第三章 迭代法s4 解线性方程组的迭代法
- 格式:ppt
- 大小:448.00 KB
- 文档页数:18
计算方法3_线性方程组迭代解法线性方程组的迭代解法是解决线性方程组的一种常见方法,常用于大规模的线性方程组求解。
该方法通过不断迭代更新解的近似值,直到满足一定的收敛准则为止。
线性方程组的迭代解法有很多种,其中最经典的是雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法。
本文将分别介绍这三种迭代解法及其计算方法。
雅可比迭代法是一种比较简单的线性方程组迭代解法,它的基本思想是先将线性方程组转化为对角占优的形式,然后通过迭代求解逐渐接近精确解。
雅可比迭代法的迭代公式为:其中,x^(k+1)是第k+1次迭代的近似解,n是未知数的个数,a_ij 是系数矩阵A的元素,f_i是方程组的右端向量的元素。
雅可比迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式,即保证矩阵A的对角元素绝对值大于其它元素的绝对值。
2.初始化向量x^(0),设定迭代终止准则。
3.根据雅可比迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
高斯-赛德尔迭代法是雅可比迭代法的改进方法,它的基本思想是在每次迭代计算x^(k+1)时,利用已经计算出的近似解作为x的一部分。
高斯-赛德尔迭代法的迭代公式为:其中,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
高斯-赛德尔迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式。
2.初始化向量x^(0),设定迭代终止准则。
3.根据高斯-赛德尔迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
超松弛迭代法是对高斯-赛德尔迭代法的一种改进方法,它引入了松弛因子ω,通过调整参数ω的值,可以加快迭代的收敛速度。
超松弛迭代法的迭代公式为:其中,0<ω<2,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
数值分析第三章线性方程组迭代法线性方程组是数值分析中的重要问题之一,涉及求解线性方程组的迭代法也是该领域的研究重点之一、本文将对线性方程组迭代法进行深入探讨。
线性方程组的一般形式为AX=b,其中A是一个n×n的系数矩阵,x和b是n维向量。
许多实际问题,如电路分析、结构力学、物理模拟等,都可以归结为求解线性方程组的问题。
然而,当n很大时,直接求解线性方程组的方法计算量很大,效率低下。
因此,我们需要寻找一种更高效的方法来求解线性方程组。
线性方程组迭代法是一种基于迭代思想的求解线性方程组的方法。
其基本思想是通过构造一个序列{xn},使得序列中的每一项都逼近解向量x。
通过不断迭代,可以最终得到解向量x的一个近似解。
常用的线性方程组迭代法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法等。
雅可比迭代法是其中的一种较为简单的迭代法。
其基本思想是通过分解系数矩阵A,将线性方程组AX=b转化为x=Tx+c的形式,其中T是一个与A有关的矩阵,c是一个常向量。
然后,通过不断迭代,生成序列xn,并使序列中的每一项都逼近解向量x。
高斯-赛德尔迭代法是雅可比迭代法的改进方法。
其核心思想是利用当前迭代步骤中已经求得的近似解向量的信息。
具体而言,每次迭代时,将前一次迭代得到的近似解向量中已经计算过的分量纳入计算,以加速收敛速度。
相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。
逐次超松弛迭代法是高斯-赛德尔迭代法的改进方法。
其核心思想在于通过引入一个松弛因子ω,将高斯-赛德尔迭代法中的每次迭代变为x[k+1]=x[k]+ω(d[k+1]-x[k])的形式,其中d[k+1]是每次迭代计算得到的近似解向量的一个更新。
逐次超松弛迭代法可以根据问题的特点调整松弛因子的值,以获得更好的收敛性。
除了以上提到的三种迭代法,还有一些其他的线性方程组迭代法,如SOR迭代法、共轭梯度法等。
这些方法都具有不同的特点和适用范围,可以根据问题的具体情况选择合适的迭代法。
线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。
道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。
迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。
2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。
迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。
Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。
数值分析--第三章--迭代法迭代⼀般⽅程:本⽂实例⽅程组:⼀.jacobi迭代法从第i个⽅程组解出xi。
线性⽅程组Ax=b,先给定⼀组x的初始值,如[0,0,0],第⼀次迭代,⽤x2=0,x3=0带⼊第⼀个式⼦得到x1的第⼀次迭代结果,⽤x1=0,x3=0,带⼊第⼆个式⼦得到x2的第⼀次迭代结果,⽤x1=0,x2=0带⼊第三个式⼦得到x3的第⼀次迭代结果。
得到第⼀次的x后,重复第⼀次的运算。
转化成⼀般的形式:(其中L是A的下三⾓部分,D是A的对⾓元素部分,U 是上三⾓部分)得到迭代公式:其中的矩阵B和向量f如何求得呢?其实,矩阵B的计算也很简单,就是每⾏的元素/该⾏上的对⾓元素⼆.Gauss-Seidel迭代法【收敛速度更快】这个可以和jacobi法对⽐进⾏理解,我们以第⼆次迭代为例(这⾥的第⼀次迭代结果都⽤⼀样的,懒得去换)从上表对⽐结果可以看出,Jacobi⽅法的第⼆次迭代的时候,都是从第⼀次迭代结果中,获取输⼊值。
上⼀次迭代结果[2.5,3.0,3.0],将这个结果带⼊上⾯式⼦1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带⼊第⼆个式⼦的运算,这⾥得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输⼊第三个式⼦计算X3=1.0.这就完成了这⼀次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下⼀次迭代。
特点:jacobi迭代法,需要存储,上⼀次的迭代结果,也要存储这⼀次的迭代结果,所以需要两组存储单元。
⽽Gauss-Seidel迭代法,每⼀次迭代得到的每⼀个式⼦得到的值,替换上⼀次迭代结果中的值即可。
所以只需要⼀组存储单元。
转化成⼀般式:注意:第⼆个式⼦中的是k+1次迭代的第⼀个式⼦的值,不是第k次迭代得值。
计算过程同jacobi迭代法的类似三.逐次超松弛法SOR法上⾯仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。
线性方程组迭代法
线性方程组迭代法,又称坐标下降法,是一种用于解线性方程组的迭代求解方法,常用于线性规划以及单纯形法等技术。
早在上世纪50年代,此方法就在解决
线性规划问题中得到了广泛应用,到目前为止,这种技术仍然广泛使用。
线性方程组迭代法是一种基于不断迭代调整变量,使目标函数达到最优结果的
迭代求解法。
其基本步骤是:
(1) 初始化目标函数变量:首先,初始化线性方程组的目标函数的变量;
(2) 评估梯度:选择合适的算法计算目标函数的梯度;
(3) 根据该梯度更新变量:更新目标函数变量的值,使得在此次更新之后的值
更加有利于满足线性方程组的要求;
(4) 重复上述步骤,直到目标函数足够接近最优值为止;
线性方程组迭代法能够快速地求解出线性规划问题的最优解,因此,它在计算
机上经常被用来优化问题,进而提高系统运行效率。
随着网络技术的发展,线性方程组迭代法在互联网领域得到了广泛应用,这在大大缩短了计算机程序的运行时间,提高了互联网的效率。
同时,线性方程组迭代法也有助于提高系统的性能,改善用户的体验,提升企业的品牌形象。
解线性方程组的迭代法实际应用
现今,互联网行业的发展速度越来越快,数据和信息的传播变得越来越重要,因此,熟练掌握并利用数据和信息变得越来越必要。
迭代法是解决线性方程组最重要的算法之一,在互联网行业中也有广泛的应用。
迭代法能够有效的求出不同的近似解,而且计算速度较快,能够满足互联网行业的快速发展。
比如运行在分布式环境中的搜索引擎,其中有大量的系统参数,如摆放有系统服务器到网络以及运行配置等,这些参数有很多线性方程组,这些线性方程组很难使用传统的数学方法来求解,而使用迭代法可以快速得到这些方程组的答案,为搜索引擎提供良好的运行环境。
另外,现代的宽带技术和视频技术极大的提高了节目的传输效率。
它们的实现依赖于复杂的线性方程,迭代法可以有效的帮助实现技术的快速发展。
此外,依靠迭代法的快速求解,将抗性算法转换为原始算法,也可以有效改进网络的性能,比如入侵检测算法中,使用迭代引入抗性算法来更新原始算法,结合专业技术确定加密规则,从而更有效的防止非法攻击。
总之,迭代法在互联网行业中发挥着重要作用,在搜索引擎、宽带技术和入侵检测算法等方面,迭代法及其所需技术都可以极大地提升网络系统的效率,确保互联网系统的可靠性和安全性,完善互联网的运作环境。