新缺氧诱导因子-1α在颈动脉粥样硬化发病机制中的研究
- 格式:docx
- 大小:10.94 KB
- 文档页数:1
缺氧诱导因子-1α基因多态性与疾病的研究新进展黄朝任1 邹光美2▲1.广西壮族自治区玉林市中医医院检验科,广西玉林 537000;2.广西壮族自治区玉林市第一人民医院检验科,广西玉林537000[摘要]缺氧诱导因子-1α(HIF-1α)是参与机体氧稳态调节转录因子,国内外研究表明,该基因的多态性与糖尿病、心脑血管疾病、肿瘤等的发生有十分紧密的联系,HIF-1α可对100 多种靶基因的表达进行调节,且与缺氧适应、炎症因子的表达、免疫反应等有紧密的联系,证明其在多种疾病发生发展中的重要位置。
HIF-1α基因多态性与疾病易感性间的相关性及遗传规律,为临床疾病的诊疗提供了新方向,现就HIF-1α结构特征、生物学功能、其基因多态性与疾病相关性等研究进行详细综述。
[关键词] 缺氧诱导因子-1α;基因多态性;疾病;研究新进展[中图分类号] R363 [文献标识码] A [文章编号] 2095-0616(2021)03-0025-04缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)属于在哺乳动物细胞中存在的转录因子,是在缺氧/低氧条件下通过改变细胞内氧浓度对氧稳态进行调节的关键因子[1]。
在有氧条件下,26S蛋白酶体可降解HIF-1α;而在缺氧条件下HIF-1α稳定,可与HIF-1β结合、对多种靶基因的转录予以激活。
这些基因在血管生成、细胞存活、肿瘤增殖及物质代谢等过程中有着重要作用[2]。
1 HIF-1α结构特征和生物学功能HIF-1α基因在人类染色体14q21-q24上定位。
HIF-1是氧依赖亚单位(HIF-1α)与组成性表达的核亚单位(HIF-1β)组成的异二聚体复合物。
就结构而言,HIF-1α在N端含有碱性多肽-螺旋-襻-螺旋(bHLH)和PAS(Per,ARNT,Sim)结构域[3]。
HIF-1α还表现出一个氧依赖性降解(ODD)结构域、两个反式激活域(TADs)以及两个核定位信号(NLS)。
缺氧诱导因子—1α在脑缺血中的作用及其机制研究在我国临床研究治疗中,缺氧诱导因子一1是一种非常重要的转录调节因子,通过活性亚基(HIF-1α)加入机体对于缺氧环境的应答。
人体的脑部缺血缺氧时,活性亚基就会上调,就会激活细胞凋亡、细胞生存、牵连到糖酵解、血管生长的很多个的下游靶基因的表达,可以改善人体脑部缺血后能量的代谢障碍以及建立起微循环。
活性亚基不仅会促进神经元的存活,还会诱使神经元发生迟发性死亡。
任何一种后处理方法和预处理方法,都会通过激活活性亚基调节神经细胞的存亡。
标签:缺氧诱导因子-l;脑缺血;缺氧诱导因子l,a亚单位上世纪90年代Wang和Semenza第一次发现缺氧诱导因子-l。
缺氧诱导因子-l非常普遍的存在于哺乳动物的细胞中,缺氧誘导因子-l是一种缺氧应答因子,连接到人体各个重要器官和组织以及细胞对于缺氧的应答作用。
人体的缺氧诱导因子-l如果处于缺氧环境中,缺氧诱导因子表达就会随着细胞内氧气浓度的改变而产生变化。
缺氧诱导因子-l是由β和α亚基所组成的一种异源二聚体,α是缺氧诱导因子-l的活性亚单位,在人体氧气含量浓度调控下决定着缺氧诱导因子-l下游靶基因的翻译和转录功能。
β也被称为芳香烃受体核转运子,在人体的细胞中表达较为稳定,正常情况下不会受到缺氧信号的影响。
绝大多数情况下,缺氧诱导因子-l的活性是由活性亚基的活性和表达所决定的。
本文将对缺氧诱导因子-lα在脑缺血中的作用和机制进行研究。
1缺氧诱导因子-lα的分子生物学的特征1.1缺氧诱导因子-lα的分子结构人体的染色体14q21-24定位于缺氧诱导因子-lα的编码基因,编码826个氨基酸,PER-ARNT-SIM结构域和碱性螺旋-环-螺旋所组成缺氧诱导因子-lα的氨基酸序列,碱性螺旋-环-螺旋和PER-ARNT-SIM结构域与人体的DNA相联接,是形成异源二聚体所必须的结构。
在缺氧诱导因子-lα肽链的C末端和N末端含有感受低氧信号的活性调控区域,分别是2个反式激活结构域和氧依赖降解结构域,也就是C末端活化结构域和N末端反式激活结构域。
缺氧诱导因子-1α基因体外转染骨骼肌细胞及对血管内皮细胞增殖的影响的开题报告一、研究背景缺氧诱导因子(HIF)是一类重要的转录因子,在机体缺氧状态下发挥关键的生物学作用,可调节许多基因的表达,如血管生长因子(VEGF)、纤维连接蛋白酶原激活剂抑制剂-1(PAI-1)等,不仅在正常生理过程中起作用,而且在多种疾病中具有重要影响。
HIF-1α是HIF家族中最为重要的成员,其针对性的抑制因子已被作为新一代肿瘤治疗药物研究的重要方向之一。
骨骼肌细胞在生理状况下具有强烈的氧气需求,因此,在肉毒杆菌等给予了对骨骼肌组织的神经-肌肉阻遏的药理干涉下,可导致骨骼肌组织缺氧,最终导致破坏性等病变。
近年来有关研究表明,HIF-1α通过调节一系列基因的表达,参与肌肉细胞的凋亡和再生等生物学过程。
尤其是在缺氧状态下,HIF-1α表达水平显著提高,可促进血管形成和乳酸代谢等生物学过程,但同时也会引起局部组织的炎症和纤维化等不良反应。
二、研究目的及意义本研究通过体外转染骨骼肌细胞,检测HIF-1α对于骨骼肌细胞的影响,以探讨其在缺氧状态下对生物学过程的作用机制,同时也评估其在治疗肌肉疾病中的潜在应用价值。
另外,本研究还将探讨HIF-1α对血管内皮细胞增殖的影响,以期为临床改善组织缺氧等疾病提供有益的理论依据。
三、研究内容和方法1. 体外培养骨骼肌细胞及血管内皮细胞。
2. 基因体外转染实验:将HIF-1α基因载体分别转染至骨骼肌细胞和血管内皮细胞中。
3. RNA提取和筛选:通过实时荧光定量PCR技术对某些基因的表达进行测定。
4. 蛋白质提取和筛选:通过西方印迹法对HIF-1α及其下游基因的表达进行分析。
5. 细胞增殖实验:通过MTT法和克隆形成实验对细胞的增殖和增殖活力进行比较分析。
6. 细胞死亡实验:通过Annexin V-FITC/PI染色实验对细胞的死亡率进行比较分析。
四、研究预期结果1. HIF-1α基因的体外转染是否能够增加骨骼肌细胞的抗缺氧能力,促进其再生。
2023-10-28CATALOGUE 目录•缺氧诱导因子的基本介绍•缺氧诱导因子在生理病理过程中的作用•缺氧诱导因子研究的实验方法与技术•缺氧诱导因子研究的临床应用与前景•总结与展望01缺氧诱导因子的基本介绍缺氧诱导因子的定义缺氧诱导因子(HIF)是一种转录因子,它能够响应细胞缺氧的刺激,并激活一系列与缺氧适应相关的基因表达。
HIF是由α和β两个亚基组成的异二聚体,其中α亚基负责调节HIF的稳定性,β亚基则负责调节HIF的活性。
缺氧诱导因子的作用机制当细胞处于缺氧状态时,HIF的α亚基会被脯氨酸羟化酶羟化,进而被泛素-蛋白酶体系统降解,使得HIF的稳定性降低。
被降解的HIF的α亚基与β亚基分离,然后通过与激活蛋白(HIF-1β/ARNT)重新结合形成具有活性的HIF二聚体。
有活性的HIF二聚体能够进入细胞核,与靶基因的启动子结合,从而激活一系列与缺氧适应相关的基因表达。
HIF的研究起源于20世纪90年代,早期的研究主要集中在低氧条件下HIF 的表达和功能。
随着研究的深入,人们发现HIF在肿瘤、心血管疾病、神经系统疾病等多种疾病中发挥重要作用,因此对HIF的研究逐渐扩展到各种疾病的治疗和预防。
目前,对HIF的研究已经深入到分子机制和基因调控水平,同时也涌现出许多针对HIF的治疗策略,如抑制脯氨酸羟化酶、抑制泛素-蛋白酶体系统等。
缺氧诱导因子的研究历史与现状02缺氧诱导因子在生理病理过程中的作用缺氧诱导因子与呼吸循环系统总结词缺氧诱导因子在呼吸循环系统中具有重要调节作用详细描述缺氧诱导因子(HIF)是一种转录因子,在低氧环境下可诱导多种基因表达,以适应缺氧环境。
在呼吸循环系统中,HIF可调节红细胞生成、血管生成、血压以及心脏功能等。
HIF参与能量代谢的调节并具有重要生物学意义详细描述在能量代谢过程中,HIF可诱导与糖酵解、脂肪酸氧化以及线粒体生物合成等相关的基因表达,以适应缺氧环境下的能量需求。
总结词HIF对免疫系统具有重要影响和生物学意义详细描述HIF不仅参与免疫细胞的激活和分化,还可调节炎症反应以及抗感染能力。
缺氧诱导因子-1的稳定性调节刘波【期刊名称】《遵义医学院学报》【年(卷),期】2012(035)006【总页数】5页(P548-552)【关键词】缺氧诱导因子-1;稳定性调节【作者】刘波【作者单位】遵义医学院药理学教研室暨贵州省基础药理重点实验室,贵州遵义563099【正文语种】中文【中图分类】R971缺氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是在研究缺氧诱导的红细胞生成素(erythropoietin,EPO)的基因表达时发现的一种DNA结合蛋白,其分布和作用十分广泛,目前已确定的靶基因已有130多种,且这些基因编码的蛋白参与血管再生与重塑、促进神经再生、葡萄糖的运输及酵解、红细胞生成、氧化应激和炎性等多种病理生理过程。
本文结合国内外对HIF-1的研究报道,系统综述了HIF-1的结构及其稳定性调节。
1 HIF的结构和稳定性调节Semenza[1]等于1992 年最先确立了 HIF -1 的组成结构,并证明了其cDNA的编码顺序。
它属于PAS家族(PER-ARNT-SIM),由120KD的氧依赖性β亚基和91/93/94KD的非氧依赖性β亚基组成的异二聚体转录因子,α和β亚单位均属于碱性螺旋-环-螺旋(basic helix-loop-helix,bHLH)家族。
HIF-β又称芳香烃受体核转运蛋白,在细胞内稳定表达,不受氧浓度的影响。
而HIF-α是决定HIF生物学活性的亚基,HIF-α表达对细胞内氧浓度高度敏感,被称为“缺氧基因表达的总开关”。
在常氧条件下,HIF-lα的表达与降解处于动态平衡,只有5 min的极短的半衰期,细胞内的HIF-1α表达后,脯氨酸羟化酶(proline hydroxylase,PHD)立即加载到HIF-1α亚基氧依赖降解区(oxygen-dependent degradation domain,ODD区)Pro402或Pro564上,形成脯氨酰残基。
低氧诱导因子1(HIF—1)与动脉粥样硬化中炎症细胞关系的研究作者:刘敏郗爱旗来源:《医学信息》2016年第04期摘要:迄今为止,动脉粥样硬化(AS)是冠状动脉疾病、颈动脉疾病和外周动脉疾病最常见的潜在原因,其与这些疾病的高发病率和死亡率均有关。
缺氧地区的人都普遍存在动脉粥样硬化病变,并且病变的发展与载脂巨噬细胞的形成有关,该病变同时也增加局部炎症反应和血管再生。
低氧诱导因子1(HIF-1)是缺氧的主要调节因子,它通过启动和促进泡沫细胞的形成、内皮细胞功能障碍、细胞凋亡,增加炎症反应促进血管生成,在动脉粥样硬化的进展中起着关键性作用。
目前较为公认的观点认为,AS是一种炎症性疾病,越来越多的资料也表明炎症在AS中起重要作用。
本文的目的是总结HIF-1与动脉粥样硬化中炎症细胞的关系。
关键词:低氧诱导因子;动脉粥样硬化;血管生成;炎症细胞动脉粥样硬化是一种多因性疾病,近年来,AS的诊断与治疗有了长足进步,但人们对AS 病因学方面的认识仍存在不足[1]。
体内氧平衡的破坏可能会导致动脉粥样硬化。
随着动脉粥样硬化病变的发展,动脉壁会增厚,扩散进入内膜的氧气也会明显减少。
此外,HIF-1会导致动脉粥样硬化多个组成成分的功能障碍,,增加局部的炎症反应和血管生成。
现就炎症和AS 发生过程中炎症细胞及炎症介质作用的研究进展综述如下。
1 缺氧是动脉粥样硬化的重要特征在人类粥样硬化斑块中的巨噬细胞内存在缺氧情况,这证明粥样硬化斑块存在组织缺氧。
组织缺氧可能通过促进脂质堆积,增强炎症反映和血管生成从而促进病变进展。
动脉粥样硬化形成的早期,导致粥样硬化形成的脂蛋白巨噬细胞吞噬后从内膜清除,从而导致泡沫细胞的积聚。
组织缺氧使巨噬细胞中的脂滴形成增加,促进炎症介质的分泌,而脂滴可能发挥介导炎症反应的作用。
一些文章也已经提出,斑块深层的缺氧可以通过激活某些血管生成蛋白质从而诱导血管生成。
2 HIF-1的分子特征HIF-1是一种广泛表达的异质二聚体转录因子。
【篇名】缺氧诱导因子-1α在颈动脉粥样硬化发病机制中的研究
【作者】伍明,范学军
【作者单位】中南大学湘雅三医院神经内科,湖南,长沙,410013
【出处】实用预防医学,PRACTICAL PREVENTIVE MEDICINE 2009, 16 (2)
【ISSN】1006-3110
【页码】626-628
【摘要】新生血管生成和炎症浸润是颈动脉粥样硬化不稳定斑块的重要特点,其产生的分子机制尚不完全清楚.缺氧诱导因子-1是一个能在缺氧状态下发挥活性的转录因子.在颈动脉粥样硬化病变中,缺氧诱导因子-1通过α活性亚单位调控多种靶基因表达而促进新生血管生成、促进炎症反应和平滑肌细胞迁移增殖导致病变进展.
【DOI】。