国家智能制造标准体系建设指南【模板】
- 格式:docx
- 大小:346.07 KB
- 文档页数:65
所属题库*题型*题干*工业互联网单选题QMS建设目标不包括以下哪一项?工业互联网单选题PDM系统的中文全称是?工业互联网单选题工业1.0以( )为标志;工业2.0以( )为标志;工业3.0以( )为主要特征;工业4.0以( )为主要特征工业互联网单选题Paas层的服务对象是?工业互联网单选题株齿设备主要由加工设备、装配设备、试验设备、检测设备构成。
其中生产设备()台以上。
工业互联网单选题未来数据接入方案将()在新增设备中,有望成为重要趋势。
工业互联网单选题按照《株齿物料编码规则》,我司的零部件、工装、辅料等物料的编码位数统一为( )。
工业互联网单选题我司总成、零部件的编码通过( )系统生成。
工业互联网单选题在MES系统中创建订单数据的方法不包含()工业互联网单选题2015年,我国发布了《中国制造2025》,提出到()年,我国制造业进入中等强国之列。
工业互联网单选题计量器具管理模块不能够实现的是()工业互联网单选题计量器具管理不能够生成的是()工业互联网单选题(A+B)+C=A+(B+C)是()工业互联网单选题在普渡工厂模型中,MES和ERP分别处于第()级和第()级 ()工业互联网单选题精益生产的核心是()工业互联网单选题精益生产的核心是()工业互联网单选题数字化车间执行层的软件和设备不包含()工业互联网单选题未来数据接入方案将()在新增设备中,有望成为重要趋势。
工业互联网单选题采用化学螺栓固定调整钢托板,货架和导轨安装在调整钢托板上,_____和_____需要满足需求()工业互联网单选题当前PDM系统中,如果你提交签审任务后,发现自己提交的数据还需要修改一下,可以选择的方式是( )工业互联网单选题()是一个物理概念,是位于生产车间内的一个生产空间单元。
工业互联网单选题采用化学螺栓固定调整钢托板,货架和导轨安装在调整钢托板上,_____和_____需要满足需求()工业互联网单选题数字化车间执行层的软件和设备不包含()1.当前可以批量导入的试题类型有:单选题,多选题,判断题,以下区域为内容输入区,请在提供的信息基础上进行填写,带*号的为必填项。
工业和信息化部办公厅关于印发化工行业智能制造标准体系建设指南(2024版)的通知
文章属性
•【制定机关】工业和信息化部
•【公布日期】2024.07.02
•【文号】工信厅科函〔2024〕262号
•【施行日期】2024.07.02
•【效力等级】部门规范性文件
•【时效性】现行有效
•【主题分类】标准化
正文
工业和信息化部办公厅关于印发
化工行业智能制造标准体系建设指南(2024版)的通知
工信厅科函〔2024〕262号各省、自治区、直辖市工业和信息化主管部门,有关行业协会、标准化技术组织和专业机构:
为切实发挥标准对化工行业智能制造的引领和支撑作用,我部组织编制了《化工行业智能制造标准体系建设指南(2024版)》。
现印发给你们,请结合本地区、本行业、本领域实际,在标准化工作中贯彻执行。
工业和信息化部办公厅
2024年7月2日。
国家新一代人工智能标准体系建设指南
近年来,人工智能技术的发展呈现出爆发式增长的趋势,人工智能已经成为技术创新的风口。
我国领导也高度重视人工智能技术的发展,积极推动相关领域的标准化工作。
在这一背景下,国家新一代人工智能标准体系建设指南的发布,意味着我国正式进入了人工智能标准化的新阶段。
国家新一代人工智能标准体系建设指南是在领导和行业机构的共同协作下制定的,其主要目的是加强我国在人工智能领域的标准化工作,推动人工智能技术的协同发展,为我国人工智能产业的规范化建设提供技术支撑。
该指南包含了三方面的内容:
1.人工智能标准分类体系:该体系将标准分为整个产业链的关键要素,包括人工智能应用、平台与工具、技术与算法、安全与隐私保护、人工智能产业等五大类。
该分类体系可以完整地呈现出我国人工智能产业的全貌,有助于促进各领域的协同发展。
2.人工智能标准体系建设方法论:该方法论明确了标准制定的思路和实施路径。
其中重点强调了标准制定应该紧密结合市场需求和技术进展,充分考虑国内外的标准差异,建立以用户为中心的标准制定模式,同时还应该重视标准的实施和评估,以保障标准的有效性。
3.人工智能标准化管理流程:该流程包括标准项目评审、标准撰写、标准审定、标准发布和标准实施等环节。
该流程严格遵循国际标准,保证了我国标准化管理工作的高效性和规范性。
人工智能标准体系建设指南的发布,对于推动我国人工智能产业的规范化建设有着重要的意义。
标准体系的建立,使得各类人工智能产品和服务的质量能够得到更好的保障,市场竞争也将更加公平和透明。
此外,标准化工作还有助于推动人工智能技术的协同发展,促进产业上下游的紧密配合,从而全面提高产业水平和国家竞争力。
智能制造工程实施指南
一、定义智能制造
智能制造是一种集大数据、物联网、人工智能、模拟仿真技术于一体的新型制造工艺。
它将为制造企业的管理、生产以及科技创新提供决策支持,从而提升企业的制造能力与效率,降低制造成本,提高企业竞争力。
二、制定智能制造规划
1、选择适当的技术平台:选择适当的技术平台,这是实施智能制造工程的基础。
技术平台包括大数据分析、物联网、模拟仿真技术、自动化技术等,根据企业的技术需求,根据企业的业务需求选择最适合的技术平台。
2、构建贯穿全过程的智能制造体系:实施智能制造工程需要构建贯穿全过程的智能制造体系,将智能制造的各个细节统一,从而使企业的智能制造项目能够更好地实现。
3、落实技术方案:落实技术方案,并采用最新的技术,同时考虑安全性、高效性以及灵活性。
4、建立管理体系:运用先进的管理理念和能力,建立良好的组织结构,制定全面的操作规程,确保各项工作的顺利进行。
三、智能制造的实施
1、与企业现有的制造工艺对接:将智能制造的技术与企业现有的制造工艺进行对接,在现有的制造能力基础上进行升级,以实现更大的工作效率。
2、建立统一的管理平台:建立统。
序号标准分类出台时间标准号/计划号标准名称1智能工厂-通用技术2022GB/T 41255-2022智能工厂 通用技术要求2数字化车间2022GB/T 41257-2022数字化车间功能安全要求3数字化车间2022GB/T 41392-2022数字化车间可靠性通用要求4数字化车间2022GB/T 41260-2022数字化车间信息安全要求5数字化车间2022GB/T 41301-2022智能制造环境下的IPv6地址管理要求6数字化车间2022GB/T 41256-2022机器人制造数字化车间装备互联互通和互操作规范7智能制造-个性化定制2021GB/T 40814-2021智能制造 个性化定制 能力成熟度模型8智能制造-工业云服务2021GB/T 40693-2021智能制造 工业云服务 数据管理通用要求9智能制造-架构2021GB/T 40647-2021智能制造 系统架构10智能工厂-虚拟工厂2021GB/T 40654-2021智能制造 虚拟工厂信息模型11智能资质-对象标识2021GB/T 40649-2021智能制造 制造对象标识解析系统应用指南12智能工厂-虚拟工厂2021GB/T 40648-2021智能制造 虚拟工厂参考架构13智能工厂-智能生产订单2021GB/T 40655-2021智能生产订单管理系统 技术要求14智能工厂-机器视觉在线检测2021GB/T 40659-2021智能制造 机器视觉在线检测系统 通用要求15信息物理系统2021GB/T 40020-2021信息物理系统 参考架构16信息物理系统2021GB/T 40021-2021信息物理系统 术语17信息技术2021GB/T 40203-2021信息技术 工业云服务 服务协议指南18智能工厂-架构-云制造2020GB/T 39474-2020基于云制造的智能工厂架构要求19智能制造-能力成熟度2020GB/T 39116-2020智能制造能力成熟度模型20智能制造-能力成熟度2020GB/T 39117-2020智能制造能力成熟度评估方法21智能工厂-安全监测2020GB/T 39173-2020智能工厂 安全监测有效性评估方法22智能工厂-工业控制2020GB/T 38847-2020智能工厂 工业控制异常监测工具技术要求23智能工厂-生产过程控制数据传输2020GB/T 38854-2020智能工厂 生产过程控制数据传输协议24智能工厂-过程工业能源管控2020GB/T 38848-2020智能工厂 过程工业能源管控系统技术要求25智能工厂-工业自动化2020GB/T 38846-2020智能工厂 工业自动化系统工程描述类库26智能工厂-工业自动化2020GB/T 38844-2020智能工厂 工业自动化系统时钟同步、管理与测量通用规范27智能制造-射频识别系统2020GB/T 38668-2020智能制造 射频识别系统 通用技术要求28智能制造-射频识别系统2020GB/T 38670-2020智能制造 射频识别系统 标签数据格式29智能制造-人机交互系统2020GB/Z 38623-2020智能制造 人机交互系统 语义库技术要求30数字化车间-网络架构2020GB/T 38869-2020基于OPC UA的数字化车间互联网络架构31智能工厂-数控装备2020GB/T 39561.1-2020数控装备互联互通及互操作 第1部分:通用技术要求32智能工厂-数控装备2020GB/T 39561.2-2020数控装备互联互通及互操作 第2部分:设备描述模型33智能工厂-数控装备2020GB/T 39561.3-2020数控装备互联互通及互操作 第3部分:面向实现的模型映射34智能工厂-数控装备2020GB/T 39561.4-2020数控装备互联互通及互操作 第4部分:数控机床对象字典35智能工厂-数控装备2020GB/T 39561.5-2020数控装备互联互通及互操作 第5部分:工业机器人对象字典36智能工厂-数控装备2020GB/T 39561.6-2020数控装备互联互通及互操作 第6部分:数控机床测试与评价37智能工厂-数控装备2020GB/T 39561.7-2020数控装备互联互通及互操作 第7部分:工业机器人测试与评价38智能制造-对象标识2019GB/T 37695-2019智能制造 对象标识要求39智能工厂-数字化车间2019GB/T 37393-2019数字化车间 通用技术要求40数字化车间-术语和定义2019GB/T 37413-2019数字化车间 术语和定义41数字化车间-机床制造2019GB/T 37928-2019数字化车间 机床制造 信息模型42智能工厂-安全控制2019GB/T 38129-2019智能工厂 安全控制要求43智能工厂-工业云2019GB/T 37724-2019信息技术 工业云服务 能力通用要求44智能工厂-工业云2019GB/T 37700-2019信息技术 工业云 参考模型45智能工厂-工控安全2018GB/T 36323-2018信息安全技术 工业控制系统安全管理基本要求46数据管理能力2018GB/T 36073-2018数据管理能力成熟度评估模型。
附件3智能制造工程实施指南(2016-2020)为贯彻落实《中国制造2025》,组织实施好智能制造工程(以下简称“工程”),特编制本指南。
一、背景自国际金融危机发生以来,随着新一代信息通信技术的快速发展及与先进制造技术不断深度融合,全球兴起了以智能制造为代表的新一轮产业变革,数字化、网络化、智能化日益成为未来制造业发展的主要趋势。
世界主要工业发达国家加紧谋篇布局,纷纷推出新的重振制造业国家战略,支持和推动智能制造发展,以重塑制造业竞争新优势。
为加速我国制造业转型升级、提质增效,国务院发布实施《中国制造2025》,并将智能制造作为主攻方向,加速培育我国新的经济增长动力,抢占新一轮产业竞争制高点。
当前,我国制造业尚处于机械化、电气化、自动化、信息化并存,不同地区、不同行业、不同企业发展不平衡的阶段。
发展智能制造面临关键技术装备受制于人、智能制造标准/软件/网络/信息安全基础薄弱、智能制造新模式推广尚未起步、智能化集成应用缓慢等突出问题。
相对工业发达国家,推动我国制造业智能转型,环境更为复杂,形势更为严峻,任务更加艰巨。
《中国制造2025》明确将智能制造工程作为政府引导推动的五个工程之一,目的是更好地整合全社会资源,统筹兼顾智能制造各个关键环节,突破发展瓶颈,系统推进技术与装备开发、标准制定、新模式培育和集成应用。
加快组织实施智能制造工程,对于推动《中国制造2025》十大重点领域率先突破,促进传统制造业转型升级,实现制造强国目标具有重大意义。
二、总体要求加快贯彻落实《中国制造2025》总体战略部署,牢固树立创新、协调、绿色、开放、共享的新发展理念,以构建新型制造体系为目标,以推动制造业数字化、网络化、智能化发展为主线,坚持“统筹规划、分类施策、需求牵引、问题导向、企业主体、协同创新、远近结合、重点突破”的原则,将制造业智能转型作为必须长期坚持的战略任务,分步骤持续推进。
“十三五”期间同步实施数字化制造普及、智能化制造示范,重点聚焦“五三五十”重点任务,即:攻克五类关键技术装备,夯实智能制造三大基础,培育推广五种智能制造新模式,推进十大重点领域智能制造成套装备集成应用,持续推动传统制造业智能转型,为构建我国制造业竞争新优势、建设制造强国奠定扎实的基础。
国家智能制造标准体系建设指南(2015年版)2015年12月目录一、总体要求 1(一) 指导思想 1(二) 基本原则 1(三) 建设目标 2二、建设思路 4(一) 智能制造系统架构 4(二) 智能制造标准体系结构图 11(三) 智能制造标准体系框架 13三、建设内容 15(一) 基础共性标准 15(二) 关键技术标准 18(三) 重点行业标准 28四、组织实施 30附件1:智能制造相关名词术语和缩略语附件2:已发布、制定中的智能制造基础共性标准和关键技术标准加快推进智能制造,是实施《中国制造2025》的主攻方向,是落实工业化和信息化深度融合、打造制造强国的战略举措,更是我国制造业紧跟世界发展趋势、实现转型升级的关键所在。
当前,“智能制造、标准先行”,为解决标准缺失、滞后以及交叉重复等问题,指导当前和未来一段时间内智能制造标准化工作,根据《中国制造2025》的战略部署,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2015年版)》。
一、总体要求(一) 指导思想充分发挥标准在推进智能制造发展中的基础性和引导性作用,建立政府主导制定与市场自主制定的标准协同发展、协调配套的新型标准体系。
聚焦智能制造跨行业、跨领域的融合创新领域,建成覆盖5大类基础共性标准、5大类关键技术标准及10大领域重点行业应用标准的国家智能制造标准体系。
加强标准的统筹规划与宏观指导,加强标准的实施与监督,加强标准的创新发展与国际化,建立动态完善机制,逐步形成智能制造强有力的基础支撑。
(二) 基本原则统筹规划,分类施策。
统筹标准资源,优化标准结构,系统梳理国内智能制造相关标准,以满足智能制造发展需求为目标。
聚焦《中国制造2025》提出的10大重点发展领域,兼顾传统产业转型升级,结合不同行业发展水平和行业特点,形成智能制造重点行业应用标准,构建相互衔接、协调配套的标准体系。
跨界融合,急用先行。
根据智能制造跨领域、跨行业及高度集成、系统融合等特点,针对当前推进智能制造工作中遇到的数据集成、互联互通等关键瓶颈问题,优先制定数据接口、通讯协议、语义标识等基础共性标准。
智能制造标准体系结构一、智能制造标准体系结构智能制造标准体系结构包括A基础共性、B关键技术、C重点行业等三个部分,主要反映标准体系各部分的组成关系。
具体而言,A基础共性标准包括基础、安全、管理、检测评价和可靠性等五大类,位于智能制造标准体系结构图的最底层,其研制的基础共性标准支撑着标准体系结构图上层虚线框内B关键技术标准和C重点行业标准;BA智能装备标准位于智能制造标准体系结构图的B关键技术标准的最底层,与智能制造实际生产联系最为紧密;在BA智能装备标准之上是BB智能工厂标准,是对智能制造装备、软件、数据的综合集成,该标准领域在智能制造标准体系结构图中起着承上启下的作用;BC智能服务标准位于B关键技术标准的顶层,涉及到对智能制造新模式和新业态的标准研究;BD工业软件和大数据标准与BE工业互联网标准分别位于智能制造标准体系结构图的B关键技术标准的最左侧和最右侧,贯穿B关键技术标准的其它3个领域(BA、BB、BC),打通物理世界和信息世界,推动生产型制造向服务型制造转型;C重点行业标准位于智能制造标准体系结构图的最顶层,面向行业具体需求,对A基础共性标准和B关键技术标准进行细化和落地,指导各行业推进智能制造。
二、下游产品市场的持续增长智能制造设备的下游客户目前主要包括消费电子制造、汽车及零部件制造等行业。
以消费电子为例,经过多年的发展,我国消费电子产业已形成长三角、珠三角等产业集群,产业区域优势明显,目前我国已拥有完整消费电子产业链,加工工业发达,拥有全球大部分消费电子行业产能。
智能制造设备的下游客户目前主要包括消费电子制造、汽车及零部件制造等行业。
以消费电子为例,经过多年的发展,我国消费电子产业已形成长三角、珠三角等产业集群,产业区域优势明显,目前我国已拥有完整消费电子产业链,加工工业发达,拥有全球大部分消费电子行业产能。
2021年,全国规模以上电子信息制造业增加值同比增长15.7%,快于全部规模以上工业增速6.1个百分点。
工业和信息化部科技司公开征求对《国家智能制造标准体系建设指南(2021版)》(征求意见稿)的意见
文章属性
•【公布机关】工业和信息化部,工业和信息化部,工业和信息化部
•【公布日期】2021.07.07
•【分类】征求意见稿
正文
公开征求对《国家智能制造标准体系建设指南(2021版)》
(征求意见稿)的意见
为贯彻落实《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》关于完善智能制造标准体系的部署要求,加强智能制造标准化工作顶层设计,工业和信息化部、国家标准化管理委员会组织编制了《国家智能制造标准体系建设指南(2021版)》(征求意见稿)(见附件1)及《编制说明》(见附件2)。
为进一步听取社会各界意见,现予以公示,公示截止日期2021年8月5日。
如有意见或建议,请在公示期间填写《公示意见反馈信息表》(见附件3)并反馈至工业和信息化部科技司,电子邮件发送至*************.cn(邮件主题标明:国家智能制造标准体系建设指南(2021版)公示反馈)。
地址:北京市西长安街13号工业和信息化部科技司
邮编:100804
联系电话:************
公示时间:2021年7月7日-2021年8月5日
附件:
1.《国家智能制造标准体系建设指南(2021版)》(征求意见稿)
2.《国家智能制造标准体系建设指南(2021版)》(征求意见稿)编制说明
3. 公示意见反馈信息表
工业和信息化部科技司
2021年7月7日。
国家智能制造标准体系建设指南(2018年版)2018年7月目录前言 (1)一、总体要求 (2)(一)指导思想 (2)(二)基本原则 (2)(三)建设目标 (3)二、建设思路 (4)(一)智能制造系统架构 (4)(二)智能制造标准体系结构 (8)(三)智能制造标准体系框架 (9)三、建设内容 (11)(一)基础共性标准 (11)(二)关键技术标准 (14)(三)行业应用标准 (30)四、组织实施 (32)附件1:智能制造相关名词术语和缩略语附件2:智能制造系统架构映射及示例解析附件3:已发布、制定中的智能制造基础共性标准和关键技术标准前言制造业是国民经济的主体,是立国之本、兴国之器、强国之基。
智能制造是落实我国制造强国战略的重要举措,加快推进智能制造,是加速我国工业化和信息化深度融合、推动制造业供给侧结构性改革的重要着力点,对重塑我国制造业竞争新优势具有重要意义,“智能制造、标准先行”,标准化工作是实现智能制造的重要技术基础。
为指导当前和未来一段时间智能制造标准化工作,解决标准缺失、滞后、交叉重复等问题,落实“加快制造强国建设”,工业和信息化部、国家标准化管理委员会在2015年共同组织制定了《国家智能制造标准体系建设指南(2015年版)》并建立动态更新机制。
按照标准体系动态更新机制,扎实构建满足产业发展需求、先进适用的智能制造标准体系,推动装备质量水平的整体提升,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》。
一、总体要求(一)指导思想进一步贯彻落实《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)和《装备制造业标准化和质量提升规划》(国质检标联〔2016〕396号)的工作部署,充分发挥标准在推进智能制造产业健康有序发展中的指导、规范、引领和保障作用。
针对智能制造标准跨行业、跨领域、跨专业的特点,立足国内需求,兼顾国际体系,建立涵盖基础共性、关键技术和行业应用等三类标准的国家智能制造标准体系。
建材行业智能制造标准体系建设指南(2021版)建材行业智能制造标准体系建设指南(2021版)一、引言在当今数字化、智能化的时代,建材行业作为国民经济的支柱产业之一,也在积极探索智能制造的路径,以提高产品质量、智能化管理和降低生产成本。
智能制造是建材行业创新发展的必然选择,而建设智能制造标准体系则是实现这一目标的重要保障。
本文将围绕建材行业智能制造标准体系建设指南(2021版)展开深入探讨。
二、智能制造的概念和现状智能制造是指利用先进的信息技术,通过数字化、网络化、智能化等手段,实现生产过程的智能化、柔性化和个性化。
在建材行业中,智能制造可以提高生产效率、优化产品设计、降低生产成本,并且实现绿色环保生产。
目前,建材行业的智能制造基础设施建设已经取得了一定的进展,但仍面临标准体系建设不完善、技术集成难度大等问题。
三、建材行业智能制造标准体系的重要性建材行业智能制造标准体系的建设对于促进产业升级、实现智能制造目标至关重要。
标准体系是行业发展的基石,其完善与否直接影响着整个产业的发展水平和竞争力。
在建材行业智能制造中,标准体系的建设将有助于规范产业发展、提高产品质量、推动技术创新、提升企业竞争力、促进企业可持续发展等。
四、建材行业智能制造标准体系建设指南(2021版)1. 智能制造标准体系概述建材行业智能制造标准体系应包括生产工艺标准、生产设备标准、产品质量标准、信息化管理标准等内容,以全面规范和指导智能制造生产过程。
2. 标准制定原则建材行业智能制造标准体系的制定应遵循科学性、先进性、可操作性、适用性等原则,确保标准的科学性和实用性。
3. 标准体系内容建材行业智能制造标准体系应包括智能化设计标准、数字化生产标准、智能化管理标准、智能化检测标准等内容,以全方位推动智能制造的发展。
4. 标准体系的建设路径建材行业智能制造标准体系的建设路径应包括标准需求调研、标准制定及修订、标准实施与推广等环节,确保标准体系的持续优化和更新。
国家新一代人工智能标准体系建设指南为落实党中央、国务院关于发展人工智能的决策部署,推动人工智能技术在开源、开放的产业生态不断自我优化,充分发挥基础共性、伦理、安全隐私等方面标准的引领作用,指导人工智能国家标准、行业标准、团体标准等的制修订和协调配套,形成标准引领人工智能产业全面规范化发展的新格局,制定《国家新一代人工智能标准体系建设指南》。
一、总体要求(一)指导思想。
全面贯彻党的十九大和十九届二中、三中、四中全会精神,落实党中央、国务院关于发展新一代人工智能的决策部署,以市场驱动和政府引导相结合,按照“统筹规划,分类施策,市场驱动,急用先行,跨界融合,协同推进,自主创新,开放合作”原则,立足国内需求,兼顾国际,建立国家新一代人工智能标准体系,加强标准顶层设计与宏观指导。
加快创新技术和应用向标准转化,强化标准的实施与监督,促进创新成果与产业深度融合。
注重与智能制造、工业互联网、机器人、车联网等相关标准体系的协调配套。
深化人工智能标准国际交流与合作,注重国际国内标准协同性,充分发挥标准对人工智能发展的支撑引领作用,为高质量发展保驾护航。
(二)建设目标。
到2021年,明确人工智能标准化顶层设计,研究标准体系建设和标准研制的总体规则,明确标准之间的关系,指导人工智能标准化工作的有序开展,完成关键通用技术、关键领域技术、伦理等20项以上重点标准的预研工作。
到2023年,初步建立人工智能标准体系,重点研制数据、算法、系统、服务等重点急需标准,并率先在制造、交通、金融、安防、家居、养老、环保、教育、医疗健康、司法等重点行业和领域进行推进。
建设人工智能标准试验验证平台,提供公共服务能力。
二、建设思路(一)人工智能标准体系结构。
人工智能标准体系结构包括“A基础共性”“B支撑技术与产品”“C 基础软硬件平台”“D关键通用技术”“E关键领域技术”“F产品与服务”“G行业应用”“H安全/伦理”等八个部分,如图1所示。
图1人工智能标准体系结构其中,A基础共性标准包括术语、参考架构、测试评估三大类,位于人工智能标准体系结构的最左侧,支撑标准体系结构中其它部分;B支撑技术与产品标准对人工智能软硬件平台建设、算法模型开发、人工智能应用提供基础支撑;C基础软硬件平台标准主要围绕智能芯片、系统软件、开发框架等方面,为人工智能提供基础设施支撑;D关键通用技术标准主要围绕机器学习、知识图谱、类脑智能计算、量子智能计算、模式识别等方面,为人工智能应用提供通用技术支撑;E关键领域技术标准主要围绕自然语言处理、智能语音、计算机视觉、生物特征识别、虚拟现实/增强现实、人机交互等方面,为人工智能应用提供领域技术支撑;F产品与服务标准包括在人工智能技术领域中形成的智能化产品及新服务模式的相关标准;G行业应用标准位于人工智能标准体系结构的最顶层,面向行业具体需求,对其它部分标准进行细化,支撑各行业发展;H安全/伦理标准位于人工智能标准体系结构的最右侧,贯穿于其他部分,为人工智能建立合规体系。
智能建造标准体系智能建造是利用信息技术、物联网、人工智能等先进技术手段,对建筑行业的设计、施工、运维等环节进行优化和智能化改造的过程。
建立智能建造的标准体系对于推动行业发展、提高效益和降低成本具有重要意义。
以下是智能建造标准体系的一般性介绍。
1. 智能建造概述:•定义和范畴:确定智能建造的定义、涵盖范畴,包括设计、施工、运维等多个环节。
•技术趋势:分析智能建造的技术趋势,包括人工智能、大数据、物联网、虚拟现实等的应用。
2. 智能建造术语和定义:•相关术语:制定智能建造领域的相关术语和定义,以统一行业用语。
•标准词汇:建立标准词汇表,便于不同机构和企业间的沟通与合作。
3. 智能建造体系架构:•系统划分:将智能建造划分为设计、施工、运维等多个系统,并确定各系统之间的关系。
•信息流程:描述智能建造中信息的流程和交互,包括数据采集、处理、传输等。
4. 智能建造数据标准:•数据格式:制定智能建造中常用数据的格式标准,确保数据的一致性和可解释性。
•数据共享:建立数据共享的标准,促进不同系统之间的数据交流。
5. 智能建造安全标准:•信息安全:制定智能建造中信息安全的标准,包括数据隐私保护、网络安全等方面。
•物理安全:关注建筑物中物理设备的安全标准,确保人员和设备的安全。
6. 智能建造技术标准:•通信标准:制定智能建造中通信协议的标准,确保设备之间能够有效沟通。
•人工智能:规范人工智能在建造过程中的应用,确保技术的可控性和稳定性。
7. 智能建造质量标准:•设计标准:制定智能建造设计的质量标准,确保设计方案的科学性和实用性。
•施工标准:制定智能建造施工的质量标准,确保施工过程的高效和安全。
8. 智能建造人才培养标准:•培训体系:制定智能建造领域的人才培养体系,包括培训课程和认证标准。
•技能要求:确定从业人员在智能建造领域应具备的技能和知识要求。
9. 智能建造环境与可持续发展标准:•能源效率:制定智能建造中能源使用的效率标准,促进建筑的节能和可持续发展。
企业智能制造标准化建设方案1.引言随着全球经济的快速发展,智能化技术正在改变传统制造业的面貌,引领制造业进入全新的发展阶段。
智能制造作为当前和未来制造业发展的核心驱动力,已经引起了全球范围内的广泛关注。
为了提升企业的竞争力,紧跟制造业发展趋势,我国积极推广智能制造,并开展了一系列相关研究和实践。
然而,智能制造在企业的实际推进过程中,往往面临着诸多问题和挑战。
其中,标准化建设是推进智能制造的重要环节,对于规范企业生产流程、提升产品质量、优化资源配置具有重要意义。
因此,本文旨在探讨企业智能制造标准化建设方案,以期为相关企业提供参考和借鉴。
2.智能制造概述智能制造是一种集自动化、信息化、数字化、网络化、智能化等技术于一体的新型制造模式。
它以智能化生产设备和系统为基础,以数据为驱动,以云计算、大数据、物联网等技术为支撑,通过对生产流程的智能化改造和优化,实现制造过程的自动化、柔性化、智能化。
智能制造的目标是提高生产效率、降低生产成本、提升产品质量和服务水平,以适应不断变化的市场需求。
3.标准化建设目标智能制造标准化建设的主要目标是:建立符合企业实际的智能制造标准体系,明确各项标准的技术要求和实施细则,推动标准的广泛应用和有效执行,提高企业生产效率、降低成本、提升产品质量和服务水平。
同时,通过标准化建设,规范企业生产和管理流程,推动企业技术创新和管理创新,增强企业的核心竞争力。
4.标准化建设原则智能制造标准化建设应遵循以下原则:(1)符合国家有关法律法规和标准要求;(2)结合企业实际,突出重点和实用性;(3)注重标准的可操作性和可考核性;(4)加强标准的宣贯和培训,提高员工标准化意识。
5.标准化建设内容智能制造标准化建设主要包括以下几个方面:(1)基础标准:包括智能制造术语、分类、编码等基础性标准;(2)技术标准:包括智能制造装备、工艺、信息技术等标准;(3)管理标准:包括智能制造管理流程、质量控制、安全防范等标准;(4)服务标准:包括智能制造相关联的服务流程、服务质量控制等标准。
智能制造标准体系建设内容一、智能制造标准体系建设内容(一)智能制造标准体系建设基础共性标准基础共性标准主要包括基础、安全、管理、检测评价和可靠性等五个部分。
1、基础标准基础标准主要包括术语定义、参考模型、元数据与数据字典、标识等四个部分。
术语定义标准用于统一智能制造相关概念,为其他各部分标准的制定提供支撑;参考模型标准用于帮助各方认识和理解智能制造标准化的对象、边界、各部分的层级关系和内在联系;元数据和数据字典标准用于规定智能制造产品设计、生产、流通等环节涉及的元数据命名规则、数据格式、数据模型、数据元素和注册要求、数据字典建立方法,为智能制造各环节产生的数据集成、交互共享奠定基础;标识标准用于对智能制造中各类对象进行唯一标识与解析,建设既与制造企业已有的标识编码系统兼容,又能满足设备IP化、智能化等智能制造发展要求的智能制造标识体系。
2、安全标准安全标准主要包括功能安全和信息安全两个部分。
功能安全标准用于保证安全控制系统在危险发生时正确地执行其安全功能,从而避免因设备故障或系统功能失效而导致人身伤害、环境破坏及经济损失,主要包括功能安全要求和功能安全实施和管理等两个部分。
信息安全标准用于保证信息系统不因偶然的或者恶意的原因而遭到破坏、更改、泄露,系统能连续可靠正常地运行,主要包括软件安全、设备信息安全、网络信息安全、数据安全、信息安全防护等五个部分。
3、管理标准管理标准主要包括信息安全管理体系和管理体系两个部分。
信息安全管理体系标准用于根据各行业智能制造特点和需求,聚焦制造关键环节,制定智能制造信息安全管理标准,主要包括管理标准和安全监管等两个部分。
管理体系标准用于指导相关企业建立创新管理机制,保持可持续竞争优势,通过标准化工作改进过程管理机制,主要包括要求、基础和术语、实施指南、评估规范、审核指南等五个部分。
4、检测评价标准检测评价标准主要包括测试项目、测试方法、测试设备、指标体系、评价方法、实施指南等六个部分。
国家智能制造标准体系建设指南(2018年版)2018年7月目录前言 (1)一、总体要求 (2)(一)指导思想 (2)(二)基本原则 (2)(三)建设目标 (3)二、建设思路 (4)(一)智能制造系统架构 (4)(二)智能制造标准体系结构 (8)(三)智能制造标准体系框架 (9)三、建设内容 (11)(一)基础共性标准 (11)(二)关键技术标准 (14)(三)行业应用标准 (30)四、组织实施 (32)附件1:智能制造相关名词术语和缩略语附件2:智能制造系统架构映射及示例解析附件3:已发布、制定中的智能制造基础共性标准和关键技术标准前言制造业是国民经济的主体,是立国之本、兴国之器、强国之基。
智能制造是落实我国制造强国战略的重要举措,加快推进智能制造,是加速我国工业化和信息化深度融合、推动制造业供给侧结构性改革的重要着力点,对重塑我国制造业竞争新优势具有重要意义,“智能制造、标准先行”,标准化工作是实现智能制造的重要技术基础。
为指导当前和未来一段时间智能制造标准化工作,解决标准缺失、滞后、交叉重复等问题,落实“加快制造强国建设”,工业和信息化部、国家标准化管理委员会在2015年共同组织制定了《国家智能制造标准体系建设指南(2015年版)》并建立动态更新机制。
按照标准体系动态更新机制,扎实构建满足产业发展需求、先进适用的智能制造标准体系,推动装备质量水平的整体提升,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》。
一、总体要求(一)指导思想进一步贯彻落实《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)和《装备制造业标准化和质量提升规划》(国质检标联〔2016〕396号)的工作部署,充分发挥标准在推进智能制造产业健康有序发展中的指导、规范、引领和保障作用。
针对智能制造标准跨行业、跨领域、跨专业的特点,立足国内需求,兼顾国际体系,建立涵盖基础共性、关键技术和行业应用等三类标准的国家智能制造标准体系。
加强标准的统筹规划与宏观指导,加快创新技术成果向标准转化,强化标准的实施与监督,深化智能制造标准国际交流与合作,提升标准对制造业的整体支撑作用,为产业高质量发展保驾护航。
(二)基本原则按照《国家智能制造标准体系建设指南(2015年版)》中提出的“统筹规划,分类施策,跨界融合,急用先行,立足国情,开放合作”原则,进一步完善智能制造标准体系,全面开展基础共性标准、关键技术标准、行业应用标准研究,加快标准制(修)订,在制造业各个领域全面推广。
同时,加强标准的创新发展与国际化,积极参与国际标准化组织活动,加强与相关国家和地区间的技术标准交流与合作,开展标准互认,共同推进国际标准制定。
(三)建设目标按照“共性先立、急用先行”的原则,制定安全、可靠性、检测、评价等基础共性标准,识别与传感、控制系统、工业机器人等智能装备标准,智能工厂设计、智能工厂交付、智能生产等智能工厂标准,大规模个性化定制、运维服务、网络协同制造等智能服务标准,人工智能应用、边缘计算等智能赋能技术标准,工业无线通信、工业有线通信等工业网络标准,机床制造、航天复杂装备云端协同制造、大型船舶设计工艺仿真与信息集成、轨道交通网络控制系统、新能源汽车智能工厂运行系统等行业应用标准,带动行业应用标准的研制工作。
推动智能制造国家和行业标准上升成为国际标准。
到2018年,累计制修订150项以上智能制造标准,基本覆盖基础共性标准和关键技术标准。
到2019年,累计制修订300项以上智能制造标准,全面覆盖基础共性标准和关键技术标准,逐步建立起较为完善的智能制造标准体系。
建设智能制造标准试验验证平台,提升公共服务能力,提高标准应用水平和国际化水平。
二、建设思路国家智能制造标准体系按照“三步法”原则建设完成。
第一步,通过研究各类智能制造应用系统,提取其共性抽象特征,构建由生命周期、系统层级和智能特征组成的三维智能制造系统架构,从而明确智能制造对象和边界,识别智能制造现有和缺失的标准,认知现有标准间的交叉重叠关系;第二步,在深入分析标准化需求的基础上,综合智能制造系统架构各维度逻辑关系,将智能制造系统架构的生命周期维度和系统层级维度组成的平面自上而下依次映射到智能特征维度的五个层级,形成智能装备、智能工厂、智能服务、智能赋能技术、工业网络等五类关键技术标准,与基础共性标准和行业应用标准共同构成智能制造标准体系结构;第三步,对智能制造标准体系结构分解细化,进而建立智能制造标准体系框架,指导智能制造标准体系建设及相关标准立项工作。
(一)智能制造系统架构《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)指出,智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。
智能制造系统架构从生命周期、系统层级和智能特征三个维度对智能制造所涉及的活动、装备、特征等内容进行描述,主要用于明确智能制造的标准化需求、对象和范围,指导国家智能制造标准体系建设。
智能制造系统架构如图1所示。
互联互通融合共享系统集成新兴业态图1 智能制造系统架构1. 生命周期生命周期是指从产品原型研发开始到产品回收再制造的各个阶段,包括设计、生产、物流、销售、服务等一系列相互联系的价值创造活动。
生命周期的各项活动可进行迭代优化,具有可持续性发展等特点,不同行业的生命周期构成不尽相同。
(1)设计是指根据企业的所有约束条件以及所选择的技术来对需求进行构造、仿真、验证、优化等研发活动过程;(2)生产是指通过劳动创造所需要的物质资料的过程;(3)物流是指物品从供应地向接收地的实体流动过程;(4)销售是指产品或商品等从企业转移到客户手中的经营活动;(5)服务是指提供者与客户接触过程中所产生的一系列活动的过程及其结果,包括回收等。
2. 系统层级系统层级是指与企业生产活动相关的组织结构的层级划分,包括设备层、单元层、车间层、企业层和协同层。
(1)设备层是指企业利用传感器、仪器仪表、机器、装置等,实现实际物理流程并感知和操控物理流程的层级;(2)单元层是指用于工厂内处理信息、实现监测和控制物理流程的层级;(3)车间层是实现面向工厂或车间的生产管理的层级;(4)企业层是实现面向企业经营管理的层级;(5)协同层是企业实现其内部和外部信息互联和共享过程的层级。
3. 智能特征智能特征是指基于新一代信息通信技术使制造活动具有自感知、自学习、自决策、自执行、自适应等一个或多个功能的层级划分,包括资源要素、互联互通、融合共享、系统集成和新兴业态等五层智能化要求。
(1)资源要素是指企业对生产时所需要使用的资源或工具及其数字化模型所在的层级;(2)互联互通是指通过有线、无线等通信技术,实现装备之间、装备与控制系统之间,企业之间相互连接及信息交换功能的层级;(3)融合共享是指在互联互通的基础上,利用云计算、大数据等新一代信息通信技术,在保障信息安全的前提下,实现信息协同共享的层级;(4)系统集成是指企业实现智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统集成过程的层级;(5)新兴业态是企业为形成新型产业形态进行企业间价值链整合的层级。
智能制造的关键是实现贯穿企业设备层、单元层、车间层、工厂层、协同层不同层面的纵向集成,跨资源要素、互联互通、融合共享、系统集成和新兴业态不同级别的横向集成,以及覆盖设计、生产、物流、销售、服务的端到端集成。
(二)智能制造标准体系结构智能制造标准体系结构包括“A基础共性”、“B关键技术”、“C行业应用”等三个部分,主要反映标准体系各部分的组成关系。
智能制造标准体系结构图如图2所示。
图2 智能制造标准体系结构图具体而言,A基础共性标准包括通用、安全、可靠性、检测、评价等五大类,位于智能制造标准体系结构图的最底层,是B关键技术标准和C行业应用标准的支撑。
B关键技术标准是智能制造系统架构智能特征维度在生命周期维度和系统层级维度所组成的制造平面的投影,其中BA智能装备对应智能特征维度的资源要素,BB智能工厂对应智能特征维度的资源要素和系统集成,BC智能服务对应智能特征维度的新兴业态,BD智能赋能技术对应智能特征维度的融合共享,BE工业网络对应智能特征维度的互联互通。
C行业应用标准位于智能制造标准体系结构图的最顶层,面向行业具体需求,对A基础共性标准和B关键技术标准进行细化和落地,指导各行业推进智能制造。
智能制造标准体系结构中明确了智能制造的标准化需求,与智能制造系统架构具有映射关系。
以大规模个性化定制模块化设计规范为例,它属于智能制造标准体系结构中B 关键技术-BC智能服务中的大规模个性化定制标准。
在智能制造系统架构中,它位于生命周期维度设计环节,系统层级维度的企业层和协同层,以及智能特征维度的新兴业态。
其中,智能制造系统架构三个维度与智能制造标准体系的映射关系及示例解析详见附件2。
(三)智能制造标准体系框架智能制造标准体系框架由智能制造标准体系结构向下映射而成,是形成智能制造标准体系的基本组成单元。
智能制造标准体系框架包括“A基础共性”、“B关键技术”、“C行业应用”三个部分,如图3所示。
图3 智能制造标准体系框架10三、建设内容(一)基础共性标准基础共性标准用于统一智能制造相关概念,解决智能制造基础共性关键问题,包括通用、安全、可靠性、检测、评价等五个部分,如图4所示。
图4 基础共性标准子体系1. 通用标准主要包括术语定义、参考模型、元数据与数据字典、标识等四个部分。
术语定义标准用于统一智能制造相关概念,为其他各部分标准的制定提供支撑。
参考模型标准用于帮助各方认识和理解智能制造标准化的对象、边界、各部分的层级关系和内在联系。
元数据和数据字典标准用于规定智能制造产品设计、生产、流通等环节涉及的元数据命名规则、数据格式、数据模型、数据元素和注册要求、数据字典建立方法,为智能制造各环节产生的数据集成、交互共享奠定基础。
标识标准用于对智能制造中各类对象进行唯一标识与解析,建设既与制造企业已有的标识编码系统兼容,又能满足设备互联网协议(IP)化、智能化等智能制造发展要求的智能制造标识体系。
2. 安全标准主要包括功能安全、信息安全和人因安全三个部分。
功能安全标准用于保证控制系统在危险发生时正确地执行其安全功能,从而避免因设备故障或系统功能失效而导致生产事故,包括面向智能制造的功能安全要求、功能安全系统设计和实施、功能安全测试和评估、功能安全管理等标准。
信息安全标准用于保证智能制造领域相关信息系统及其数据不被破坏、更改、泄露,从而确保系统能连续可靠地运行,包括软件安全、设备信息安全、网络信息安全、数据安全、信息安全防护及评估等标准。