《3的倍数特征》教学反思
- 格式:docx
- 大小:12.14 KB
- 文档页数:2
《3的倍数特征》教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、合同协议、条据书信、规章制度、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, contract agreements, document letters, rules and regulations, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《3的倍数特征》教学反思【精】《3的倍数特征》教学反思(通用12篇)下面是本店铺分享的【精】《3的倍数特征》教学反思(通用12篇)欢迎参阅。
3的倍数的特征教学反思教学反思:3的倍数的特征教学在对3的倍数的特征进行教学时,我认为有一些重要的教学反思和注意事项。
以下是我对此教学内容的反思和总结:1. 引发学生的兴趣:在教学过程中,我注意到学生对于3的倍数并没有特别的兴趣。
为了激发学生的兴趣,我可以设计一些有趣的游戏或实践活动来帮助他们理解和掌握3的倍数的特征。
例如,可以让学生找出在一定范围内的所有3的倍数,或者让学生参与3的倍数的乘法表演等。
2. 培养学生的观察力和逻辑思维能力:理解3的倍数的特征需要学生具备良好的观察力和逻辑思维能力。
在教学中,我可以设计一些能够让学生观察和思考的问题和情境,帮助他们发现3的倍数的规律。
例如,可以给学生一些数字,让他们观察数字中的模式,进而找出3的倍数的特征。
3. 引导学生进行探究和发现:在教学过程中,我要鼓励学生独立思考和探索。
可以给学生一些自主学习的机会,让他们通过自己的发现来理解3的倍数的特征。
例如,可以给学生一些数字,让他们通过试验和观察,发现3的倍数与数字各位数之和能否被3整除的规律。
4. 多种教学手段的运用:为了提高学生的学习效果,我可以使用多种教学手段来辅助教学。
例如,可以利用教学视频、幻灯片等多媒体工具来展示和解释3的倍数的特征。
同时,可以利用教具、纸牌等实物材料来进行教学演示和实践活动,帮助学生更直观地理解和掌握3的倍数的特征。
综上所述,教学过程中需要引发学生的兴趣,培养学生的观察力和逻辑思维能力,引导学生进行探究和发现,并运用多种教学手段来辅助教学。
通过这样的教学反思和实践,我相信学生对于3的倍数的特征会有更深入的理解和掌握。
《3的倍数的特征》课后反思本节课的教学是在学生在已有的学习基础上(认识倍数和因数、2和5的倍数特征)进行学习新知的。
由于2和5的特征很容易找出:看个位数字上的特点而进而判断。
但本节课要学生3的倍数特征,对于之前的判断方法更对学生提出了更高的要求。
所以在本节课的教学过程中,我突出了对学生“提出问题-探索问题-解决问题”这样的三步曲来进行。
首先回顾2和5倍数的特征,紧接着直接提出数字3倍数的特征又是什么呢?将问题直接抛出来,结合例题中的百位数字图,先让学生找出3的倍数,然后思考这些数中有些什么共性特点,在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。
接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。
学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。
从而,使学生明确3的倍数的特征,然后进行练习与拓展。
这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。
课上出现的问题及处理方法:1、当百位表出示在学生面前,如何有效引导学生找出3的倍数特点呢?大部分学生首先感到的是无从下手,这时我将环节分为以下几步:首先让学生找出3的倍数有哪些数,请圈出来.然后将这些数进行分析、发现、总结,最后进行运用.这样学生的学习更容易的多,掌握知识的效率更高一些!2、在练习题的教学中,如何让学生们一针见血的找出解决问题的方法和途径时,学生一开始速度较慢,而是由逻辑思维学生先点拨题目中的关键点之后,大部分同学才会找到解决问题的途径!这样就就采取小组合作的形式去完成,效果完成的还不错!。
3的倍数的特征的教学反思12篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!3的倍数的特征的教学反思12篇3的倍数的特征的教学反思1在教学3的倍数的特征时,我首先以学生原有认知为基础,激发学生的探究欲望。
(北师大版)五年级数学上册教学反思 3的倍数的特征 1
教学反思
经过数学组的老师和王主任的指导以后,发现自己的课确实有成功之处,但也存在着一些问题,现做一个简单小结。
1.通过观察感受只看个位不行,激发学生探索的兴趣。
3的倍数有什么特点?根据学生已有的经验可能会猜测个位上是某个数,可能这样的数就是3的倍数。
对此,通过观察一些3的倍数,发现各位上是1、2、3、4、5、6、7、8、9、0的都有。
学生观察后验证了3的倍数看各位是不成立的,使学生产生需要知道3的倍数的特征。
2.利用小棒来探索3的倍数,初步得出结论。
让学生用3根小棒摆出任意的数,判断这个数是不是3的倍数,学生能很快地发现,三根小棒组成的数都是3的倍数。
于是我追问:如果再添上几根小棒组成的数也是3的倍数呢?学生能很快想到,再添上3、6根等小棒组成的数也是3的倍数。
接着再追问:4根小棒组成的数是3的倍数吗?学生回答不是。
“议一议:摆出3的倍数与所需小棍的根数有什么联系?3的倍数有什么特征?”在此时出现,恰到好处,学生初步得出:每组数的数字位置变了,但是他们的数字之和没变,并且发现能被3整除的数的各个数位的数字之和都是3的倍数。
3.通过验证规律,使学生理解特征。
规律是否正确需要验证,我设计的是让学生从黑板上挑选几个3的倍数来验证。
学生能很快地验证这个规律。
通过两个判断题,学生巩固了3的倍数的特征,效果非常好。
除了以上所说的,我感觉不成功的地方是本节课的密度不够大,练习少了些,如果在这些方面再下些功夫的话,这节课会上得更好,学生的收益会更大。
《3的倍数的特征》教学反思《3的倍数的特征》教学反思《3的倍数的特征》教学反思1 《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅表达在个位上的数,比拟明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
我决定在这节课中突出学生的自主探究,使学生猜测——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
我从学生的已有认知出发,引导学生先进展合理的猜测,进而引发学生从不同的角度验证自己的猜测,通过验证,学生自我否认了自己的猜测。
此时学生处于“不愤不启”的最正确的学习状态,他们迫切想知道3的倍数的特征终究是什么?这样来调动学生学习的欲望,增强学生主动探究意识,有利于后面的探究学习。
他们还认为在我们实际生活中,当你解决一个新问题时,一般没有人告诉你解决这个问题会碰到什么困难。
你只有碰到问题后,在解决问题的过程中方才清楚还需要哪些知识,然后,你要在原来的知识库中去提取并灵敏地应用原有的知识。
新课堂呼唤“自主、合作、探究”,而真探究必然伴随大量过失的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去防止学生犯错误。
因为课堂是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们老师如何对待学生的错误,有个教育专家说得好:“课堂上的错误是教学的宏大财富”。
因此,我们老师在课堂中要有沉着冷静的心理、海纳百川的境界和沉着应变的机智,给学生一个出错的时机和权利。
《3的倍数的特征》教学反思2 3的倍数的特征的教学与2、5倍数的特征难度上有不同,因为2、5的倍数的特征从数的外表的特点就可以很容易看出〔根据个位数的特点就可以判断出来〕,但是3的倍数的特征却不能从外表去判断,因此我特设以下环节打破重难点预习题。
1、给出一些数让学生先判断哪些数是3的倍数。
《3的倍数特征》教学反思
一、教学目的分析
本课的教学目标是,帮助学生掌握3的倍数特征,学会判断一个数是否是3的倍数以及记忆正确的3的倍数规律,并且能够灵活运用3的倍数规律解决实际问题。
二、教学方法分析
本节课主要采用讲授法和练习法进行教学,首先讲授一些简单的记忆规律,让学生能够记忆规律,然后用练习法让学生熟练掌握该知识点,最后利用一些实际问题锻炼学生的灵活运用知识点在实际中的解决能力。
三、教学准备分析
首先,准备一些小学生容易理解的图片和符号,使学生更容易理解教学内容。
其次,搜集适当的做活动用的材料,如钥匙圈等,让学生对3的倍数有更深刻的理解。
最后,准备一些实际的例题,让学生在解决实际问题的过程中加深对3的倍数特征的学习。
四、教学步骤分析
1、新概念引入:教师先用图片和文字向学生介绍3的倍数的定义,使学生接触到3的倍数的概念;
2、因型讲解:使用钥匙圈等实物,教师讲解3的倍数的规律,让学生记住3的倍数规律;
3、分组讨论:根据学生的认知水平将学生分成两组,一组讨论3的倍数记忆规律,另一组讨论3的倍数在实际中的应用。
4、游戏活动:让学生进行游戏活动。
《3的倍数的特征》教学反思
《3的倍数的特征》教学反思
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
一、猜想:让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”。
二、验证::先让学生在百数图中找找看,显然像13、16、19等等的数不是3的倍数,学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。
三、探究:在此基础上,让学生在百数图中找出3的倍数的数,如果把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→2115→5118→8124→4227→72
我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?
如果把3的倍数的各位上的数相加,它们的和是3的倍数。
四、验证:下面各数,哪些数是3的倍数呢?
2105421612992319876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。
这样结论的得出水到渠成。
教学心得《3的倍数的特征》教学反思《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
在本节课的教学中我先让学生猜想:3的倍数有什么特征呢?在学生猜想的基础之上拿出百数表,在百数表中圈出3的倍数,你发现了什么?下面是小组的汇报:小组1:我们小组有2个发现,第1个是在百数表中,3的倍数都是一条斜线;第二个发现是3、6、9的下面空2个数,第3个数都是3的倍数,左、右两边空2个数也是3的倍数。
学生指着班班通说得有理有据,下面的学生对他们小组的发言表示赞同,在生生互动时,讨论的重点开始向一条斜线和空2个数偏离。
我在那着急了,一条斜线和空两个数不是3的倍数的本质特征,如果再讨论这个问题,本节课的效率将降低。
正在我思考怎样引导时,一位学生举手了,他说:如果把百数表打乱,那你们的这2个发现就不成立。
这位同学一说,教室里安静了,如果把百数表打乱,那3的倍数就不在一条斜线上,中间也不会都空两个数,那他们发现的这2点就不成立。
在接下来的交流中学生开始关注各个数位相加之和上来。
课堂是动态、生成的,当我们没有足够的教育机制来应对课堂上发生的问题时,我们可以从学生身上找到问题解决的方法,我想,这就是教学机智和教学经验的形成过程。
小升初数学模拟试卷一、选择题1.有两个两位数的自然数,它们的最大公因数是6,最小公倍数是90,这两个数的和是( )A.96 B.48 C.602.下面图形中只有一条对称轴的是()A.长方形 B.等要三角形 C.圆 D.平行四边形3.用铁丝做一个长10厘米,宽5厘米,高4厘米的长方体框架,至少需要铁丝多少厘米.在这个长方体框架外面糊一层纸,至少需要纸多少平方厘米.()A.19, 110 B.22, 330 C.86, 440 D.76, 2204.下列说法正确的是()A.射线比直线长B.含有未知数的式子就是方程C.甲、乙两人同走同一段路,所用时间的比是4:5,他们的速度比是5:4D.一个棱长为6厘米的正方体它的表面积和体积相等5.一件商品“买四赠一”相当于打()折A.4 B.5 C.7 D.86.2009年第一季度与第二季度的天数相比是( )A.第一季度多一天 B.天数相等 C.第二季度多1天7.把一个圆柱削成一个和它等底等高的圆锥,削去部分的体积是圆锥体积的()A.3倍B.2倍C.1倍8.电影门票30元一张,降价后观众增加1倍,收入增加,则一张门票降价()A.25元B.20元C.15元D.10元9.下列各数中能化成有限小数的是()。
《3的倍数的特征》教学反思三篇《3的倍数的特征》教学反思三篇《3的倍数的特征》教学反思1《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的根底上进展教学的。
由于2、5的倍数的特征从数的外表的特点就可以很容易看出根据个位数的特点就可以判断出来。
但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
因此在《3的倍数的特征》的开场,我先复习了2、5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是09的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和考虑。
在问题情境中让学消费生认知冲突产生疑问,激发强烈的探究欲望。
接着提供应每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度考虑3的倍数特征。
接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。
于是,形成新的猜测:一个数假如是3的倍数,那么它各位上数的和也是3的倍数。
为了验证这一猜测,我补充了一些其他的数,如49__3=147,166__3=498等,使学生进一步确认这一结论的正确性。
还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。
通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进展检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进展课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。
《3的倍数的特征》教学反思
在教学《3的倍数的特征》之后,与同事进行了相互交流,根据前面的教学设计与上课时感觉、课后学生反馈情况,总结如下:
一、教学前的考虑:
在教学3的倍数特征之前,学生学习的是2、5的倍数的特征,由于2、5的倍数是根据末尾数字的特征来总结的,那么在教学3的倍数特征时,学生很容易走进这个误区。
但是又必须让学生经历这个误区,在感觉无解时突破思维盲区,产生柳暗花明的体验,为此我特意没有安排学生提前预习。
二、教学设计的考虑:
为了让学生印象深刻,没有过多提醒学生,在复习旧知2、5的倍数特征之后,就给一组数据,让学生寻找3的倍数的特征。
学生很快就发现原来的方法无法解决问题,及时给学生引导:既然个位上的数没有特征,我们就要从更多数位上的数来考虑,学习新知的模式是:猜想——观察——验证——归纳。
大家先设想一种方法,然后观察3的倍数,再通过其他举例来验证。
这种方法虽然来的较慢,但让学生通过自己动手,真正经历了知识形成的过程。
三、教学后的延伸:
从3的倍数特征,让学生猜测9的倍数特征。
四、亮点:
这种教学对旧知复习到位,对新知的探索,可以让学生全员参与、全过程参与,真正让学生的思维动起来,经历新知的形成过程。
课后的延伸,更是增加了内容的深度,起到强化与深化的作用。
五、不足:
从2、5倍数的特征到3的倍数的特征,思维上跳跃很大,一是造成上课给学生思考时间长,二是有部分学生无法自己思考出方法,只是验证了别人的方法。
《3的倍数的特征》教学反思受2和5的倍数特征的影响,学生在概括3的倍数时,也会很自然地寻找个位上的数的特征,通过观察发现这些数的个位上的数有的是3的倍数,有的不是3的倍数,于是产生认知冲突。
再次观察,形成新的猜想,各位上的数的和是3的倍数,利用这一结论,验证整个教学过程,突出学生的自主探索,使学生在观察——猜想——推翻猜想——再观察——再猜想——验证的过程中,概括出3的倍数。
3、联系生活实际,利用情境贯穿整堂课。
好的课题导入能引起学生的知识冲突,打破学生的心理平衡,激发学生的学习兴趣、好奇和求知欲,能引人入胜,辉映全堂。
新课导入的艺术之一在于能把生活中的问题作为例题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。
课的一开始,引出学生很熟悉的过生日的话题,一下子激发起学生的学习兴趣,紧接着让学生说说分蛋糕的方案,并在猜想这些方案是否可行的基础上,引出今天要研究的问题:“3的倍数的特征”。
让学生主动探究,学生的学习热情一下子高涨,从实践的情况来看,效果还是不错的。
最后,提出课外延伸题:今天我们学习了3的倍数的特征,请你用今天学到的知识,再去思考一下,其他数的倍数的特征。
既扩展了学生的思维空间,也培养了学生利用数学知识解决生活问题的能力,同时也起到了首尾呼应的作用。
7.《2、5的倍数的特征》教学反思在“2、5的倍数的特征”教学中,有以下几点让我感受颇深:1、本节课在学生已学会找一个数的因数和倍数的基础上,我围绕“2、5倍数的特征”这一教学内容,从学生已有的生活经验出发,结合学生的认识规律,创设“老师和一名学生惊醒比赛,准确而迅速地判断一个数是2或5的倍数,其中有什么奥妙”的问题情境。
从而引起学生的探求欲望,创设观察、操作、合作交流的机会;让学生通过动脑、动手、动口,做他们想做的,在做的过程中观察知识,在合作交流中去思考、去质疑。
2、充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。
《3的倍数的特征》教学反思
有时候,我们是需要给学生挖个“陷阱”的。
本节课开始探究时,学生纷纷凭借2、5的倍数特征这一经验,关注个位数字,在“瞎忙活”了一阵后发现,3的倍数的特征是不能仅看个位数字的。
这是我给出了“123”和“729”两个数,让学生任意组合,并判断是否是3的倍数。
学生在经历了“123÷3”“213÷3”“312÷3”……等活动后作出了大胆的猜想:3的倍数和这个数各个数位上的数字都有关系。
紧接着在百数表中圈出3的倍数,圈出后3的倍数排列极其有规律——3的倍数都在几条斜线上。
这时引导学生进一步观察:这些数各个数位上的数字有什么特征?学生起初有些茫然,经教师提醒“看和”后,思路瞬间打开,学生小组交流、提出规律、举例验证,很快发现了知识。
本节课教学虽说时间有所“浪费”,但我认为是值得的。
农村学生思维水平相对发展较慢,尤其是如何引导他们在课堂教学中积累数
学活动经验,这是一个漫长的过程。
教学中,我们要舍得花费时间,要舍得去绕弯路,要舍得去等待,这样才能还给学生真正的“平等”、“民主”,这才是真正的尊重和爱护。
教育的路很长,我希望在这条路上,和孩子们一起走出最好的自己。
《3的倍数的特征》教学反思《3的倍数的特征》教学反思本学期第一次师徒活动,我的师傅秦老师听了我《3的倍数的特征》一课,课后与秦老师沟通交流了本节课我的设计意图,秦老师也针对我的课给我进行了说课。
现结合说课及课后反思,总结如下:3的倍数的特征的教学,应着力让学生在学习过程中获得“山穷水尽”,“柳暗花明”的探究体验,为此,课前我没有安排预习的作业。
设计了以下几个环节:一、课前热身,旧知复习我设计了一些练习题,如填一填、写一写、想一想,把旧知2、5倍数的特征的知识复习到位,让学生通过口答、动笔使学生动脑、动口、动手,在课的开始就让学生动起来,大大提高了学生的学习兴趣。
二、认知冲突,揭题板书复习旧知后,我紧接着追问:“判断一个数是不是2或5的倍数,只要看什么”,这样的特征同样适用于今天我们要学习的3 的倍数的特征吗以诱发、强化认知冲突,揭题板书,从而让学生产生质疑,带着疑问,有一种急切的心情,产生学习新知的欲望。
三、合作探究,学习新知这个环节我没有急切地让学生直接去找3 的倍数的特征。
学习新知的模式为:猜想——观察——验证——归纳。
所以我先让学生去猜想,然后用两种方法进行观察并验证:摆小棒和百数表。
摆小棒,我采用合作探究的学习方式,4人一组,分工明确,代表发言,发现了规律。
虽然学生们的结论不是很精确,但是总结的还是很清楚,说明学生们通过动手操作,真正经历了知识形成的过程。
然后再用百数表圈数的方法观察发现并验证规律,从而归纳出3的倍数的特征的具体概念。
紧接着在进行2、5倍数的特征和3的倍数的特征的对比,让学生们加深理解。
四、巩固练习,内化提升练习的设计上也是由基础到提升再到拓展,从抽象的数到解决问题,体会数学知识与生活的密切联系。
亮点:旧知复习全面,新知探究让学生全员参与,真正动起来,让学生经历了新知形成的过程,练习的设计上新颖,有梯度。
不足:1、在让学生产生质疑的同时,要让学生有思考的时间,充分给学生辩论的时间。
《3的倍数特征》教学反思本节课开始让学生回忆一下2和5的倍数特征,并举例让学生判断。
接下来让学生自己在百数表中找出3的倍数。
以自主探索、合作交流为主要的学习方式,让学生通过举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。
在学生百思不得其解的时候,问一问有没有哪个小组得出结论。
通过这个结论,让学生以开火车的形式来算一算,各个数位上的数字加起来的和是多少?教师随机板书,最后找学生小结。
再指名举例,大家计算并验证。
如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。
第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。
这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。
《3的倍数的特征》教学反思本课主要使学生在原有认知的基础上产生认知冲突,进而产生新的探索欲望,突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。
1、猜想验证,为孩子制造认知冲突。
从学生的学习过程来看,猜想是学生有效学习的良好准备,它包含了学生从事新的学习或实践的知识准备、积极动机和良好情感。
在数学学习中,猜想作为一种手段,目的是为了验证猜想是否正确,从而使学生积极参与学习的过程,使学生主动地获取知识。
培养了学生的创造性思维。
因此,这一课,我让学生在知道
2、5 的倍数的特征的基础上,猜想 3的倍数的特征,受知识的迁移,孩子一般只会从数的个位上去关注。
这时,就会有一些孩子提出反驳,产生一种认知冲突,使他们产生探究问题的内驱力,引起他们探索知识的欲望。
2、创设悬念,让探究走向深入。
通过问题的提出,让学生明确探究的目标,然后采用动手操作、启发式、讨论式为主的教学方式,让学生在小组内合作学习,组织交流,师生互动中主动参与学习全过程,在亲身体验,探索发现中所感、所思、所悟,理解掌握3的倍数的特征。
同时,通过自主合作,学会发表自己的意见,倾听别人的建议,培养了学生的合作能力和动手操作能力,激发了学生学习数学的兴趣。
这节课结束后,我感觉最大的缺点之处,讲倍数特征时,应放
手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。
在练习题方面,应留给学生足够的时间让学生去领悟。
我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得可持续发展的动力。
《3的倍数特征》教学反思
《3的倍数特征》教学反思范文
3的倍数是在学习了2、5的倍数特征的基础上进行学习的,我让孩子们提前进行了预习,通过授课发现孩子们的预习没有达到预想的效果。
学生在汇报时能够圈出3的倍数,而且非常准确,在汇报3的倍数的方法时,他们大多数是借助结论得出来的,没有体现出他们研究的过程。
因此,我在课上进行了及时的指导,把孩子们需要汇报的过程进行了详细的说明。
孩子们很快理解了我的意思,立刻进行了新的分工。
第一位同学汇报了他们找到的3的倍数,并介绍的找3的倍数的方法即,用这个数除以3,看商是不是整数而且没有余数。
接下来汇报百数表中前十个3的倍数,让大家观察个位上的数字,通过观察发现3的倍数个位上是0-9的任意一个数,不能像2、5的倍数特征只看个位的特殊数就行了。
因此只看个位不能确定是不是3的倍数。
由于孩子们有了提前的预习,孩子们心目中已经有了结论。
因此在这个时候孩子们思考的深度不够,没有理解教材的意图。
教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。
第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的倍数。
让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。
第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。
这个结论只是通过观察百数表得出的关于两位数的.结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。
孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。
验证的结果是肯定的,因此得出的结论适合所有的数。
到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练习来也显得得心应手。
孩子体验了结论得出的过程,每一个环节的设计都有他的意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。