甘肃省临泽县第二中学2017-2018学年八年级上学期期末考试数学试题
- 格式:docx
- 大小:86.64 KB
- 文档页数:5
B第9题图八年级数学试题上学期期末考试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠题 10Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( ) 腰三角A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________ 第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为°,求此等腰三角形的顶角为 17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N △PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
FDBCAE 八年级数学试题上学期期末考试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。
2017—2018学年第一学期八年级数学期末考试试卷一、选择题(每小题3分,共30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2、(π﹣2018)0的计算结果是()A.π﹣2018 B.2018﹣πC.0 D.13、下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(-ab)5÷(-ab)2=﹣a3b34、以下列各组线段为边作三角形,不能构成直角三角形的是()A.1、、B.5、12、13C.2、3、4D.9、40、415、下列分解因式正确的是( )A.()()311m m m m m-=-+B. x2-x-6=x(x-1)-6C.()222a ab a a a b++=+D.()222x y x y-=-6、已知a、b、c是三角形的三边长,如果满足(a﹣6)2+,则三角形的形状是()A.底与腰不相等的等腰三角形B.直角三角形C.钝角三角形D.等边三角形7、如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是:()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN8、等腰三角形的两个内角的比是1 2,则这个等腰三角形的顶角的度数是()A .72°B .36°或90°C .36°D .45°9、如图所示,两个全等的等边三角形的边长为1m ,一个微型机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2012m 停下,则这个微型机器人停在( )A .点A 处B .点B 处C .点C 处D .点E 处10.一项工程,甲单独做要x 天完成,乙单独做要y 天完成,则甲、乙合做完成工程需要的天数为()二、填空题(每小题3共,共24分)11. 的算术平方根是________..13.李明同学从家到学校的平均速度是每小时a 千米,沿原路从学校返回家的速度是每小时b 千米,则李明同学回的平均速度是__________千米/小时(用含a 、b 的式子表示)15.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠18.如图,已知正六边形ABCDEF 的边长是5,点P 是AD 上的一动点,则PE +PF 的最小值是________.20.因式分解(4分):a(n-1)2-2a(n-1)+a.21.先化简,再求值(6分):(1﹣)÷,其中x=2.22. 解方程:(8分)(1)1x-3-2=3x3-x;(2)32x=2x+1.23(8分). 如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.24.(8分)如图,已知点A 、E 、F 、C 在同一直线上,12∠=∠,AE CF =,AD CB =.判断BE 和DF 的位置关系,并说明理由.25(8分)在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .21·世(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAE=30°,求∠ACF 的度数.26.(8分)某厂街道在规定时间内加工1500顶帐篷支援灾区人民的任务,在加工了300顶帐篷后,厂家把工作效率提高到原的2倍,于是提前6天完成任务,求原每天加工多少顶帐篷?27.(12分)如图,△ABC 中,AB=AC ,∠BAC=90°,点D 是直线AB 上的一动点(不和A 、B 重合),BE ⊥CD 于E ,交直线AC 于F(1)点D 在边AB 上时,试探究线段BD 、AB 和AF 的数量关系,并证明你的结论;(2)点D 在AB 的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论。
学习-----好资料八年级数学试题上学期期末考试8.若x 2 2 ^3 x 16是完全平方式,则m 的值等于()A. 3B. -5C.7D. 7 或-19. 如图,在△ ABC 中,AB=AC , BE=CD , BD=CF ,则/ EDF 的度数为 ()11A . 45 AB . 90 AC . 90「“AD . 180A一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( A B2 ,.已知三角形的三边长分别是3, C8, x ,若x 的值为偶数,则 x 的值有( )C.4个D.3个 A.6个 B.5个3 .—个多边形截去一个角后,形成的多边形的内角和是2520。
,则原多边形的边数是( )A.15 或 16B.16 或 17C.15 或 17D.15.16 或 174.如图,△ ACB ◎△ A'CB',/ BCB' = 30 °,则/ ACA'的度数为( ) A.20 ° B.30 °5 ,等腰三角形的两边长分别为 C.35 ° D.40 5cm 和10cm ,则此三角形的周长是 C. 25cm D.20cm 或 25cm 6. 如图,已知/ CAB = Z DAB , A.AC = ADB.BC = BD 7. 如图,已知在厶 ABC 中,CD =2,则△ BCE 的面积等于( A.10 B.7则添加下列一个条件不能使△C. / C =Z DD. / ABC= Z ABD 是AB 边上的高,BE 平分/ ABC ,交CD 于点E , BC = 5, DE ) C.5ABC ABD 的是()D.42 2第10题10.如上图,等腰 Rt △ ABC 中,/ BAC = 90° AD 丄BC 于点D ,/ ABC 的平分线分别交 AC 、 AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接DM ,下列结论:① DF 2=DN :② △ DMN 为等腰三角形;③ DM 平分/ BMN :④ AE = - EC ;⑤ AE = NC ,其中正3确结论的个数是( )A . 2个B . 3个C . 4个D . 5个二、填空题(每小题3分,共24分)31211.计算:0.1253 域(一0.25)汉2° 汉(一2) _______ = 12,在实数范围内分解因式:3a 3 -4ab 2… m — n .2m4n13.右x - 2)x 3,则 x18.如图所示,在△ ABC 中,/ A=80°,延长 BC 到D ,/ ABC 与/ ACD 的平分线相交于 A 1点,/ A 1BC 与/ A 1CD 的平分线相交于 A 2点,依此类推,/ A 4BC 与/ A 4CD 的平分线相交于 A 5点,则/ A 5的度数是 ________________________ 。
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
一.选择题(共12小题,满分36分,每小题3分)1.以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D AD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是() A.180°B.220°C.240°D.300°5.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=16.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()9.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.如图,已知∠1=∠2,要得到△ABD≌△ACD,从下列条件中补选一个,则错误选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)分解因式:x3﹣4x2﹣12x= _________ .14.(4分)若分式方程:有增根,则k= _________ .15.(4分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________ .(只需填一个即可)16.(4分)如图,在△A BC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_______ 度.17.(4分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________ .三.解答题(共7小题,满分64分)18.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一.选择题(共12小题,满分36分,每小题3分)1.(3分))在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE 考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.6.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)下列式子变形是因式分解的是( )A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做8.(3分)若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)化简的结果是()A.x+1B.x﹣1C.﹣x D.x 考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2。
2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018第一学期八年级期末数学测试题一、选择题(每小题3分,共30分)1、计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 3b 5D .a 3b 62、若分式有意义,则x 的取值范围是( ) A . x ≠3 B . x ≠﹣3C . x >3D . x >﹣3 3、计算(x -3y ) ( x +3y )的结果是( )A .22y 3x -B .22y 6x -C .22y 9x -D .22y 6x 2- 4、满足下列哪种条件时,能判定△ABC 与△DEF 全等的是 ( )A .∠A=∠E ,AB = EF ,∠B =∠D ; B .AB=DE ,BC = EF ,∠C=∠F ;C .AB=DE ,BC = EF ,∠A=∠E ;D .∠A =∠D ,AB = DE ,∠B=∠E5、从长为2cm 、3cm 、5cm 、6cm 的四条线段中取出三条线段,能够组成三角形的取法有 ( ) A 、1种 B 、 2种 C 、3种 D 、 4种6、下列“表情”中属于轴对称图形的是( )A .B .C .D .7、.如图7在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E,DE=3,BD=2CD, 则BC=( )A.7B.8C.9D.108、计算(1a +1-1a -1)÷21a -1的结果是( ) A 、a B 、2a-2 C 、-2 D 、29、锐角三角形中,任意两个锐角的和必大于( )A 、120度B 、110度C 、100度D 、90度10、直角三角形斜边上的中线把直角三角形分成的两个三角形关系是( )A 、形状相同B 、 周长相等C 、面积相等D 、全等二、填空:(每小题3分,共30分)11、已知点A(m-1,3)与点B (2,n+1)关于y 轴对称,则m=______,n=________12、等腰三角形一腰上的高与另一腰的夹角为30o ,则顶角的度数为________13、直接写出因式分解的结果:___________________y y x 222=-14、如图,△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA到E ,连EF 则∠1,∠2,∠3的大小关系是_________.15、已知分式的值为零,那么x 的值是 _________16、用科学计数法表示:—0.0000000305 = _________ 17、等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为 _________18、若5 a a =1,则a 的值可以是 _________19、某钢铁厂原计划生产150吨钢铁,由于采用新的技术,每天增产3吨,因此提前2天完 成任务,设原计划x 天完成任务,列方程为 _________20、瑞士中学教师巴尔末成功地从光谱数据,,, ...中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第n 个数据是 _________三、解答题(共60分)21、计算(每小题3分,共12分)(1)、﹣22++(3﹣π)0﹣|﹣3| (2)、2a 2-6a(a-b)+(a -3b)2(3) (4) 212m -9 + 2m +322、(5分)画出△ABC 关于X 轴对称的图形△A 1B 1C 1(要标出三点的坐标),求△A 1B 1C 1的面积。
2017-2018初二数学上册期末考试试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018初二数学上册期末考试试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018初二数学上册期末考试试题及答案的全部内容。
D C A B2018—2018初二数学上册期末考试一、选择题(每小题有且只有一个答案正确,每小题4分,共40分〉1、如图,两直线a∥b,与∠1相等的角的个数为( >A 、1个B 、2个C 、3个D 、4个2、不等式组的解集是( 〉 A 、B 、C 、D 、无解 3、如果,那么下列各式中正确的是( > A 、 B 、 C 、 D 、4、如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的的判定定理的简称是( >lCFILTmT7G A 、AAS B 、ASA C 、SAS D 、SSS5、已知一组数据1,7,10,8,x ,6,0,3,若=5,则x 应等于( >A 、6B 、5C 、4D 、26、下列说法错误的是( 〉A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形;7、△ABC的三边为a 、b 、c ,且,则( >A 、△ABC是锐角三角形;B 、c 边的对角是直角;C 、△ABC是钝角三角形;D 、a 边的对角是直角;1 a b8 8 8 8 44 4 4 x x y y y y O O O O A B C D 8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( >lCFILTmT7G A 、中位数; B 、平均数; C 、众数; D 、加权平均数;9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按照相同的顺序,依次标有1,2,3,4,5,6这六个数字,并且把标有“6”的面都放在左边,那么它们底面所标的3个数字之和等于( >lCFILTmT7G A 、8 B 、9 C 、10 D 、1110、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1〉若每月每户居民用水不超过4立方M ,则按每立方M2M 计算;(2〉若每月每户居民用水超过4立方M ,则超过部分按每立方M4.5M 计算(不超过部分仍按每立方M2元计算〉。
2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。
2017年秋学期第一阶段质量监测试卷八年级数学一、请同学们认真选一选!(每小题3分,共30分)1. 4的算术平方根是( )A .2B .﹣2C .±2D .162.在实数,,0,,,﹣1.414中,无理数有( ) A .1个 B .2个 C .3个 D .4个3.下列各式中,正确的是( )A . =﹣2B .(﹣)2=9C .± =±3D . =﹣34.下列各组线段中,能够组成直角三角形的一组是( )A .3,4,4B .3,4,6C .3,4,7D .3,4,5 5 . 下列说法错误的是( )A.a 2与(—a )2 相等B.a 2与)(2a -互为相反数 C.3a 与3a - 是互为相反数 D. a 与a - 互为相反数6.如图,Rt△ABC 中,∠ACB =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( )A .150cm 2B .200cm 2C .225cm 2D .无法计算 7. 若规定误差小于1, 那么60的估算值为( )A.3B.7C.8D.7或88.若,x y 为实数,且20x +,则2013x y ⎛⎫ ⎪⎝⎭的值为( )A. 1-B. 1C. 2-D. 29.如图,在Rt △ABC 中,∠ACB =90°,若AC =5 cm ,BC =12 cm ,则Rt △ABC 斜边上的高CD 的长为( ) A.6 cm B.8.5 cm C.1360cm D.1330cm10.在Rt △ABC 中,∠C =90°,∠A,∠B,∠C 所对的边分别为a ,b ,c,已知a ∶b =3∶4,c =10,则△ABC 的面积为( )A .24B .12C .28D .30二、请同学们认真填一填!(每小题3分,共30分)11.﹣的绝对值是 , -5的绝对值是________,116的算术平方根是________。
甘肃省临泽县第二中学2017-2018学年八年级上学
期期末考试数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 的算术平方根是()
A.4 B.2 C.D.
2. 和数轴上的点一一对应的是( )
A.整数B.有理数C.无理数D.实数
3. 在中,无理数有()个
A.B.C.D.
4. 估算的值()
A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间
5. 点,都在函数的图象上,则与的大小关系是()
A.B.C.D.不能确定
6. 点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()
A.(3, 3) B.(3,-3) C.(6,-6) D.(3,3)或
7. 点A(-1,2)关于y轴对称的点的坐标是()
A.(1,2) B.(1,-2) C.(-1,-2) D.(2,1)
8. 若函数y=2x+3与y=3x-2b的图象交x轴于同一点,则b的值为( )
A.-3
B.-C.9
D.-
9. 已知y是x的一次函数,下表中列出了部分对应值,则m等于( ).
A.-1 B.0
C.
D.-2
10. 如图,∠A、∠DOE和∠BEC的大小关系是( ).
A.∠A>∠DOE>∠BEC B.∠DOE>∠A>∠BEC
C.∠BEC>∠DOE>∠A D.∠DOE>∠BEC>∠A
11. 已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为 ( )
A.y= x+2 B.y= ﹣x+2 C.y= x+2或y=﹣
x+2
D.y= - x+2或y =
x-2
12. 某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是()
A.B.C.D.
13. 已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为( ).
A.b=3,c=-1 B.b=-6,c=2
C.b=-6,c=-4 D.b=-4,c=-6
14. P(x,y)在第三象限,且到y 轴距离为3,到x 轴距离为5,则P点的坐标是()
A.(-3,-5)B.(5,-3)C.(3,-5)D.(-3,5)
15. 把多项式m2(a-2)+m(2-a)分解因式等于()
A.(a-2)(m2+m) B.(a-2)(m2-m) C.m(a-2)(m-1) D.m(a-2)(m+1)
二、填空题
16. 写出一个解是的二元一次方程组_______________.
17. 已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的标准差是____ .
18. 若代数式x2+kxy+9y2是完全平方式,则k的值是_______________ .
19. 一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:_____.
20. 如图,已知和的图象交于点P,根据图象可得关于X、Y的二元一次方程组的解是_________________.
三、解答题
21. (1)
(2)
(3)
(4)
(5) (分解因式)
(6)9(m+n)2-16(m-n)2 ( 分解因式)
22. 如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD 于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.
成绩
60 70 80 90 100
(分)
人数
1 5 x y 2
(人)
(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;
(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求
的值.
24. 医院用甲、乙两种原料为手术后的病人配制营养品,每克甲种原料含0.5单位的蛋白质和1单位铁质,每克乙种原料含0.7单位的蛋白质和0.4单位铁质.若病人每餐需要35单位的蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰能满足病人的需要?
25. 直线PA是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.
(1)求A,B,P三点的坐标;
(2)求四边形PQOB的面积;
26. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.
27. 某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升8微克(1000微克=1毫克),接着逐步衰减,10小时时血液中含药量为每毫升4微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示.当成人按规定剂量服药后:
(1)求y与x之间的解析式;
(2)如果每毫升血液中含药量不低于3微克或3微克以上时,在治疗疾病时是有效的,那么这个有效时间是多少小时?。