6
3.832E-16
2.017E-15 100.000
7
3.351E-16
1.764E-15 100.000
8
2.595E-16
1.366E-15 100.000
000
10
1.683E-16
8.860E-16 100.000
11
7.026E-17
3.698E-16 100.000
• 因子分析是要利用少数几个公共因子去解释较多个要观测 变量中存在的复杂关系,它不是对原始变量的重新组合,而 是对原始变量进行分解,分解为公共因子与特殊因子两部分. 公共因子是由所有变量共同具有的少数几个因子;特殊因 子是每个原始变量独自具有的因子.
3、应用中的优缺点比较
• 主成分分析 优点:首先它利用降维技术用少数几个综合变量来代替 原始多个变量,这些综合变量集中了原始变量的大部分信 息.其次它通过计算综合主成分函数得分,对客观经济现象 进行科学评价.再次它在应用上侧重于信息贡献影响力综 合评价. 缺点:当主成分的因子负荷的符号有正有负时,综合评价 函数意义就不明确.命名清晰性低.
12
2.750E-19
1.447E-18 100.000
13
-7.503E-17 -3.949E-16 100.000
14
-1.291E-16 -6.794E-16 100.000
15
-1.742E-16 -9.168E-16 100.000
16
-2.417E-16 -1.272E-15 100.000
四、主成分分析法的步骤
1数据归一化处理:数据标准化Z 2计算相关系数矩阵R: 3计算特征值;
特征值越大说明重要程度越大.
4计算主成分贡献率及方差的累计贡献率; 5计算主成分载荷与特征向量: