射回给PD,PD检测到反射回来的红外光束后,开关电源,从而实现开关控制的功能。
红外对管是一种自动控制装置,它和普通的电子元件有很大的不同,它不需要电源就可以运行,也不需要添加任何外部信号,它只需要检测到红外光束就可以自动控制开关电源。
红外对管的结构可分为两个部分:红外发射二极管(LED)和红外检测二极管(PD)。
其中,LED由一个玻璃管和一个金属外壳所封装而成,金属外壳上有一个阴极;PD由一个半导体器件、一个光学镜片和一个金属外壳组成,PD的金属外壳上有一个阳极。
LED的工作原理是将一个电流通过LED,使LED发射红外光束,而PD的工作原理是当红外光束照射到PD上时,PD会发生静电效应,使阳极极性发生反转,从而产生电流,从而实现开关控制的功能。
红外对管的工作原理比较复杂,但它的原理可以归结为三个步骤:第一,LED发射红外光束;第二,红外光束照射到物体上,并反射回PD;第三,PD检测到反射回来的红外光束,从而实现开关控制的功能。
红外对管的应用非常广泛,它可以用来控制电气设备的开关,如灯光、报警器等,也可以用来检测物体的运动状态,如门窗的开关状态、安全保护装置等,红外对管为人们提供了一种安全、快捷、省力的控制方式。
红外对管使用说明红外对管是一种常见的红外传感器,它可以用来检测环境中的红外辐射并将其转化为电信号。
红外对管通常由发射管和接收管组成,两者配合工作以形成一个闭环电路。
在这篇文章中,我们将介绍红外对管的基本工作原理、使用注意事项和一些应用实例,以帮助读者更好地了解和使用红外对管。
首先,我们来了解一下红外对管的基本工作原理。
红外对管中的发射管会发射出红外辐射,而接收管会接收周围环境中的红外辐射。
当有物体进入红外对管的侦测范围内,物体会阻挡红外辐射的传播,导致接收管接收到的红外辐射量减少,从而改变了闭环电路中的电流或电压信号。
通过测量这个信号的变化,我们可以判断是否有物体进入了红外对管的侦测范围内。
在使用红外对管时,有一些注意事项需要牢记。
首先,红外对管在工作时需要与外部电路连接,因此需要注意正确连接发射管和接收管的引脚,确保电路连接正确。
其次,在安装时需要注意红外对管的侦测范围和侦测角度。
红外对管的侦测范围和角度是固定的,因此需要根据实际需求选择适合的型号和安装位置,以确保能够准确侦测到目标物体。
此外,红外对管对环境光的抗干扰能力较差,因此在使用时需要避免暴露在强光源或日光下,以免影响侦测效果。
红外对管有广泛的应用领域,下面我们来介绍一些常见的应用实例。
首先,红外对管可以用于安全防护系统。
在门禁系统中,我们可以将红外对管安装在门框上,当有人或物体通过门框时,红外对管可以及时侦测到,并触发相应的安全措施,如报警或开启门禁机制。
其次,红外对管也可以用于自动照明系统。
例如,在走廊或过道中安装红外对管,当有人靠近时,红外对管可以感知到并自动开启照明设备,提供足够的光照。
此外,红外对管还可以用于自动门、无人机导航、智能家居等领域。
总之,红外对管是一种常见且实用的红外传感器,通过发射管和接收管的配合工作,可以侦测环境中的红外辐射并转化为电信号。
在使用红外对管时,需要注意正确连接电路、选择适合的型号和安装位置,并避免暴露在强光源下以免影响侦测效果。
三红外发射二极管(光敏二极管)红外发射管和红外接收管广泛应用于遥控、自控、检测、计数等多个领域已成为备受关注的常用器件之一。
红外发射二极管由红外辐射效率高的材料(常用砷化镓GaAs)制成PN结,外加正向偏压向PN结注入电流激发中心波长为830 -- 950nm红外光。
一般来说,其红外辐射功率与正向工作电流成正比,但在接近正向电流的最大额定值时,器件的温度因电流的热耗而上升,使光发射功率下降。
红外二极管电流过小,将影响其辐射功率的发挥,但工作电流过大将影响其寿命,甚至使红外二极管烧毁。
红外发光二极管的伏安特性与普通硅二极管极为相似。
当电压越过正向阈值电压(约0.8V左右)电流开始流动,而且是一很陡直的曲线,表明其工作电流对工作电压十分敏感。
因此要求工作电压准确、稳定,否则影响辐射功率的发挥及其可靠性。
红外发光二极管辐射功率随环境温度的升高(包括其本身的发热所产生的环境温度升高)会使其辐射功率下降。
红外灯特别是远距离红外灯,热耗是设计和选择时应注意的问题。
红外发光二极管最大辐射强度一般在光轴的正前方,并随辐射方向与光轴夹角的增加而减小。
辐射强度为最大值的50%的角度称为半强度辐射角。
不同封装工艺型号的红外发光二极管的辐射角度有所不同。
判别红外发光二极管的正、负电极时。
可观察红外发光二极管两个引脚长短,通常长引脚为正极,短引脚为负极。
因红外发光二极管呈透明状,所以管壳内的电极清晰可见,内部电极较宽较大的一个为负极,而较窄且小的一个为正极。
将万用表置于R×1k挡,测量红外发光二极管的正、反向电阻,通常,正向电阻应在30kΩ左右,反向电阻应在500kΩ以上,这样的管子才可正常使用。
要求反向电阻越大越好。
四红外接收二极管红外接收二极管的外形和发射管基本上一样,仅从外观上有时较难分辨,可用观察和测量方法识别管脚极性。
若从外观上识别,常见的红外接收二极管外观颜色呈黑色。
识别引脚时,面对受光窗口,从左至右,分别为正极和负极。
红外对光管的原理及应用简介:红外线接收管是在LED行业中命名的,是专门用来接收和感应红外线发射管发出的红外线光线的。
一般情况下都是与红外线发射管成套运用在产品设备当中。
详细可参阅:广州市光汇电子有限公司的产品说明。
特征与原理:红外线接收管是将红外线光信号变成电信号的半导体器件,它的核心部件是一个特殊材料的PN结,和普通二极管相比,在结构上采取了大的改变,红外线接收管为了更多更大面积的接受入射光线,PN结面积尽量做的比较大,电极面积尽量减小,而且PN结的结深很浅,一般小于1微米。
红外线接收二极管是在反向电压作用之下工作的。
没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。
当有红外线光照时,携带能量的红外线光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对(简称:光生载流子)。
它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。
这种特性称为“光电导”。
红外线接收二极管在一般照度的光线照射下,所产生的电流叫光电流。
如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。
分类:红外线接收管有两种,一种是光电二极管,另一种是光电三极管。
光电二极管就是将光信号转化为电信号,光电三极管在将光信号转化为电信号的同时,也把电流放大了。
因此,光电三极管也分为两种,分别别是NP N型和PN P型。
作用:红外接收管的作用是进行光电转换,在光控、红外线遥控、光探测、光纤通信、光电耦合等方面有广泛的应用。
如何选择红外线接收管:红外线最重要的参数就是光电信号的放大倍率,一般的有1000-1300 1300-1800 1800-2500,这些对灵敏度有决定作用。
红外收发对管1、红外收发对管是一种利用红外线的开关管,接受管在接受和不接受红外线时电阻发生明显的变化,利用外围电路可以时输出产生明显的高低电平的变化,高低电平的变化输入单片机就可使之识别,从而实现智能控制。
我们使用的单片机是凌阳61板,经过我们试验,在输入电压小于1.5伏时单片机识别为低电平,在输入电压大于1.85 伏时单片机识别为高电平。
2、用途:蔽障、计数(记液体点滴的个数、记玻璃小球的个数、记小车轮子的转数)、寻迹3、红外发射接收电路:3 . 1输入信号采用38KHZ的调制波红外发射电路由电阻R2三极管Q2电阻R3与红外发射二极管D1构成,如图vcc接收电路由红外接收管和放大电路组成,如图2.2。
Q4接收到红外信号后,经过三极管Q1进行第一级放大,放大后的信号送入三极管Q3进行第二级放大,通过Rx就可以得到放大后的红外接收信号。
为了降低干扰,Tx 一般采用调制方式,这里,其波形如图 2.3图2.3 38KHZ调制波对应图2.3的调制波,如果VCC为5V,发射接收对管的有效距离(单片机可检测)大概为20cm如果VCC为3V,发射接收对管的有效距离(单片机可检测)大概为10cm3. 2直接采用直流电源本电路电路简单,性能稳定,安装方便,但距离比较近。
当阻挡了接收管接收红外线的强度时,产生一个低电平的脉冲信号,由于对管的发射口径较小,单光束发射,小球相对红外装置正交落下时,很容易检测处理。
使用此电路寻迹实现小车跟黑色轨道行驶,在行驶过程中不超出该线。
考虑到黑线和白纸组合,我们采用红外对管辨认路面的黑白两种不同状态。
由于红外对管对黑白色的感应比较明显,又不需要很高的精度,适用于简单的寻迹。
但外部影响比较大,所以须将接收头用黑皮套套上以提高信号的接受率。
该小车采用三对红外对管,通过他们送入单片机信号的不同,将其逻辑组合后向小车的各个电机发送启动信号,从而,驱动小车实现寻迹功能。
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。
光电传感器工作原理(红外线光电传感器原理)光电传感器工作原理(红外线光电传感器原理)光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。
光电传感器在一般情况下,有三部分构成,它们分为:发送器、接收器和检测电路。
发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。
光束不间断地发射,或者改变脉冲宽度。
接收器有光电二极管、光电三极管、光电池组成。
在接收器的前面,装有光学元件如透镜和光圈等。
在其后面是检测电路,它能滤出有效信号和应用该信号。
此外,光电开关的结构元件中还有发射板和光导纤维。
三角反射板是结构牢固的发射装置。
它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。
它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。
分类和工作方式⑴槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。
发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。
但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。
输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。
槽形开关的检测距离因为受整体结构的限制一般只有几厘米。
⑵对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。
由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。
它的检测距离可达几米乃至几十米。
使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。
⑶反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。
正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。
红外管原理
红外管是一种能够接收和发射红外线的电子元件,它在很多领域都有着重要的
应用。
红外管的原理是基于物质对红外线的吸收和辐射特性,下面我们将详细介绍红外管的工作原理和应用。
首先,红外线是一种波长较长的电磁波,它的波长范围在0.75μm至1000μm
之间。
红外线在自然界中普遍存在,而红外管则是利用半导体材料的特性来接收和发射红外线。
当红外线照射到红外管上时,半导体材料会吸收红外线的能量,使得电子激发并跃迁到导带中,从而产生电流信号。
这个过程就是红外管接收红外线的原理。
其次,红外管也可以通过加热半导体材料来发射红外线。
当电流通过红外管时,半导体材料会受热膨胀,使得电子跃迁释放能量,产生红外线辐射。
这种原理被广泛应用于红外传感器、红外遥控器、红外热像仪等领域。
红外管的工作原理使得它在安防监控、无人机导航、医疗诊断、工业生产等领
域都有着重要的应用。
例如,在安防监控中,红外管可以通过接收红外线来检测人体的热量,实现对人体活动的监测和报警;在无人机导航中,红外管可以通过发射和接收红外线来实现避障和定位功能;在医疗诊断中,红外管可以通过检测人体发出的红外线来实现体温测量和疾病诊断;在工业生产中,红外管可以通过检测物体的红外辐射来实现测温和检测物体的位置。
总之,红外管作为一种重要的光电器件,其工作原理和应用具有广泛的实际意义。
通过深入理解红外管的原理,我们可以更好地应用它在各个领域,推动科技的发展和社会的进步。
红外接收管的工作原理
红外接收管是一种可以接收红外线信号并将其转换成电信号的电子元件。
它主要由光敏电阻、信号处理电路和输出电路等部分组成。
其工作原理基于红外线的特性和光电效应。
首先,我们先来了解一下红外线的特性。
红外线是一种波长较长、频率较低的电磁波,它在光谱中处于可见光和微波之间。
人眼不能直接感知红外线的存在,但许多物体在发热时会辐射出红外线。
因此,红外线在许多领域有着广泛的应用,比如遥控器、红外感应器、红外测温仪等。
红外接收管的工作原理基于光电效应,即当光线照射到半导体材料上时,会激发材料中的自由电子和空穴,从而形成电子-空穴对。
在红外接收管中,光线照射到光敏电阻上时,光能会使得光敏电阻的电阻值发生变化,从而改变电路中的电流。
红外接收管中的光敏电阻一般采用铋硅化铋(Bi-Sb)等材料制成,它具有对红外线较高的敏感度。
当有红外线照射到光敏电阻上时,其电阻值会下降,导致电路中的电流增大。
接着,信号处理电路会将这个微小的电流信号放大并转换成数字信号,以便于后续的处理和解码。
在红外遥控器中,当用户按下遥控器上的按键时,红外发射器会发送特定的红外信号。
这些红外信号被红外接收管接收后,经过信号处理电路的处理,最终转换
成可以被电视、空调等电器设备识别的数字信号。
这样,就实现了遥控器对电器设备的控制。
红外接收管的工作原理基于红外线的特性和光电效应,它利用光敏电阻对红外线的敏感性,将红外线转换成电信号,从而实现对各种红外信号的接收和处理。
在现代社会中,红外接收管广泛应用于各种电子设备中,为人们的生活和工作提供了极大的便利。
红外对管
特性简介:
直径:3mm,波长:940nm,工作电压:1.2V,工作电流:20mA,测量距离:<20cm。
波段为红外光,受可见光干扰小。
红外对管电路连接图(对不同型号红外对管,可适当调整电阻以达到相关电气参数)
1、AD采样实现避障功能
针对一些红外接收管容易受到可见光的影响,从而改变其阻值,容易造成系统的误判。
可以考虑采用上面的电路。
100-100k欧姆,是红外接收管在不同光线条件下(室内-阳光直射)的阻值的大小。
在正常的光线下通过IOA0口A/D采集到一个电压值作为一个参考电压。
当随着光线变化时,IOA0口读进来的电压值也就发生变化。
这个使用通过IOA4、IOA5、IOA6、IOA7依次选通,选择最接近参考值的电压作为判断电压。
该电路可以避免可见光带来的干扰,检测障碍物的距离在0-15cm。
效果不错。
缺点是引用占用IO口较多,操作较为复杂。
2、直流驱动避障电路
直流驱动红外探测器电路的设计与参数计算电路如图所示。
W1和R1及V1构成简单直流发光二极管驱动电路,调节W1可以改变发光管的发光光强,从而调节探测距离,NE555及其外围元件构成施密特触发器,其触发电平可通过W2 控制,接收管V2和电阻R2构成光电检测电路。
通过NE555第3脚输出的TTL
电平可以直接驱动单片机I/O口。
由于555输出信号为TTL电平,单片机检测方便。
缺点同样是容易受可见光干扰。
3、交流调制驱动避障电路
LM567及其外围芯片构成音频检频器,其检频频率f0由R4、C5决定:。
其中f0为检频频率,当R4=10K,C5=222时,f0=41KHz。
这一振荡信号经过V3扩流后,驱动发光管,这样处理后可以保证发光频率与检频频率严格一致使LM567
的输出仅与光强有关。
为进一步提升探测距离,我们还设立了一级交流放大器,其增益约为240倍,虽然这样大的放大倍数放大器的线性和稳定性会较差,但对于频率检测不会造成太大的影响。
4、检测液滴电路
无液滴落下时,接收管与发射管正对,接收管接收到的光强较强,有液滴滴下时,下落中的水滴对红外光有较强的漫反射、吸收及一定的散射作用,导致接收光强的较大改变,接收管接收到的信号经一级施密特触发器,送单片机的中断口,据此就可以正确的探测出液滴的滴落。
解决了因液体透明而使得发射不明显的问题。
5、检测液面电路一
假设在输液时,当瓶中液体即将流完时需要提醒护士拔针,这样时候我们的红外液面检测传感器就派上用场了。
采用光电检测技术。
红外对管置于输液瓶两侧,距离瓶口约2~3厘米。
当红外对管之间介质发生变化(由水到空气)时候,光电接收管的输出信号发生相应变化。
将这一输出信号送入单片机。
液面检测电路主要由三部分组成:调制与解调部分、红外发射与接收部分、放大部分,参见图2。
对于来自输液现场的环境干扰光,采用调制与解调技术来提高抗干扰能力。
频率发生电路是由一个555定时器组成的占空比可调的方波发生器。
调制解调接收电路由运放LM741和解调芯片LM567组成。
单片机通过检测LM567引角8的电平变化实现液位检测。
解决了因液体透明而使得发射不明显的问题。
6、检测液面电路二
原理同滴速检测电路,由于红外光在空气及水中的吸收系数不同,从而通过空气和水后接收到的光强也有不同。
为准确的判断液位是否到达警界线,增强抗干扰能力,减小误判的几率,在接收端加一比较器,比较电平可以依据接收灵敏度进行调整。
后经两级施密特触发器整形后送单片机中断进行外理。
解决了因液体透明而使得发射不明显的问题。