统计量及样本分布的数字特征
- 格式:ppt
- 大小:204.01 KB
- 文档页数:17
四、中位数•中位数例3-20 设有9个工人的月工资额(单位:元),按着顺序排列如下:605、615、618、620、625、628、640、650、660,则工人月工资额的中位数是若再加一个工人,其工资额为605,则工人月工资额的中位数为:Me=(XK +XK+1)/2=( X5+X6)/2=622.5(元)2.由分组资料计算中位数2.有组矩数列确定中位数五、众数例3-22 某市1993年城市住户抽样调查资料如表,计算该城市住户家庭月收入的中位数六、算术平均数、中位数和众数的关系课堂作业1、某班40名学生统计学考试成绩分组资料如下:2. 2004年某月份某企业按工人劳动生产率高低分组的生产班组数和产量资料如下:3.某年某月份甲、乙两农贸市场某农产品价格及成交量、成交额的资料如下:第三章综合指标——标志变异指标一、标志变异指标意义⏹标志变异指标的含义:反映总体中各个单位标志值差异程度的统计指标⏹平均指标与变异指标变异指标的意义:衡量平均数代表性反映现象的均衡性二、标志变异指标的种类及计算极差(全距)、四分位差、平均差例3-26 某工厂车间90名生产工人月产量如表,求每个工人的平均产量和加权平均差■标准差和方差=例3-28 以例3-36例数据计算计算加权标准差例3-29 某车间四个生产小组的人数和平均日产量如表,计算全车间的人均产量和标准差。
■离散系数■标准差的运用第四章概率基础——随机变量及其分布一、随机变量•随机变量概念随机变量的分类二、离散型随机变量•概率分布概率分布性质分布函数分布函数性质几种常见的概率分布三、连续型随机变量•分布函数几种常见的概率分布•例4-15 若随机变量X服从区间[a,b]上的均匀分布,那么X落到[c,d](其中,a≤c <d ≤b)的概率是什么?•例4-16 公共汽车每隔5分钟来一班,某人不知发车时间,他到达车站时刻是等可能的,求他等车时间不超过4分钟的概率例4-17 某计算机在发生故障前正常运行的时间X(单位:小时)是一个连续型随机变量,其分布密度f(x)=问这台计算机在发生故障前正常运转50-150小时的概率。
名词解释:1,总体(population):总体指根据研究目的所确定的同质的观察单位的全体。
更确切的说,它是同质的所有观察单位某种观察值的集合。
可分为有限总体和无限总体。
总体中只包含有限个观察单位者为有限总体,反之为无限总体。
2,样本(sample):从总体中随机抽取部分观察单位的测量结果集合称为样本。
样本应具有可靠性和代表性。
样本的可靠性是指样本的确是来自同一总体,具有同质性;代表性是必须采用随机抽样方法从总体中获得的足够多的观察单位。
3,参数(parameter):参数是用来表示总体分布特征的统计数字。
统计中常用的总体参数有描述总体分布中心位置或集中趋势的总体平均数指标;有描述总体离散度的总体变异指标。
4,统计量(statistic):统计量是依据样本观察值推算出的反映样本分布特征(如样本平均数、样本变异等)的一些量。
5,误差(error):观察值与真值之差称为误差。
误差分为过失误差、系统误差和随机误差三类。
6,抽样误差(sampling error):抽样误差是随机误差中的一种,它是由抽样所至的样本统计量与总体参数间的差异。
抽样误差愈小,用样本推算总体的精确度就愈高,反之亦然。
7,正态分布(normal distribution)和标准正态分布():由密度曲线f(x) = (1/√2π)×(1/σ)×EXP[(-1/2)×(x-x0)^2/σ^2]确定的中间高、两边低、左右对称的连续随机变量的分布称为正态分布。
记为N(μ,σ2) ,其中μ为总体均数σ为总体标准差;把总体均数为0,把总体标准差为1的正态分布N(0,1)称为标准正态分布。
一般正态分布可以通过μ=(x-μ)/σ转化为标准正态分布。
8,抽样误差(sampling error):在抽样研究中,由抽样所至的样本与总体参数间的差异称为抽样误差。
9,标准误(standard error):标准误就是样本统计量的标准差,它反映了统计量间的变异程度,也间接的反映抽样误差的大小。
基本统计方法第一章 概论1. 总体(Population ):根据研究目的确定的同质对象的全体(集合);样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。
2. 参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章 计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR =P 75-P 25)、标准差(或方差)、变异系数(CV )3. 正态分布特征:①X 轴上方关于X =μ对称的钟形曲线;②X =μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。
第三章 总体均数估计和假设检验1. 抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2. 均数的标准误(Standard error of Mean, SEM ):样本均数的标准差,计算公式:/X σσ=3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。
4. t 分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高;③当ν逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
数学统计分析概述数学统计分析是一种通过收集、整理、分析和解释数据来推断和预测现象的方法。
它在各个领域中都得到了广泛应用,包括商业、科学、工程、社会科学等。
本文将介绍数学统计分析的基本概念、方法和应用。
一、基本概念1. 总体和样本在统计学中,总体是指研究对象的全体,而样本是从总体中选取出来的部分。
通过分析样本,我们可以对总体作出推断。
2. 统计量和参数统计量是通过对样本进行测量和计算得到的数值,代表了总体的某个特征。
参数是指总体的某个特征的真实值,我们通常通过样本统计量来估计参数。
3. 频数和概率频数是指某个事件或特征在样本中出现的次数,而概率是指某个事件或特征在总体中出现的可能性。
我们可以通过频数和概率来对总体的特征进行推断。
二、基本方法1. 描述统计描述统计是对数据进行整理、总结和呈现的过程。
包括计算数据的中心趋势(如均值、中位数)、离散程度(如标准差、方差)和分布形状(如直方图、箱线图)等。
2. 推论统计推论统计是通过样本对总体进行推断和预测的过程。
常用的推论方法包括假设检验和置信区间估计。
假设检验用于判断某个假设是否成立,而置信区间估计用于估计某个参数的范围。
三、应用领域1. 商业和经济在商业和经济领域,数学统计分析可以帮助企业进行市场调研、产品定价、销售预测等。
通过对历史数据的分析,可以揭示潜在的商业机会和风险。
2. 科学研究在科学研究中,数学统计分析被广泛应用于实验设计和数据分析。
研究人员可以通过对实验结果进行统计分析,验证科学假设并得出科学结论。
3. 社会科学在社会科学领域,数学统计分析可以帮助社会学家和心理学家研究社会行为和心理过程。
通过对调查数据的统计分析,可以揭示社会现象和个体行为之间的关系。
四、案例分析以一个案例来说明数学统计分析的应用。
假设一家电商公司想要提高客户的购买率,他们收集了一批客户的购买记录,并对数据进行了统计分析。
通过计算平均购买金额、购买频率等统计量,他们发现购买金额在特定的时间段和促销活动下呈现显著增长的趋势。
统计学重点整理1、参数:是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。
通常有总体平均数、总体标准差、总体比例表示。
统计量:是用来描述样本特征的概括性数字度量。
它是根据样本数据计算出来的一个量。
通常有样本平均数、样本标准差、样本比例表示。
2、茎叶图:是反映原始数据分布的图形。
它由茎和叶两部分构成,其图形是数字组成的,通过其可以看出数据的分布形状及数据的离散状况。
箱线图:是由一组数据的最大值、最小值、中位数、两个四分位数这五个特征值绘制而成,它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。
3、方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。
它所研究的是非类型自变量对数值型因变量的影响。
它是通过对数据误差来源的分析来判断不同总体的均值是否相等,进而分析自变量对因变量是否有显著影响. 假定前提:1、每个总体都应服从正态分布2、各个总体的方差必须相同3、观测值是独立的。
4、统计数据的分类(1)按计量尺度:分类的数据、顺序的数据、数值型数据(2)按收集方法:观察的数据、实验的数据(3)按时间状况:截面的数据、时序的数据5、饼图:是用圆形及圆内扇形的角度来表示数值大小的图形,它主要用于表示一个样本(或总体)中各组成部分的数据占全部数据的比例,对于研究结构性问题十分有用。
直方图和条形图:定义:直方图:是用于展示分组数据分布的一种图形,它是用矩形的宽度和高度来表示频数分布的。
条形图:是用宽度相同的条形的高度或长短来表示数据多少的图形。
区别:1、条形图使用图形的长度表示各类别频数的多少,其宽度固定,直方图用面积表示各组频数,矩形的高度表示每一组的频数或频率,宽度表示组距。
2、直方图各矩形连续排列,条形图分开排列,3、条形图主要展示分类数据,直方图主要展示数值型数据。
6、经验法则表明:当一组数据对称分布时,约有68%的数据在平均数加减1个标准差的范围之内,约有95%的数据在平均数加减2个标准差的范围之内,约有99%的数据在平均数加减3个标准差的范围之内。