LED蓝宝石衬底
- 格式:doc
- 大小:194.50 KB
- 文档页数:2
对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。
应该采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择。
目前市面上一般有三种材料可作为衬底:·蓝宝石(Al2O3)·硅 (Si)碳化硅(SiC)[/url]蓝宝石衬底通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。
蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。
因此,大多数工艺一般都以蓝宝石作为衬底。
图1示例了使用蓝宝石衬底做成的LED芯片。
图1 蓝宝石作为衬底的LED芯片使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。
蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω·cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。
在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。
由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。
但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。
蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400nm减到100nm左右)。
添置完成减薄和切割工艺的设备又要增加一笔较大的投资。
蓝宝石的导热性能不是很好(在100℃约为25W/(m·K))。
因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。
硅衬底PK蓝宝石衬底,胜负几何?
基于氮化镓的蓝/白光LED的芯片结构强烈依赖于所用的衬底材料。
目前
大部分厂商采用蓝宝石作为衬底材料,芯片结构主要分为4类,如正装芯片结构
这类芯片广泛被中低功率的封装产品所采用,优点是价格低;缺点是由于蓝宝石导热性能差,所以芯片散热较差,P型材料的导电性也较差,因此注入电流受到限制。
此外,芯片是五面发光的,通常需要将将芯片置于支架内,如倒装结构
为了克服传统正装结构散热较差、注入电流受限等缺陷,有科学家提出了倒装结构。
热可以由芯片直接传递到如陶瓷等基底材料上,而不用通过导热能力较差的蓝宝石衬底,因此注入电流可以显著提高;单位面积的光通量也可以显著提升。
缺点是芯片是五面发光的,给需要精确二次光学设计的场合,如小角度射灯、手机闪光灯、车灯、超薄背光及平板灯等带来了诸多的不便,此外,也存在正装五面出光芯片所面临的颜色不均匀的问题。
薄膜倒装结构
为了解决倒装结构存在的问题,有人提出了薄膜倒装结构,在倒装芯片的基础上,通过用激光剥离技术去除了蓝宝石衬底,得到单面发光的薄膜芯片。
薄膜芯片具有出光效率高、出光集中于芯片正上方,利于二次光学设计,此外也具体非常好的表面颜色均匀性。
但是要用到工艺复杂的激光剥离技术,成本高、良率低,芯片本身也容易存在缺陷,另外,由于是倒装结构,在芯片和(陶瓷)衬底之间有间隙,一定程度上降低了芯片的导热能力;同时,由于芯片非常薄,在使用中容易出现芯片裂痕、漏电等问题。
垂直结构。
蓝宝石衬底折射率蓝宝石是一种宝石,它的化学式为Al2O3。
蓝宝石的颜色通常为蓝色,但也有其他颜色的变种,如黄色和粉红色。
蓝宝石的独特之处在于它的高硬度和优异的光学性能。
在光学领域中,蓝宝石经常被用作衬底材料,用于制备各种光学器件,如激光、LED和光传感器。
蓝宝石的衬底折射率是光学设计中一个非常重要的参数,下面将介绍蓝宝石的折射率及其相关参考内容。
折射率是光线从一种介质进入另一种介质时发生折射的程度的度量。
折射率是一个无量纲的数值,通常用符号n表示。
蓝宝石的折射率依赖于光的波长。
(如果文中不得出现链接,我就可以给出一个波长-折射率的表格和一个图示来解释该折射率的依赖性。
)在蓝宝石的常见波长范围内,其折射率通常在1.759到1.778之间变化。
例如,对于波长为589.3纳米的黄光,蓝宝石的折射率约为1.768。
然而,对于其他波长的光,蓝宝石的折射率可能会有所不同。
通过使用较长或较短的波长,可以改变蓝宝石的折射率,而这也是光学器件设计中的一种常见方法。
蓝宝石的折射率对于激光和光导纤维等应用非常重要。
通过了解材料的折射率,可以计算出光线在器件中的传播路径和传播速度。
这些信息对于设计和优化光学器件性能非常关键,特别是激光器和光传感器等高精度设备。
为光学技术和科学研究提供基础参考,已经研究并建立了蓝宝石的折射率的各种数据库和文献。
这些参考内容通常包括蓝宝石在各种波长下的折射率值,如IR index和visible index等。
例如,拓扑光子学研究中的一个常见参考文献是Palik在1985年出版的手册《Palik's Handbook of Optical Constants of Solids》。
该手册收集了蓝宝石在可见光和红外光波段的折射率数据。
除了这些参考文献外,还可以通过使用在线数据库和计算工具来获取蓝宝石的折射率数据。
这些数据库和工具通常由研究机构和光学公司提供,旨在为光学工程师和科学家提供便利。
蓝宝石衬底市场发展现状简介蓝宝石衬底是一种高品质的材料,广泛应用于光电子、半导体等领域。
随着科技的不断发展,蓝宝石衬底市场也迎来了快速增长。
本文将对蓝宝石衬底市场的发展现状进行综述,分析其市场规模、应用领域以及主要厂商等方面的情况。
市场规模蓝宝石衬底市场在过去几年里呈现出快速增长的趋势。
据市场研究公司的数据显示,蓝宝石衬底市场的年复合增长率达到了10%以上。
这主要得益于蓝宝石衬底在光电子、半导体等领域的广泛应用。
应用领域蓝宝石衬底在光电子、半导体等领域有着广泛的应用。
在光电子领域,蓝宝石衬底可用于制作LED(发光二极管)芯片,具有优异的光电性能和机械性能,被视为制作高亮度、高效率LED的最佳选择。
在半导体领域,蓝宝石衬底可用于制作集成电路和激光二极管等器件,具有优异的电学性能和热学性能。
主要厂商目前,蓝宝石衬底市场的竞争较为激烈,主要厂商包括:1.Rubicon Technology:作为蓝宝石衬底市场的领导者之一,RubiconTechnology在蓝宝石衬底领域拥有丰富的经验和技术优势。
公司的产品质量和稳定性备受市场认可。
2.Crystal Applied Technology:Crystal Applied Technology是一家蓝宝石衬底制造商,公司专注于研发和生产高质量的蓝宝石衬底产品。
公司拥有先进的生产设备和技术,能够满足不同客户的需求。
3.Monocrystal:Monocrystal是一家全球领先的蓝宝石衬底制造商,公司产品广泛应用于LED、光通信和半导体领域。
公司致力于提供高品质、高性能的蓝宝石衬底产品。
发展趋势随着LED技术的进一步发展,蓝宝石衬底市场将持续增长。
未来,随着5G等新兴技术的应用,对光电子和半导体领域的需求将进一步增加,这将为蓝宝石衬底市场带来更多机遇。
同时,随着技术的进步,蓝宝石衬底产品的性能将得到进一步提升,开拓更多应用领域。
结论总的来说,蓝宝石衬底市场在光电子、半导体等领域发展迅速,市场规模不断扩大。
LED蓝宝石图形化衬底制备工艺研讨摘要:随着社会经济的不断发展,能源的需求量不断增加,为了能够将有效降低能源的损耗,实现能源的可持续发展目标,我国对于节能环保事业的发展尤为的关注。
基于科学技术的发展,我国在照明领域开展的环保事业发展取得了一定的成就。
例如LED的研发和应用,其在使用的过程中不仅节能环保,同时也体积比较小,且功能时效时间比较长,与普通的照明源对比来讲更具有发展前景。
经过技术研发人员的不懈努力,找到了一种能够有效提升LED出光率的新技术,即通过蓝宝石图形化衬底实现LED高出光率的目标,为LED广泛应用于多个领域地奠定了坚实的基础。
本文通过对蓝宝石图形化衬底提升LED出光率的机理、表面微结构对LED发光率的影响进行了分析,并探讨了LED蓝宝石图形化衬底的制作过程。
关键词:LED;蓝宝石图形衬底;制备工艺引言:随着物质生活水平的提升,社会群众对于环保节能产业的发展也越发地关注,只有合理控制能源的消耗,才能够有效地提升能源和生态环境可持续发展的潜力。
环保节能在各行各业的发展中都是非常重要战略目标。
在照明领域最显著的发展便是LED的发展与应用,因为其具备良好的性能,尤其在环保节能方面表现出来的优势得到了社会群众的认可,所以被推广到很多的领域的实际应用当中,例如用于一般的照明、LCD背光源等。
随着蓝宝石图形化衬底制备工艺的不断发展,让LED制备白光逐渐成了现实,对于LED的进一步推广和应用有着非常显著的作用。
值得一提的是,LED虽然作为一种特别的固态光源与当前的社会环境倡导节能减排的理念具有极高的契合度,但是在LED实际的发展与应用中还是存在着一些问题,只有技术研发人员加强对LED的创新和优化,才能够为LED的广泛应用,在照明领域代替当前的所使用的传统光源。
为环保节能社会的建设提供良好的支持。
1.LED蓝宝石图形化衬底提高GaN基LED出光率的作用机理1.1降低GaN外延层位错密度在LED衬底材料中蓝宝石所具备的机械性能、可靠性以及易控制特性远超过其他的衬底材料,如单晶硅、单晶碳化硅等。
蓝宝石衬底用途蓝宝石衬底是一种广泛应用于科技领域的材料,具有多种用途和优势。
本文将介绍蓝宝石衬底的特性、应用领域以及未来发展趋势。
蓝宝石衬底具有优异的物理和化学性质。
它的硬度非常高,仅次于金刚石,因此具有出色的耐磨性和耐腐蚀性。
此外,蓝宝石衬底具有良好的热导性和电绝缘性能,使其成为制造高性能电子器件的理想选择。
蓝宝石衬底在光电子领域有着广泛的应用。
由于其晶体结构的特殊性质,蓝宝石衬底能够提供优异的光学性能。
它具有高透明度和低自发光特性,使其成为制造激光器、LED和光电探测器等器件的理想基底材料。
此外,蓝宝石衬底还可以用于制造光学窗口、光学镜片和光学纤维等光学元件。
除了光电子领域,蓝宝石衬底还在半导体领域发挥着重要作用。
由于其晶格结构的稳定性和高纯度的特性,蓝宝石衬底被广泛应用于制造集成电路和功率器件。
它可以作为衬底材料,提供良好的晶体生长平台,用于制备高质量的半导体薄膜。
此外,蓝宝石衬底还可以用于制造高频电子器件和微波器件,具有优异的高温稳定性和低损耗特性。
蓝宝石衬底还在生物医学领域展现出巨大潜力。
由于其生物相容性和抗腐蚀性能,蓝宝石衬底可以用于制造生物传感器、人工关节和植入式医疗器械等。
它的高透明度和低自发光特性也使其成为显微镜镜片和光学探针的理想选择。
未来,随着科技的不断进步,蓝宝石衬底的应用领域将进一步扩展。
例如,蓝宝石衬底可以用于制造高效能太阳能电池,提高太阳能转换效率。
此外,蓝宝石衬底还可以用于制造高功率电子器件,满足日益增长的能源需求。
同时,蓝宝石衬底在量子技术和纳米技术领域也有着广阔的应用前景。
蓝宝石衬底作为一种优异的材料,在光电子、半导体和生物医学领域具有广泛的应用。
随着科技的不断发展,蓝宝石衬底的应用前景将更加广阔。
相信在不久的将来,蓝宝石衬底将继续发挥重要作用,推动科技进步和社会发展。
蓝宝石衬底氮化镓的激光剥离技术与湿法剥离技术一、引言随着科技的不断发展,半导体材料的研究与应用越来越受到关注。
蓝宝石衬底氮化镓(GaN-on-sapphire)作为一种具有高硬度、高热导率、高电子迁移率等优异特性的半导体材料,在LED、激光、射频等领域具有广泛的应用前景。
然而,如何实现高效、低成本的氮化镓薄膜剥离成为产业界的一大挑战。
本文将对蓝宝石衬底氮化镓的激光剥离技术与湿法剥离技术进行详细介绍,以期为相关领域的研究与发展提供参考。
二、蓝宝石衬底氮化镓概述1.材料特性氮化镓具有良好的半导体性能,其带隙宽度可调,具有较高的击穿电压、热稳定性和化学稳定性。
蓝宝石衬底氮化镓具有以下优点:(1)良好的晶体结构;(2)较高的热导率,有利于热管理;(3)较低的杂质扩散速率,有利于器件性能的提高;(4)与硅衬底相比,蓝宝石衬底具有较高的硬度,有利于薄膜的耐磨性。
2.应用领域蓝宝石衬底氮化镓广泛应用于高亮度LED、激光器、射频器件、功率电子器件等领域。
随着市场需求的增长,研究蓝宝石衬底氮化镓的剥离技术具有重要意义。
三、激光剥离技术原理1.激光剥离技术简介激光剥离技术是一种利用高能激光束对薄膜进行局部照射,使其产生热应力而实现薄膜与衬底分离的方法。
该方法具有剥离速度快、剥离效果好、无污染等优点。
2.激光剥离过程激光剥离过程主要包括以下几个步骤:(1)预处理:对薄膜表面进行清洗、抛光等处理,以提高激光剥离效果;(2)激光剥离:采用高能激光束对薄膜进行局部照射,使其产生热应力,从而实现薄膜与衬底分离;(3)冷却:激光剥离后,及时对薄膜进行冷却,以减小薄膜残余应力,提高剥离质量。
四、湿法剥离技术原理1.湿法剥离技术简介湿法剥离技术是一种利用化学溶液对薄膜进行腐蚀,使其与衬底分离的方法。
该方法具有操作简便、成本低廉、环保等优点。
2.湿法剥离过程湿法剥离过程主要包括以下几个步骤:(1)预处理:对薄膜表面进行清洗、抛光等处理,以提高湿法剥离效果;(2)化学腐蚀:采用特定的化学溶液对薄膜进行腐蚀,使其与衬底分离;(3)冲洗:将腐蚀后的薄膜进行冲洗,去除残留的化学溶液;(4)干燥:冲洗后的薄膜进行干燥处理,以备后续应用。
LED蓝宝石衬底材料项目可行性研究报告编制单位:北京中投信德国际信息咨询有限公司编制时间:高级工程师:高建关于编制LED 蓝宝石衬底材料项目可行性研究报告编制说明(模版型)【立项 批地 融资 招商】核心提示:1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。
2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整)编制单位:北京中投信德国际信息咨询有限公司专业撰写节能评估报告资金申请报告项目建议书商业计划书可行性研究报告目录第一章总论 (1)1.1项目概要 (1)1.1.1项目名称 (1)1.1.2项目建设单位 (1)1.1.3项目建设性质 (1)1.1.4项目建设地点 (1)1.1.5项目主管部门 (1)1.1.6项目投资规模 (2)1.1.7项目建设规模 (2)1.1.8项目资金来源 (3)1.1.9项目建设期限 (3)1.2项目建设单位介绍 (3)1.3编制依据 (3)1.4编制原则 (4)1.5研究范围 (5)1.6主要经济技术指标 (5)1.7综合评价 (6)第二章项目背景及必要性可行性分析 (7)2.1项目提出背景 (7)2.2本次建设项目发起缘由 (7)2.3项目建设必要性分析 (7)2.3.1促进我国LED蓝宝石衬底材料产业快速发展的需要 (8)2.3.2加快当地高新技术产业发展的重要举措 (8)2.3.3满足我国的工业发展需求的需要 (8)2.3.4符合现行产业政策及清洁生产要求 (8)2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9)2.3.6增加就业带动相关产业链发展的需要 (9)2.3.7促进项目建设地经济发展进程的的需要 (10)2.4项目可行性分析 (10)2.4.1政策可行性 (10)2.4.2市场可行性 (10)2.4.3技术可行性 (11)2.4.4管理可行性 (11)2.4.5财务可行性 (12)2.5LED蓝宝石衬底材料项目发展概况 (12)2.5.1已进行的调查研究项目及其成果 (12)2.5.2试验试制工作情况 (13)2.5.3厂址初勘和初步测量工作情况 (13)2.5.4LED蓝宝石衬底材料项目建议书的编制、提出及审批过程 (13)2.6分析结论 (13)第三章行业市场分析 (15)3.1市场调查 (15)3.1.1拟建项目产出物用途调查 (15)3.1.2产品现有生产能力调查 (15)3.1.3产品产量及销售量调查 (16)3.1.4替代产品调查 (16)3.1.5产品价格调查 (16)3.1.6国外市场调查 (17)3.2市场预测 (17)3.2.1国内市场需求预测 (17)3.2.2产品出口或进口替代分析 (18)3.2.3价格预测 (18)3.3市场推销战略 (18)3.3.1推销方式 (19)3.3.2推销措施 (19)3.3.3促销价格制度 (19)3.3.4产品销售费用预测 (20)3.4产品方案和建设规模 (20)3.4.1产品方案 (20)3.4.2建设规模 (20)3.5产品销售收入预测 (21)3.6市场分析结论 (21)第四章项目建设条件 (22)4.1地理位置选择 (22)4.2区域投资环境 (23)4.2.1区域地理位置 (23)4.2.2区域概况 (23)4.2.3区域地理气候条件 (24)4.2.4区域交通运输条件 (24)4.2.5区域资源概况 (24)4.2.6区域经济建设 (25)4.3项目所在工业园区概况 (25)4.3.1基础设施建设 (25)4.3.2产业发展概况 (26)4.3.3园区发展方向 (27)4.4区域投资环境小结 (28)第五章总体建设方案 (29)5.1总图布置原则 (29)5.2土建方案 (29)5.2.1总体规划方案 (29)5.2.2土建工程方案 (30)5.3主要建设内容 (31)5.4工程管线布置方案 (32)5.4.1给排水 (32)5.4.2供电 (33)5.5道路设计 (35)5.6总图运输方案 (36)5.7土地利用情况 (36)5.7.1项目用地规划选址 (36)5.7.2用地规模及用地类型 (36)第六章产品方案 (38)6.1产品方案 (38)6.2产品性能优势 (38)6.3产品执行标准 (38)6.4产品生产规模确定 (38)6.5产品工艺流程 (39)6.5.1产品工艺方案选择 (39)6.5.2产品工艺流程 (39)6.6主要生产车间布置方案 (39)6.7总平面布置和运输 (40)6.7.1总平面布置原则 (40)6.7.2厂内外运输方案 (40)6.8仓储方案 (40)第七章原料供应及设备选型 (41)7.1主要原材料供应 (41)7.2主要设备选型 (41)7.2.1设备选型原则 (42)7.2.2主要设备明细 (43)第八章节约能源方案 (44)8.1本项目遵循的合理用能标准及节能设计规范 (44)8.2建设项目能源消耗种类和数量分析 (44)8.2.1能源消耗种类 (44)8.2.2能源消耗数量分析 (44)8.3项目所在地能源供应状况分析 (45)8.4主要能耗指标及分析 (45)8.4.1项目能耗分析 (45)8.4.2国家能耗指标 (46)8.5节能措施和节能效果分析 (46)8.5.1工业节能 (46)8.5.2电能计量及节能措施 (47)8.5.3节水措施 (47)8.5.4建筑节能 (48)8.5.5企业节能管理 (49)8.6结论 (49)第九章环境保护与消防措施 (50)9.1设计依据及原则 (50)9.1.1环境保护设计依据 (50)9.1.2设计原则 (50)9.2建设地环境条件 (51)9.3 项目建设和生产对环境的影响 (51)9.3.1 项目建设对环境的影响 (51)9.3.2 项目生产过程产生的污染物 (52)9.4 环境保护措施方案 (53)9.4.1 项目建设期环保措施 (53)9.4.2 项目运营期环保措施 (54)9.4.3环境管理与监测机构 (56)9.5绿化方案 (56)9.6消防措施 (56)9.6.1设计依据 (56)9.6.2防范措施 (57)9.6.3消防管理 (58)9.6.4消防设施及措施 (59)9.6.5消防措施的预期效果 (59)第十章劳动安全卫生 (60)10.1 编制依据 (60)10.2概况 (60)10.3 劳动安全 (60)10.3.1工程消防 (60)10.3.2防火防爆设计 (61)10.3.3电气安全与接地 (61)10.3.4设备防雷及接零保护 (61)10.3.5抗震设防措施 (62)10.4劳动卫生 (62)10.4.1工业卫生设施 (62)10.4.2防暑降温及冬季采暖 (63)10.4.3个人卫生 (63)10.4.4照明 (63)10.4.5噪声 (63)10.4.6防烫伤 (63)10.4.7个人防护 (64)10.4.8安全教育 (64)第十一章企业组织机构与劳动定员 (65)11.1组织机构 (65)11.2激励和约束机制 (65)11.3人力资源管理 (66)11.4劳动定员 (66)11.5福利待遇 (67)第十二章项目实施规划 (68)12.1建设工期的规划 (68)12.2 建设工期 (68)12.3实施进度安排 (68)第十三章投资估算与资金筹措 (69)13.1投资估算依据 (69)13.2建设投资估算 (69)13.3流动资金估算 (70)13.4资金筹措 (70)13.5项目投资总额 (70)13.6资金使用和管理 (73)第十四章财务及经济评价 (74)14.1总成本费用估算 (74)14.1.1基本数据的确立 (74)14.1.2产品成本 (75)14.1.3平均产品利润与销售税金 (76)14.2财务评价 (76)14.2.1项目投资回收期 (76)14.2.2项目投资利润率 (77)14.2.3不确定性分析 (77)14.3综合效益评价结论 (80)第十五章风险分析及规避 (82)15.1项目风险因素 (82)15.1.1不可抗力因素风险 (82)15.1.2技术风险 (82)15.1.3市场风险 (82)15.1.4资金管理风险 (83)15.2风险规避对策 (83)15.2.1不可抗力因素风险规避对策 (83)15.2.2技术风险规避对策 (83)15.2.3市场风险规避对策 (83)15.2.4资金管理风险规避对策 (84)第十六章招标方案 (85)16.1招标管理 (85)16.2招标依据 (85)16.3招标范围 (85)16.4招标方式 (86)16.5招标程序 (86)16.6评标程序 (87)16.7发放中标通知书 (87)16.8招投标书面情况报告备案 (87)16.9合同备案 (87)第十七章结论与建议 (89)17.1结论 (89)17.2建议 (89)附表 (90)附表1 销售收入预测表 (90)附表2 总成本表 (91)附表3 外购原材料表 (93)附表4 外购燃料及动力费表 (94)附表5 工资及福利表 (96)附表6 利润与利润分配表 (97)附表7 固定资产折旧费用表 (98)附表8 无形资产及递延资产摊销表 (99)附表9 流动资金估算表 (100)附表10 资产负债表 (102)附表11 资本金现金流量表 (103)附表12 财务计划现金流量表 (105)附表13 项目投资现金量表 (107)附表14 借款偿还计划表 (109) (113)第一章总论总论作为可行性研究报告的首章,要综合叙述研究报告中各章节的主要问题和研究结论,并对项目的可行与否提出最终建议,为可行性研究的审批提供方便。
(1)成熟的工艺和可接受的性能与红黄光的情况不同,蓝绿光LED的发光材料和衬底选择从一开始变显得一波三折。
虽然GaN从材料性质上已被公认为最具潜力的蓝绿光发光材料,但正是由于无法选出合适的衬底生长GaN外延,才使得90年代之前几乎所有科学家都将注意力集中于在砷化镓基板上生长II-VI族化合物半导体。
但是,在1992年日本工程师中村修二划时代的利用蓝宝石基板制备了GaN外延层并顺利实现蓝光LED制作之后,蓝绿光LED实现了井喷式的大爆发,蓝宝石衬底也顺理成章的成为蓝绿光LED的主流选择。
GaN蓝绿光LED衬底选择之比较做为目前用于GaN生长最常用衬底的蓝宝石(Al 2O3),其决定性的优点在于制造技术成熟,单片成本低,因此当GaN 外延技术取得突破后便迅速产业化。
(2)LED蓝宝石衬底厂商的竞争格局蓝宝石衬底的制作,分为蓝宝石晶棒制作和晶片切片两个步骤。
从全球蓝宝石晶棒厂商的月产能来看,传统三强中的美国厂商Rub ic on从2009年至2010年上半年已据全球龙头地位。
2010年蓝宝石晶棒的全球产量分析表明,Rubicon和传统厂商俄商Monocrystal依然保持了全球领先的地位,二者市场占有率分别为29.2%和23.6%,合计已占据全球半壁江山,但传统三强中的另一厂商京瓷的市场占有率则快速下滑至14%。
替代京瓷原有亚洲市场份额的,是快速崛起的韩国STC和台湾厂商越峰,二者2010年全球市占率已经达到12.5%和8.3%,目前利用性价比优势已经基本主导了韩国和台湾市场。
实际上,STC的2010年三季度产能已经超过Rubicon,其中韩国政府的重点扶植是重要原因。
2010 年蓝宝石晶棒生产全球市占率分布状况(单位:%)从2011 年的扩产计划来看,STC 将稳稳跃居全球之首,全球市占率预计可达23.9%,而Rubicon和Monocrystal 虽然依旧保持前三位臵,但市占率预计将下滑至18.5%和18.4%。
LED蓝宝石衬底
蓝宝石详细介绍
蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,
其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的
光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学
元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高
硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作
为光电元件的材料。目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,
而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C
面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温
的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.
下图则分别为蓝宝石的切面图;晶体结构图上视图;晶体结构侧视图; Al2O3分之结构图;蓝
宝石结晶面示意图
蓝宝石结晶面示意图
最常用来做GaN磊晶的是C面(0001)这个不具极性的面,所以GaN的极性
将由制程决定
(a)图从C轴俯看 (b)
图从C轴侧看
蓝宝石晶体的生长方法
蓝宝石晶体的生长方法常用的有两种:
1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,
再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是
熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上
拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,
进而形成一轴对称的单晶晶锭.
2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法
(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种
(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相
同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,
待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率
方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.
蓝宝石晶体的应用:
广大外延片厂家使用的蓝宝石基片分为三种:
1:C-Plane蓝宝石基板
这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C
轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.
2:R-Plane或M-Plane蓝宝石基板
主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制
备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱
中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现
象,使发光效率提高。
3:图案化蓝宝石基板(Pattern Sapphire Substrate简称PSS)
以成长(Growth)或蚀刻(Etching)的方式,在蓝宝石基板上设计制作出纳米级特定规则的
微结构图案藉以控制LED之输出光形式,并可同时减少生长在蓝宝石基板上GaN之间的差
排缺陷,改善磊晶质量,并提升LED内部量子效率、增加光萃取效率。