高中数学必修4平面向量知识点总结
- 格式:doc
- 大小:1.27 MB
- 文档页数:7
平面向量全章回顾知识整合一.重点知识网络:二、命题规律研析本章主要内容有两部分,其一是向量及其运算,要求理解向量的有关概念,掌握向量的各种运算的几何意义及坐标表达形式,掌握向量平行、垂直的充要条件;其二向量的应用,要求掌握线段的定比分点,平移,正弦定理、余弦定理及其在解斜三角形中的应用.本章是试验教材新增加的内容,考查热点在两个方面,一是对向量的基本概念、基本运算的考查;二是突出考查向量的工具作用,即运用向量知识解决解析几何、立体几何等中的问题.由于新教材增加这部分内容,而且大纲要求重在基础,加之教学中师生还有一个逐步适应的过程,所以预计2005年单独考查平面向量的题目应属基本运算之类,将会以填空题或选择题的形式出现,或以向量为工具与数列、三角、不等式、解析几何等结合的题目出现在解答题上,正、余弦定理主要作为工具出现在解决问题的过程中.向量是数学中的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学科提供了工具,解斜三角形这部分内容是以正弦定理、余弦定理为工具的一种求三角形的边、角的方法,由于这部分内容与实际密切结合,所以应通过这部分的复习,提高解决实际问题的能力,同时要注重加强基本概念、基础知识的复习.创新拓展例1.设两个非零向量1e ,2e 不共线,|1e |=2,|2e |=3,1e ,2e 的夹角为60°. (1)如果AB =1e +2e ,BC =21e +82e ,CD =3(1e -2e ),求证A ,B ,D共线; (2)试确定实数k 的值,使得k 1e +2e , 1e +k 2e 共线; (3)试确定实数k 的值,使得k 1e +2e ,1e +k 2e 垂直.要点解析:本题主要考查学生对共线向量的理解以及对向量共线与向量垂直的充要条件的掌握. 解: (1)因为 BC +CD =BD =51e +52e =5(1e +2e )=5AB ,所以A ,B ,D 共线. (2)要使得k 1e +2e , 1e +k 2e 共线, 只需要存在实数λ,使k 1e +2e =λ(1e +k 2e ),即k 1e +2e =λ1e +λk 2e , 所以 k =λ且k λ=1,解得 k =±1. (3)要使得k 1e +2e , 1e +k 2e 垂直,只需要 (k 1e +2e )(1e +k 2e )=0,即 k |1e |2+(k 2+1) 1e ·2e +| 2e |2=0,又|1e |2=2,|2e |2=3. 1e ·2e =2×3×cos60°=3,所以3k 2+13k +3=0所以k . 思维延伸:证明向量共线和向量垂直是高考考点之一,一定要理解掌握向量共线和向量垂直的充要条件.例2.如图所示,已知四边形ABCD 为梯形,且AD 与BC 共线,()()0BA CD BD AC ++= ,试证四边形 ABCD 为等腰梯形.要点解析:这是一道典型向量题,主要在于通过向量的转化充分利用已知条件()()0BA CD BD AC ++= 。
2、零向量:长度为0第二章平面向量1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.的向量叫零向量,记作0;零向量的方向是任意的.3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:e =±a a ||4、平行向量(共线向量):方向相同或相反的非零向量叫平行向量也叫共线向量,记作//ab ;规定0与任何向量平行.5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.注意:任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。
6、向量加法运算:⑴三角形法则的特点:首尾相接⑵平行四边形法则的特点:起点相同baCBA -=A -AB =B a bC Cc高一数学必修4知识点梳理:平面向量⑶运算性质:①交换律:+=+a b b a ;②结合律:++=++a b c a b c ()();③+=+=a a a 00.⑷坐标运算:设=a x y ,11(),=b x y ,22(),则+=++a b x x y y ,1212)(. 7、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设=a x y ,11(),=b x y ,22(),则-=--a b x x y y ,1212)(.设A 、B 两点的坐标分别为x y ,11(),x y ,22(),则AB =--x x y y ,2121)(.8、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作λa . ①=λλa a ;②当>λ0时,λa 的方向与a 的方向相同;当<λ0时,λa 的方向与a 的方向相反; 当=λ0时,=λa 0.⑵运算律:①=λμλμa a ()();②+=+λμλμa a a ();③+=+λλλa b a b (). ⑶坐标运算:设=a x y ,(),则==λλλλa x y x y ,,()().9、向量共线定理:向量≠a a 0()与b 共线,当且仅当有唯一一个实数λ,使=λb a . 设=a x y ,11(),=b x y ,22(),其中≠b 0,则当且仅当-=x y x y 01221时,向量a 、≠b b 0()共线.10、平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使=+λλa e e 1122.(不共线的向量e 1、e 2作为这一平面内所有向量的一组基底)11、分点坐标公式:设点P 是线段P P 12上的一点,P 1、P 2的坐标分别是x y ,11(),x y ,22(),当P P =PP λ12时,点P 的坐标是⎝⎭++ ⎪⎛⎫++λλλλx x y y 11,1212. 12、平面向量的数量积:⑴定义:≠≠≤≤⋅=θθa b a b a b cos 0,0,0180)(.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①⊥⇔⋅=a b a b 0.②当a 与b 同向时,⋅=a b a b ;当a 与b 反向时,⋅=-a b a b ;⋅==a a a a 22或=⋅a a a .③⋅≤a b a b .⑶运算律:①⋅=⋅a b b a ;②⋅=⋅=⋅λλλa b a b a b ()()();③+⋅=⋅+⋅a b c a c b c ().⑷坐标运算:设两个非零向量=a x y ,11(),=b x y ,22(),则⋅=+a b x x y y 1212. 若=a x y ,(),则=+a x y 222,或=+a x y 22.设=a x y ,11(),=b x y ,22(),则⊥⇔+=a b x x y y 01212.设a 、b 都是非零向量,=a x y ,11(),=b x y ,22(),θ是a 与b 的夹角,则++==⋅+θx yx ya ba b x x y y cos 112222221212.第三章 三角恒等变形1、同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα(3)倒数关系:αα=1cot tan=+sin tan tan 1222ααα ; =+co s 1t an 122αα注意: tan ,cos ,sin ααα 按照以上公式可以“知一求二”2、两角和与差的正弦、余弦、正切S +βα)(:=++sin cos cos sin )sin(βαβαβα S -βα)(:=--sin cos cos sin )sin(βαβαβα C +βα)(:a =+-sin sin cos cos )cos(βαβαβ C -βα)(:a =-+sin sin cos cos )cos(βαβαβ T +βα)(: =++-)tan(tan tan tan tan 1βαβαβαT -βα)(: =--+)tan(tan tan tan tan 1βαβαβα正切和公式:-⋅+=+βαβαβα)tan tan 1()tan(tan tan3、辅助角公式:222222cos sin sin cos b a x b x a a b a x b b a x +=++++⎛⎝⎫⎭⎪⎪ x b a x x b a +⋅+=⋅+⋅+=ϕϕϕ2222)sin cos cos (sin )sin((其中ϕ称为辅助角,ϕ的终边过点b a ),(,tan ϕ=b a)4、二倍角的正弦、余弦和正切公式: S 2α: =cos sin 22sin αααC 2α: -=sin cos 2cos 22ααααα-=-=221cos 2sin 21 T 2α: =-2tan tan 2tan 12ααα*二倍角公式的常用变形:①、=-αα|sin |22cos 1,=+αα|cos |22cos 1;②、=-αα1212|sin |2cos , =+αα1212|cos |2cos③-=+-=ααααα442221cos sin 21cos sin 2sin 2;=-442cos sin cos ααα;*降次公式:=cos sin 122sin ααα ααα=-+-=2sin 2cos 12122cos 12 ααα=++=2cos 2cos 12122cos 125、*半角的正弦、余弦和正切公式:±=-ααsin2cos 12 ; ±=+ααcos 2cos 12, ±=-+tan2cos 1cos 1ααα=-=+cos 1sin sin cos 1αααα6、同角三角函数的常见变形:(活用“1”)① -=cos 1sin 22αα; -±=cos 1sin 2αα;-=sin 1cos 22αα; -±=sin 1cos 2αα; ②=++=22cot tan sin cos cos sin 22sin θθθθθθθ,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±; |cos sin |2sin 1ααα±=± 7、补充公式:*①万能公式2tan12tan2sin 2ααα+=; 2t a n12t a n1c o s 22ααα+-=; 2t a n12t a n2t a n 2ααα-=*②积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=*③和差化积公式2cos 2sin 2sin sin βαβαβα-+=+; 2sin2cos 2sin sin βαβαβα-+=- 2co s 2co s 2co s co s βαβαβα-+=+;2sin2sin 2cos cos βαβαβα-+-=- 注:带*号的公式表示了解,没带*公式为必记公式。
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC u u u r u u u r ,∴ ||||AB DC u u u r u u u r且//AB DC u u u r u u u r ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则,//AB DC u u u r u u u r 且||||AB DC u u u r u u u r,因此,AB DC u u u r u u u r.③ 正确.∵ a r =b r ,∴ a r ,b r的长度相等且方向相同;又b r =c r ,∴ b r ,c r的长度相等且方向相同,∴ a r ,c r 的长度相等且方向相同,故a r =c r .④ 不正确.当a r //b r 且方向相反时,即使|a r |=|b r |,也不能得到a r =b r,故|a r |=|b r |且a r //b r 不是a r =b r的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b r =0r这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想.例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r解:①原式= ()AB BC CD AC CD AD u u u r u u u r u u u r u u u r u u u r u u u r②原式= ()0DB BD AC AC AC u u u r u u u r u u u r r u u u r u u u r③原式= ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k解:∵c r∥d r∴由向量共线的充要条件得:c r=λd r (λ R) 即 k a r +b r =λ(a r +k b r ) ∴(k λ) a r+ (1 λk ) b r = 0r又∵a r 、b r不共线∴由平面向量的基本定理 1010k k k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质向 量 的 加 法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定0a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有22a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算。
平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1. 向量:既有大小又有方向的量。
记作: AB 或a 。
42. 向量的模:向量的大小(或长度),记作:|AB|或|a|。
4 ・3. 单位向量:长度为1的向量。
若e 是单位向量,则|e|=1。
II444. 零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5. 平行向量(共线向量):方向相同或相反的向量。
6. 相等向量:长度和方向都相同的向量。
7. 相反向量:长度相等,方向相反的向量。
AB =-BA 。
9. 平行四边形法则:以a,b 为临边的平行四边形的两条对角线分别为 a b ,a - b 。
10. 共线定理:a - b 二 a / /b 。
当二0 时,a 与b 同向;当.0 时,a 与b 反向。
11. 基底:任意不共线的两个向量称为一组基底。
12. 向量的模:若 a = (x, y ),则 | a| = x 2 y 2, a =| aa b13. 数量积与夹角公式: a b =| a | | b | co^ ; COST|a||b|14. 平行与垂直: a//b= a = ■ b= %y 2 = x 2y 1 ; a _ a b = 0= %x 2 y )y 2 = 0 题型1.基本概念判断正误(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3) 与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是(5)若AB =CD ,则A B 、C 、D 四点构成平行四边形。
AB BC =AC ; AB BC CD DE =AE ; AB - AC =CB (指向被减数)8.三角形法则:(7)若ma = mb,贝U a = b。
(6)若a与b共线,b与C共线,则a与C共线。
更多精品文档题型2.向量的加减运算 1.设a 表示"向东走8km" , b 表示"向北走 6km ” ,则| a ■ b |= 2•化简(AB MB) (BO BC) OM3.已知I OAI = 5 , |OB I = 3,则I AB I 的最大值和最小值分别为35.已知点C 在线段AB 上,且AC AB ,则AC 二—BC , AB =5—题型3.向量的数乘运算1.计算:2(2; 5【-3(?) 1斗2.已知 a = (1, -4), b 二(-3,8),则 3a -一 b 二2题型4根据图形由已知向量求未知向量 1.已知在ABC 中,D 是BC 的中点,请用向量忑兀表示AD 。
高中数学必修 4 知识点总结平面向量知点一 .向量的基本看法与基本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不可以比大小,但向量的模能够比大小.②零向量:度 0 的向量,0,其方向是随意的,0与随意愿量平行零向量 a =0|r ra |=0因为0的方向是随意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚能否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向同样或相反的非零向量随意一平行向量都能够移到同一直上方向同样或相反的向量,称平行向量作a∥ b因为向量能够行随意的平移( 即自由向量 ) ,平行向量能够平移到同向来上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个因素,起点能够随意取,在必划分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向同样的向量相等向量平移后能够重合, a b 大x1x2小相等,方向同样(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特色是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法例;当两向量是首尾连结时,用三角形法例.向量加法的三角形法例可推行至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时一定“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量还是零向量a 的相反向量对于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向同样;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是随意的②数乘向量知足互换律、联合律与分派律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:假如e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,此中不共线的向量e1 , e2叫做表示这一平面内全部向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有差别,向量平行是向量相等的必需条件(3)向量平行与直线平行有差别,直线平行不包含共线(即重合),而向量平行则包含共线(重合)的状况(4)向量的坐标与表示该向量的有向线条的始点、终点的详细地点没关,只与其相对地点有关学习本章主要建立数形转变和联合的看法,以数代形,以形观数,用代数的运算办理几何问题,特别是办理向量的有关地点关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量能否垂直等 因为向量是一新的工具,它常常会与三角函数、数列、不等式、解几等联合起来进行综合考察,是知识的交汇点例 1 给出以下命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,此中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不必定同样.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur所以, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向同样;r r r r 又 b = c ,∴ b , c 的长度相等且方向同样,r r r r ∴ a , c 的长度相等且方向同样,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即便 | a |=| b | ,也不可以获得 a =b ,故 | a |=| b | r r r r 且 a // b 不是 a =b 的充要条件,而是必需不充足条件.r r⑤ 不正确.考虑 b = 0 这类特别状况.综上所述,正确命题的序号是②③.评论:本例主要复习向量的基本看法.向量的基本看法许多,因此简单忘记.为此,复习一方面要建立优秀的知识构造, 另一方面要擅长与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的随意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向同样的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一直量 r r r rr a 可表示成 a xi yj ,因为 a 与r rr 数对 (x,y)是一一对应的,所以把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),此中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标同样,坐标同样的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详细地点没关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法例 r rx,y 21 y)2a bb a量 2 三角形法例a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法例r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 知足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,务实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数目积1 两个向量的数目积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数目积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数目积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式建立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数目积的运算律:①互换律建立: rrr r a b b a②对实数的联合律建立: r r r r r r Ra ba b a b③分派律建立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)联合律不建立: r r rr r r;a b ca b cr r r rr r(2)消去律不建立 a ba c不可以获得 b crr不可以获得r r r r (3) a b =0a = 0 或b =07 两个向量的数目积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其余任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:假如a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数目积的性质例 1判断以下各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时建立;r r r r r r r r r(5)( a b )c a(b c ) 对随意 a,b , c 向量都建立;(6)对随意愿量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182评论:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按以下条件务实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115评论:此例展现了向量在座标形式下的基本运算。
5.4 平面向量的数量积要点透视: 1.两个向量的夹角:两个非零向量a 和b ,作 OA =a ,OB =b ,则∠AOB =θ (0°≤θ≤180°),叫做两向量a 与b 的夹角。
如果a 与b 的夹角是90°,则说a 与b 垂直,记作a ⊥b 2.两向量的数量积:已知两个非零向量a 和b ,它们的夹角为θ,则把数量|a |·|b |·cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a |·|b |·cos θ,规定:零向量与任一向量的数量积为0.向量的数量积满足下列运算律: (1)a ·b =b ·a ; (2)(λa )·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c . 3.向量数量积的坐标运算:记a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 4定理:两个向量a ,b 垂直的充要条件是a ·b =0.活题精析: 例1.(2001年上海卷)若非零向量以α ,β 满足|α +β |=|α -β |,则α 与β 所成角的大小是 . 要点精析:由作向量和与差的平行四边形法则可知:|α +β |,|α -β |正好是以α ,β 为邻边的平行四边形的两对角线的长度,∵ |α +β |=|α -β |.∴ 平行四边形是矩形,∴ α 与β 所成角是90°.思维延伸:作平面向量的某些题目时,应注意与平面几何知识相结合.本例还可采用两边平方,得α ·β =0. 例2.( 2003年天津卷)设a ,b ,c 是任意的非零向量,且相互不共线. (1)(a ·b )c -(c ·a )b =0 ;(2)|a |-|b |<|a -b |;(3)(b ·c )a -(c ·a )b 不与c 垂直;(4)(3a +2b )· (3a -2b )=9|a |2-4|b }2.其中是真命题的有( )A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(4) 要点解析:(a ·b )c 是与向量c 平行的向量(c ·a )b 是与向量b 平行的向量,因此(a ·b )c 与(c ·a )b 不一定相等,因此(1)不正确. 因为a ,b ,c 是任意的非零向量,是相互不共线,则根据三角形两边之差小于第三边可知(2)正确. [(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,因此(b ·c )a -(c ·a )b 与c 垂直,答案(3)不正确. (3a +2b )·(3a -2b )=9a 2-4b 2=9|a |2-4|b |2,答案(4)正确,应选D 。
高中数学必修4平面向量知识点平面向量是在二维平面内既有方向又有大小的量,是同学们学习数学的一个重点,下面是店铺给大家带来的高中数学必修4平面向量知识点,希望对你有帮助。
1.平面向量基本概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。
(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e 表示,平行于坐标轴的单位向量习惯上分别用i、j表示。
相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
2.平面向量运算加法与减法的代数运算:(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);实数与向量的积:实数与向量的积是一个向量。
(1)| |=| |·| |;(2) 当 a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .(2) 若 =( ),b=( )则‖b .3.平面向量基本定理若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得 = e1+ e2.4.平面向量有关推论三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。
高中数学必修4知识点总结平面向量知识点归纳一.向量的基本概念与基本运算1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法),(y x yj xi a =+=向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0⇔|a|=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量向量0a 为单位向量⇔|0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b ==,则a+b =AB BC +=AC(1)a a a =+=+00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量关于相反向量有: (i ))(a --=a ; (ii) a +(a -)=(a -)+a =0; (iii)若a 、b是互为相反向量,则a =b -,b =a -,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ;(Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ6平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a |=|b |,则a =b ;② 若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③ 若a =b ,b =c ,则a =c , ④a=b的充要条件是|a|=|b|且a b a b b c a c AB DC =||||AB DC =//AB DC //AB DC ||||AB DC =AB DC =a ba b b c b c a c a c a b a b a b a b a b a b b 0AB BC CD ++DB AC BD++OA OC OB CO--+-()AB BC CD AC CD AD++=+=()0DB BD AC AC AC++=+=()()()0OB OA OC CO AB OC CO AB AB -+--=-+=+=a b c a b d a b c d c dc d a b a b a b 0a b 1010±=⇒⎩⎨⎧=-=-k k k λλ面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质运算类型 几何方法 坐标方法 运算性质向 量 的 加 法 1平行四边形法则 2三角形法则1212(,)a b x x y y +=++ a b b a+=+)()(c b a c b a ++=++AB BC AC +=向 量 的 减 法 三角形法则1212(,)a b x x y y -=-- )(b a b a-+=-AB BA =- OB OA AB -=向 量 的 乘 法aλ是一个向量,满足:λ>0时,a λ与a同向;λ<0时,a λ与a异向;λ=0时, a λ=0),(y x a λλλ= a a)()(λμμλ=a a aμλμλ+=+)( b a b aλλλ+=+)(a ∥b a bλ=⇔向 量 的 数 量 积b a•是一个数0 =a 或0 =b 时, b a •=00 ≠a 且0 ≠b 时, ><=•b a b a b a ,cos ||||1212a b x x y y •=+a b b a •=•)()()(b a b a b a•=•=•λλλ c b c a c b a •+•=•+)(22||a a =,22||y x a +=||||||b a b a ≤•例1 已知向量(1,2),(,1),2a b x u a b ===+,2v a b =-,且//u v ,求实数x 的值解:因为(1,2),(,1),2a b x u a b ===+,2v a b =-所以(1,2)2(,1)(21,4)u x x =+=+,2(1,2)(,1)(2,3)v x x =-=- 又因为//u v所以3(21)4(2)0x x +--=,即105x =解得12x =例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y ==- 因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上 即得//,//OP OB AP AC由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB =-=得方程组6(4)20440x y x y -+=⎧⎨-=⎩解之得33x y =⎧⎨=⎩故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ 叫做a 与b 的数量积(或内积) 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a b a a b b±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a bR λλλλ⋅=⋅=⋅∈③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅;(2)消去律不成立a b a c ⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ(001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x例1 判断下列各命题正确与否: (1)00a ⋅=;(2)00a ⋅=; (3)若0,a a b a c ≠⋅=⋅,则b c =;⑷若a b a c ⋅=⋅,则b c ≠当且仅当0a =时成立; (5)()()a b c a b c ⋅⋅=⋅⋅对任意,,a b c 向量都成立; (6)对任意向量a ,有22a a =解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a 与b 的夹角为0120,若2,3c a b d b a =-=-,试求c 与d 的夹角解:由题意,1a b ==,且a 与b 的夹角为0120, 所以,01cos1202a b a b ⋅==-, 2c c c =⋅=(2)(2)a b a b -⋅-22447a a b b =-⋅+=,7c ∴=,同理可得13d ∴=而c d ⋅=2217(2)(3)7322a b b a a b b a -⋅-=⋅--=-, 设θ为c 与d 的夹角, 则1829117137217cos -==θ 1829117arccos -=∴πθ点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知()4,3a =,()1,2b =-,,m a b λ=-2n a b =+,按下列条件求实数λ的值(1)m n ⊥;(2)//m n ;(3)m n = 解:()4,32,m a b λλλ=-=+-()27,8n a b =+=∴(1)m n ⊥()()082374=⨯-+⨯+⇒λλ952-=⇒λ; (2)//m n ()()072384=⨯--⨯+⇒λλ21-=⇒λ;(3)m n =()()088458723422222=--⇒+=-++⇒λλλλ=⇒λ点评:此例展示了向量在坐标形式下的基本运算。