第5章 习题解答
- 格式:pdf
- 大小:289.21 KB
- 文档页数:18
习题解答5-1 电路中存在有正反馈,且AF >1,是否一定会发生自激振荡?说明理由。
解答:不一定。
因为AF>1仅满足了自激振荡的振幅起振条件,此时,只有当πϕϕn F A 2=+即同时满足相位起振条件时才会发生自激振荡。
5-2 为什么晶体管LC 振荡器总是采用固定偏置与自生偏置混合的偏置电路?解答:晶体管LC 振荡器采用固定的正向偏置是为了使振荡器起振时为软激励状态,无须再外加强的激励下能起振,也不致停振。
而采用自生反向偏置则可以稳幅。
若两者不结合,则两个优点不可兼而有之。
5-3 什么是间歇振荡现象?试分析间歇振荡产生的原因?简述如何防止和消除间歇振荡。
解答:间歇振荡是指振荡器工作时,时而振荡,时而停振的现象。
原因是振荡器的自偏压电路参数选择不当。
防止和消除间歇振荡的方法是正确选择工作点以及ReCe 的数值。
5-4 反馈式自激振荡器由哪几部分组成?各自的功能是什么? 解答:反馈型自激振荡器的电路由三部分组成:(1) 包含两个或两个以上储能元件的振荡回路,完成能量交换。
(2) 直流电源,补充振荡回路电阻产生的损耗,维持等幅振荡。
(3) 有源器件和正反馈电路,控制能量在正确的时间内补充到电路中。
5-5 LC 振荡器的工作频率是严格等于调谐回路的谐振频率吗?为什么?解答:LC 振荡器的工作频率近似等于调谐回路的谐振频率,严格说,它的工作频率还应该与管子的参数有关,如0h 、i h 等。
5-6 LC 振荡器的静态工作点应如何选择?根据是什么?解答:振荡器静态工作点设计在甲类工作状态,采用自给偏压电路,如下图所示:随着振荡幅度的增加,振荡管便由线性状态很快地过渡到甲乙类乃至丙类的非线性状态,这时放大器的增益会下降,最终达到平衡状态。
5-7 一个振荡器,因为某种原因,使反馈电压v f 比输入信号v s 滞后于340︒,试问该振荡器还能否振荡?若能振荡,则振荡频率比原来相比是升高了,还是降低了? 解答:若此时反馈电压分量,使得反馈系数F>A1时,即可振荡,因v f 滞后v s 340︒,即产生一个负相角ϕ∆,频率与相位的关系为dtd ϕω=,因此频率降低了。
第五章 习题解答1. 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。
(错,在共沸点时相同) 2. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <。
(错,若系统存在共沸点,就可以出现相反的情况) 3. 纯物质的汽液平衡常数K 等于1。
(对,因为111==y x ) 4. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增大而增大。
(错,若系统存在共沸点,就可以出现相反的情况)5. 下列汽液平衡关系是错误的i i Solvent i v i i x H Py *,ˆγϕ=。
(错,若i 组分采用不对称归一化,该式为正确)6. 对于理想体系,汽液平衡常数K i (=y i /x i ),只与T 、P 有关,而与组成无关。
(对,可以从理想体系的汽液平衡关系证明) 7. 对于负偏差体系,液相的活度系数总是小于1。
(对) 8. 能满足热力学一致性的汽液平衡数据就是高质量的数据。
(错) 9. 逸度系数也有归一化问题。
(错) 10. EOS +γ法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡。
(错) 二、选择题1. 欲找到活度系数与组成的关系,已有下列二元体系的活度系数表达式,βα,为常数,请决定每一组的可接受性 。
(D ) A 2211;x x βγαγ== B 12211;1x x βγαγ+=+=C 1221ln ;ln x x βγαγ==D 212221ln ;ln x x βγαγ==2. 二元气体混合物的摩尔分数y 1=0.3,在一定的T ,P 下,8812.0ˆ,9381.0ˆ21==ϕϕ,则此时混合物的逸度系数为 。
(C ) A 0.9097 B 0.89827C 0.8979D 0.9092三、填空题1. 说出下列汽液平衡关系适用的条件(1) l i v i f f ˆˆ= ______无限制条件__________; (2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i si i x P Py γ= _________低压条件下的非理想液相__________。
第五章全同粒子本章主要内容概要1. 全同粒子:质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。
在一个量子体系中全同粒子是不可区分的,两全同粒子相互交换不会引起物理性质的改变(全同性原理)。
所有的微观粒子可以分为两类:波色子和费米子。
所有自旋为 整数倍的粒子称为波色子,而所有自旋为/2 奇数倍的粒子称为费米子。
由费米子组成的量子体系,不能有两个或两个以上的费米子处于同一个状态(泡利不相容原理),体系的波函数在交换任意两个费米子时是反对称的。
对由波色子组成的量子体系,则不受泡利不相容原理的限制,两个或两个以上的波色子可以处于同一个状态,体系的波函数在交换任意两个波色子时是对称的。
如果体系的波函数可以由归一化的单粒子波函数()i q αφ的积表示,其中i 表示不同的单粒子态,q α表示第α个粒子的量子数(包括空间与自旋),则由N 个费米子组成体系的反对称波函数可以用N 阶行列式表示为12121212()()()()()()(,,...,,...,)()()()i i i N j j j N A N k k k N q q q q q q q q q q q q q αφφφφφφΦ=交换任何两个粒子就是交换行列式中的两列,这使行列式改变符号,即波函数A Φ在交换两粒子时是反对称的。
当任两粒子处于相同状态,即行列式中两行相同,行列式为零,表示不能有两个或两个以上的费米子处于同一个状态。
对由N 个波色子组成的体系,体系的对称波函数可以表示为 1212(,,...,,...,)()()...()A N i j k N Pq q q q C P q q q αφφφΦ=∑其中P 表示N 个粒子在波函数中的某一种排列,P∑表示对所有可能排列求和,由于波色子可以处于相同的状态,,,...,i j k 可以相等,C 是归一化常数为求和的项数,,,...,i j k 完全相等时为1,全不相等时为1/2.交换力:以两粒子体系为例,若体系的波函数可以表示为空间部分和自旋部分之积,对称和反对称的空间波函数为121212(,)()()()()]a b b a x x x x x x ψψψψψ±=±这种波函数对称化的要求会使两粒子间出现一种力的作用,称为交换力。
第5章 带传动与链传动5-1 带传动的弹性滑动是怎样产生的?能否防止?对传动有何影响?它与打滑有何不同?答:带传动的弹性滑动是由于带的弹性和拉力差而引起的带和带轮面间的局部的、微小的相对滑动,这是摩擦型带传动正常工作时的固有特性,是不可防止的。
弹性滑动导致传动效率降低、带磨损、传动比不准确。
打滑是由过载引起的带在带轮上的全面滑动,使传动失效。
打滑为非正常的工作状态,是必须防止也是可以防止的。
5-2带传动的中心距为什么要限制在一定的范围?答:带传动的中心距之所以要限制在一定的范围,是因为:1〕假设中心距过小,虽结构紧凑,但小带轮的包角太小,导致摩擦力和传动能力降低;2〕中心距过小,使带的长度过短,带的工作频率增加,降低带的疲劳强度和工作寿命;3〕中心距假设过大,不仅结构不紧凑,且皮带松边下垂,高速传动时易引起带的颤抖。
5-3.多根V 带传动时,假设发现一根已坏,应如何处置?答:多根V 带传动时,即使只发现一根已坏,也应该同时更换新的V 带,不可新旧混用。
5-4 已知一V 带传动,小带轮直径d 1d =160mm,大带轮直径d 2d =400mm ,小带轮转速n 1=960min r ,滑动率2=ε00,试求由于弹性滑动引起的大带轮的转速损失。
解: 假设无弹性滑动,大带轮的理想转速n 2应为:1122n d 960160n 384(r /min)d 400⨯=== 所以,由弹性滑动引起的大带轮的转速损失为:2n =3840.02=7.68(r /min)ε⨯5-5 为什么链传动具有运动不平稳性?答:由于链传动的多边形效应,使其瞬时速度和瞬时传动比周期性变化,从而引起动载荷,所以链传动具有运动不平稳性。
5-6 为什么链条节数常取偶数,而链轮齿数取为奇数?答: 因为假设链节数为奇数,则需要采用过渡链节,当链条受拉时,过渡链节的弯链板承受附加的弯矩作用,强度降低,所以链节数常取为偶数。
正因为链节数常为偶数,为使磨损均匀,链轮齿数一般取为奇数。
第5章 习题解答5.1 在图5.1所示电路中,12100V,1,99,10F E R R C μ==Ω=Ω=,试求:(1)S 闭合瞬间,各支路电流及各元件端电压的值;(2)S 闭合后到达稳定状态时中各电流和电压的值;(3)当用电感元件L =1H 替换电容元件后再求(1),(2)两种情况下各支路的电流及各元件端电压的值。
解:(1)S 闭合瞬间,由于电容C 的电荷0)0(,0C 0==-u q ,所以0)0()0(C C ==-+u u ,即C 可视为短路,2R 被短接,20i =。
此时(2)S 闭合后,电路达到稳定状态时,由于E 为直流电动势,所以C 视为开路,则10i =1R 11A 11V u iR ==⨯Ω=2C R 21A 9999V u u iR ===⨯Ω=(3)当用电感元件替换电容元件后,S 闭合瞬间,由于S 闭合前电感中电流为零,即L (0)0i -=,且电感元件中电流不能跃变,所以L L 1(0)(0)0i i i +-===电感在S 闭合瞬间L 视为开路,所以此时212100V1A 199E i i R R ====+Ω+Ω1R 11A 11V u iR ==⨯Ω=2R 21A 9999V u iR ==⨯Ω=11100V100A 1E i i R ====Ω2R C (0)0u u +==212100V1A199E i i R R ====+Ω+Ω1R 1100A 1100Vu iR ==⨯Ω=22L R 99V u u ==S 闭合后,且电路达到稳定状态时,在直流电动势E 作用下,电感元件L 视为短路,则2R 被短路。
所以,11100V 100A 1E i i R ====Ω 20i = 2L R 0u u ==1R 1100A 1100V u iR ==⨯Ω=5.2 在图5.2所示电路中,已知126V,6A ,3E I R R ====Ω。
当电路稳定后,在t =0时将两个开关同时闭合。
第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。
解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。
将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。
由此可见,空腔内的磁场是均匀的。
5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。
dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。
第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。
第五章 聚类分析5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。
具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。
聚类分析是分析如何对样品(或变量)进行量化分类的问题。
在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。
通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。
5.2 试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n 个样本看作p 维空间的n 个点。
点之间的距离即可代表样品间的相似度。
常用的距离为 (一)闵可夫斯基距离:1/1()()pq qij ik jk k d q X X ==-∑q 取不同值,分为 (1)绝对距离(1q =)1(1)pij ik jk k d X X ==-∑(2)欧氏距离(2q =)21/21(2)()pij ik jk k d X X ==-∑(3)切比雪夫距离(q =∞)1()max ij ik jkk pd X X ≤≤∞=-(二)马氏距离(三)兰氏距离对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。
21()()()ij i j i j d M -'=--X X ΣX X 11()p ik jkij k ik jk X X d L p X X =-=+∑将变量看作p 维空间的向量,一般用(一)夹角余弦(二)相关系数5.4 在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原则?答: 设d ij 表示样品X i 与X j 之间距离,用D ij 表示类G i 与G j 之间的距离。
第5章频域分析法5.1 学习要点1 频率特性的概念,常用数学描述与图形表示方法;2 典型环节的幅相频率特性与对数频率特性表示及特点;3 系统开环幅相频率特性与对数频率特性的图示要点;4 应用乃奎斯特判据判断控制系统的稳定性方法;5 对数频率特性三频段与系统性能的关系;6 计算频域参数与性能指标;5.2 思考与习题祥解题5.1 判断下列概念的正确性ω的正弦信号加入线性系统,这个系统的稳态输出也将是同一(1) 将频率为频率的。
M仅与阻尼比ξ有关。
(2) 对于典型二阶系统,谐振峰值p(3) 在开环传递函数中增加零点总是增加闭环系统的带宽。
(4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。
(5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。
(6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。
(7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。
(8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。
(9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。
(10) 相位穿越频率是在这一频率处的相位为0。
(11) 幅值穿越频率是在这一频率处的幅值为0dB。
(12) 幅值裕量在相位穿越频率处测量。
(13) 相位裕量在幅值穿越频率处测量。
(14) 某系统稳定的开环放大系数25K<,这是一个条件稳定系统。
(15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。
(16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。
(17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。
(18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。
M和频带宽BW的(19) Nichols图可以用于找到一个闭环系统的谐振峰值p信息。
(20) Bode 图能够用于最小相位以及非最小相位系统的稳定性分析。
第五章习题解答1)总压100,温度25℃的空气与水长时间接触,水中的的浓度为多少?分别用摩尔浓度和摩尔分率表示。
空气中的体积百分率为0.79。
解:将空气看作理想气体:y=0.79p*=yp=79kPa查表得E=8.76×kPaH=C=p*.H=79×6.342×10-5=5.01×10-4kmol/m32)已知常压、25℃下某体系的平衡关系符合亨利定律,亨利系数E为大气压,溶质A的分压为0.54大气压的混合气体分别与三种溶液接触:①溶质A浓度为的水溶液;②溶质A浓度为的水溶液;③溶质A浓度为的水溶液。
试求上述三种情况下溶质A在二相间的转移方向。
解: E=0.15×104atm,p=0.054atm,P=1atm,y=p/P=0.054①∴∴∴平衡②∴∴∴气相转移至液相③∴∴∴液相转移至气相④ P=3atm y=0.054 E=0.15×104atm∴m=E/P=0.05×104x4=x3=5.4×10-5∴∴∴气相转移至液相3)某气、液逆流的吸收塔,以清水吸收空气~硫化氢混合气中的硫化氢。
总压为1大气压。
已知塔底气相中含 1.5%(摩尔分率),水中含的浓度为(摩尔分率)。
试求塔底温度分别为5℃及30℃时的吸收过程推动力。
解:查表得(50C)E1=3.19×104kpa m1=E1/P=315p*1=Ex=0.3194)总压为100,温度为15℃时的亨利系数E为。
试计算:①H、m的值(对稀水溶液密度为);②若空气中的分压为50,试求与其相平衡的水溶液浓度,分别以摩尔分率和摩尔浓度表示。
5)在总压为100、水温为30℃鼓泡吸收器中,通入纯,经充分接触后测得水中的平衡溶解度为溶液,溶液的密度可近似取为,试求亨利系数。
解: p*=100KPa(mol/L)/kPakPa6)组分A通过另一停滞组分B进行扩散,若总压为,扩散两端组分A的分压分别为23.2和 6.5。
第五章习题解5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ)⎰∞'=τψψd H E 111 ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r rdr a e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = #5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。