等离子气化熔融危废玻璃无害化技术PPT幻灯片
- 格式:ppt
- 大小:4.42 MB
- 文档页数:42
工艺方法——等离子体处理危险废物技术工艺简介等离子体处理危险废物技术是利用等离子体炬产生的高温热等离子体将危险废物快速分解破坏,其中有机物热解为可燃性的小分子物质,无机物被高温熔融后生成类玻璃体残渣。
该技术具有反应速度快、二次污染小、适用范围宽等特点,它克服了传统处理技术如焚烧、化学处理等二次污染大、工艺复杂、对废物有选择性等缺点,特别适合于医疗垃圾、石棉、焚烧飞灰、电池、轮胎、放射污染等固体危险废物的环保处理。
与常规焚烧技术相比,等离子体处理技术是一种环境友好技术,处理彻底,无二次污染,碳排放少。
等离子体通常是含有大量电子、离子、分子、原子以及自由基的电离气体,但其宏观上呈电中性,并具有很高的化学活性。
热等离子体的中心温度可高达2万℃,火炬边缘温度也可达到3000℃。
等离子体技术能彻底摧毁各种有毒有害物质,是一种有效消除污染,用途广泛的新技术。
等离子体处理废弃物工艺的核心技术是等离子体发生器(等离子体炬),就发生器而言,应用最多的是直流电弧等离子体。
等离子体处理危险废物的独特处理方法表现出安全、高效、无二次污染和广泛适用性,它为危险废物及城市固体废物的无害化、减容和资源化回收提供了一个十分科学有效的方法。
技术特点由于高温、高焓、高能粒子密度大的热等离子体处理固体废弃物具有以下特点:反应速率快,处理量大,减重率、减容率高;高温反应环境可以得到较大的淬冷速率,反应器中陡峭的温度梯度也对淬冷过程有利;开、停车时间短;所需氧化气体少、气流量小、易于控制,且降低了所需的后续净化处理的成本及温室气体排放量;可集成性高,能够原产地处理废物;处理后的残渣也可回收利用。
因此其被认为是最适合用作废物处理的方法之一。
目前等离子技术应用于综合的废物处理及能量回收利用已经成为了一种重要的变废物为能量的技术,在日本、美国、加拿大、欧洲、马来西亚都出现了或是中试或是已经工业化的等离子体气化应用,各国的研究者们也在等离子技术处理废物方面做了很多积极有意义的工作。
等离子体气化熔融技术介绍2020年12月发展契机及市场展望等离子体工艺问题分析问题解决思路及方案1等离子体气化熔融工艺原理等离子体: 等离子体又叫做电浆,它通过给气体施加足够的能量而电离形成,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,广泛存在于宇宙中,常被视为是物质的第四态。
电子、各种离子、原子和自由基在内的混合体,宏观电中性(1)高温、高能量密度;(2)导电性;(3)富含活性基自由分子,高化学反应性。
电子温度聚变、太阳核心高 温 等离子体低 温 等离子体105℃10~1000℃103~105℃ 冷等离子体 T e ≠T i , T h热等离子体Te =Ti, T h电弧、等离子炬极光、日光灯气体放电原理:原本不导电的气体被击穿后,在两极之间构成的一导电通道,气体离解形成放电通道。
在直流高压电场作用下,气体中的电子被加速向阳极运动,碰撞气体原子和分子,并不断产生新的电子和离子,产生的正离子在电场中加速轰击阴极,造成二次电子发射并维持放电过程。
不同放电形式高温等离子体生成——受控核聚变冷等离子体生成——介质阻挡放电、电晕放电、辉光放电热等离子体生成——等离子体炬利用等离子体炬产生的高温、高反应活性等离子体,将废物迅速快速分解破坏,使其有机物热解气化为可燃的小分子气态物质(CO+H 2 等),无机物被高温熔融后转化为无害的玻璃体炉渣。
工艺原理——等离子体气化熔融原理等离子体炬作为气化熔融的控制热源:高温、高能量密度、导电性和高反应活性(1)等离子体热解(plasma pyrolysis )即利用等离子体的热能在无氧或缺氧条件下打断废物中有机物的化学键,使其成为小分子。
[]224222dCO zCO yH xCH mO CH CH n +++−−−−→−+---等离子体炬热量反应难易程度:用反应标准的自由焓的变化值判断KpRT G ln 0-=∆kcdtc-=d )ln()1(0cc k t ⋅=RTEeV k ⋅=有机物在高温条件下的分解曲线如右图所示,在1atm 、1300℃以上的炉况条件下,任何C-H-O 体系的有机物已全部裂解为CO 、H 2合成燃气。