海淀区2019年高三年级第二学期期中试卷理科数学及答案
- 格式:doc
- 大小:349.50 KB
- 文档页数:7
北京市海淀区高三数学第二学期期中练习参考答案与评分标准(理科)2001.5一、选择题:(1)C ;(2)D ;(3)A ;(4)A ;(5)C ;(6)B ;(7)C ;(8)C ;(9)B ;(10)C ;(11)D ;(12)D .二、填空题:(13)12;(14)};12|{<<-x x (15)x ∈(0,2];(16)123122242、、中选一即可 三、解答题:(17)解:(Ⅰ)设z=x + yi (x ,y ∈R )依题意,xyi y x yi x z 2)(222+-=+= ∴⎪⎩⎪⎨⎧==+②① 22 222xy y x …………………………………………3分故0)(2=-y x∴22,2==x y x 得代入②∴x =±1,∴⎩⎨⎧-=-=⎩⎨⎧==1111y x y x 或 ∴z =1+i 或z = –1–i ………………………………………………5分45arg 4arg ππz z 或= ∴)45sin 45(cos 2)4sin 4(cos 2ππππi z i z +=+=或……………7分 (Ⅱ)当z =1+i 时,i z z i z -=-=1,222∴A (1,1)、B (0,2)、C (1,–1)∴|AC |=212121=⨯⨯=∆ABC S ………………………………………………10分 当z =–1–i 时,i z z i z 31,222--=-=A (–1,–1)、B (0,2)、C (–1,–3)则1=∆ABC S综上△ABC 的面积为1.…………………………………………12分(18)解:(Ⅰ)∵△ABC 是正三角形,AF 是BC 边的中线∴AF ⊥BC又D 、E 分别是AB 、AC 的中点∴BE BC 21 ∴AF ⊥DE ,AF ∩DE =G ……………………2分∴G A '⊥DE ,GF ⊥DE∴DE ⊥平面FG A '…………………………4分又DE BCED 平面⊂∴平面FG A '⊥平面BCED ……………6分(Ⅱ)∵G A '⊥DE ,GF ⊥DE∴∠GF A '是二面角A ′–DE –B 的平面角……………………7分∵平面GF A '∩平面BCED =AF作H A '⊥AG 于H∴H A '⊥平面BCED ………………………………………………9分假设E A '⊥BD ,连EH 并延长交AD 于Q∴EQ ⊥AD ……………………………………………………………10分∵AG ⊥DE∴H 是正三角形ADE 的垂心,也是中心.∵AD =DE =AE =2a ∴a AG HG a AG G A 12331,43====' 在Rt △HG A '中,31cos ='='∠G A HG GH A ∵∠GF A '=π–∠A 'GH∴31cos -='∠GF A∴)31arccos(-='∠GF A 时…………………………………………11分 即当.,)31arccos(BD E A GF A ⊥'-='∠时……………………………12分 (19)解:(Ⅰ)∵当n ≥2时,232,,431---n n n S a S 成等差数列 ∴1232432--+-=n n n S S a ∴)2(43≥-=n S a n n ………………………………………………2分∴,4)(3212-+=a a a ∵11=a ,∴212-a 类似地4)(33213-++=a a a a ∴413-=a 4)(343214-+++=a a a a a ∴ 814=a ……………………………4分 (Ⅱ)∵当≥2时,43-=n n S a ,即43+=n n a S∴⎩⎨⎧+=+=++②①434311n n n n a S a S ②–①,得n n n a a a -=++113 ∴211-=+n n a a 为常数………………………………………………6分 ∴2a ,3a ,4a ,…,n a ,…成等比数列. 其中21,212-==q a ………………………………………………7分 故1222)21()21(21,2-----=-=⋅=≥n n n n q a a n∴⎪⎩⎪⎨⎧≥==-)2( )21(--1)(n 11n a n n …………………………………………9分 (Ⅲ)∵n n a a a S +++= 21=)(132n a a a ++++∴)(lim 1lim 32n n n n a a a S ++++=∞→∞→ =34311)21(1211=+=--+………………………………12分 (20)解:(Ⅰ)由已知数据,易知函数y =f (t )的周期T =12 ……………………1分振幅A =3………………………………………………………………2分b =10……………………………………………………………………3分 ∴106sin 3+=ty π……………………………………………………4分(Ⅱ)由题意,该船进出港时,水深应不小于5+6.5=11.5(米) ∴5.11106sin 3≥+tπ…………………………………………………6分 ∴216sin ≥tπ 解得,Z)(k 652662∈+≤≤+πππππk t k …………………………8分 Z)(k 512112∈+≤≤+k t k在同一天内,取k =0或1∴1≤t ≤5或13≤t ≤17………………………………………………10分∴该船最早能在凌晨1时进港,下午17时出港,在港口内最多停留16个小时 …………………………………………………………………………12分(21)解:(Ⅰ)∵y =f (x )是以5为周期的周期函数∴f (4)=f (4–5)=f (–1)……………………………………………1分 又y =f (x ),(–1≤x ≤1)是奇函数∴f (1)= –f (–1)= –f (4)∴f (1)+f (4)=0…………………………………………………3分(Ⅱ)当x ∈[1,4]时,由题意,可设f (x )=5)2(2--x a (a ≠0)……………………………………………………5分由f (1)+f (4)=0得05)24(5)21(22=--+--a a解得a =2∴5)2(2)(2--=x x f (1≤x ≤4)…………………………………………7分 (Ⅲ)∵y =f (x ) (–1≤x ≤1)是奇函数∴f (0)= –f (–0) ∴f (0)=0………………………………………………8分 又y =f (x ) (0≤x ≤1 )是一次函数∴可设f (x )=kx (0≤x ≤1)∵35)21(2)1(2-=--=f又f (1)=k ·1=k∴ k =–3∴当0≤x ≤1时 f (x )=–3x ……………………………………………………9分 当–1≤x <0时,0<–x ≤1∴f (x )= –f (–x )= –3x∴当–1≤x ≤1时,f (x )=–3x ………………………………………………11分当4≤x ≤6时,–1≤x –5≤1∴f (x )=f (x –5)=–3(x –5)=–3x +15当6<x ≤9时 1<x –5≤45]2)5[(2)5()(2---=-=x x f x f5)7(22--x∴f (x )=⎩⎨⎧≤<--≤≤+-96 ,5)7(264 ,1532x x x x …………………………………………12分 (22)解:(Ⅰ)∵5||||||22=+=OD CO CD ,且圆D 与圆C 外切(O 为原点).∴圆D 半径r =5–2=3此时,A 、B 坐标分别为(0,0)、(0,6)P A 在x 轴上,BP 斜率k =2∴tg ∠APB =2…………………………3分 (Ⅱ)设D 点坐标为(0,a ),圆D 半径为r ,则① 16)2(22a r +=+A 、B 坐标分别为(0,a –r )、(0,a +r )设P A 、PB 斜率分别为1k ,2k ,则3,321r a k r a k +=-=② 963313322+-=-⋅++--+=∠r a r r a r a r a r a APB tg …………………………………………………6分由①解出2a 代入②,得68923346-+=-=∠r r r APB tg ,而8r –6为单调增函数,[)+∞∈,2r .∴]512,23(∈∠APB tg ∠APB 的最大值为512arctg ;……………………………………9分 (Ⅲ)假设存在Q 点,设Q (b ,0),QA 、QB 斜率分别为1k ,2k ,则br a k b r a k -+=--=21, |2||1||1|2221212r a b br br a b r a b r a b r a k k k k AQB tg -+-=--⋅-++---+=+-=∠……………………11分 将16)2(22-+=r a 代入上式,得|4122|4122|22+--=+--=∠r b b r b br AQB tg 欲使∠AQB 大小与r 无关,当且仅当122=b ,即32±=b , 此时︒=∠=∠60,3AQB AQB tg∴存在Q 点,当圆D 变动时,∠AQB 为定值︒60,Q 点坐标为(0,32±)…………………………………………………………………………………………14分 注:其他正确解法可按相应步骤给分。
2019届北京市海淀区高三第二学期期中练习(一模)数学(理)试题一、单选题1.已知集合,且,则可以是()A.B.C.D.【答案】A【解析】利用子集概念即可作出判断.【详解】∵∴,即故选:A【点睛】本题考查子集的概念,属于基础题.2.若角的终边在第二象限,则下列三角函数值中大于零的是()A.B.C.D.【答案】D【解析】利用诱导公式化简选项,再结合角的终边所在象限即可作出判断.【详解】解:角的终边在第二象限,=<0,A不符;=<0,B不符;=<0,C不符;=>0,所以,D正确故选:D【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.3.已知等差数列满足,则中一定为零的项是()A.B.C.D.【答案】A【解析】利用等差数列通项公式即可得到结果.【详解】由得,,解得:,所以,,故选A【点睛】本题考查等差数列通项公式,考查计算能力,属于基础题.4.已知,则下列各式中一定成立()A.B.C.D.【答案】D【解析】利用不等式的性质与指数函数性质即可作出判断.【详解】x,y的符号不确定,当x=2,y=-1时,,对于A,不成立,所以错误;对于B、也错;对于C,是减函数,所以,也错;对于D,因为,所以,,正确,故选D【点睛】本题考查不等式的性质,指数函数的单调性及均值不等式,考查反例法,属于基础题. 5.执行如图所示的程序框图,输出的值为()A.B.C.D.【答案】B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,即可得出结论.【详解】解:第1步:S=2,x=4,m=2;第2步:S=8,x=6,m=;第3步:S=48,x=8,m=,退出循环,故选B【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.已知复数,则下面结论正确的是()A.B.C.一定不是纯虚数D.在复平面上,对应的点可能在第三象限【答案】B【解析】利用共轭复数概念,模的计算,及几何意义即可作出判断.【详解】的共轭复数为:,所以A错误;,所以B正确;当时,是纯虚数,所以C错误;对应的点为(,1),因为纵坐标y=1,所以,不可能在第三象限,D也错误.故选B.【点睛】本题考查了复数的基本概念,考查了复数模的求法,是基础题.7.椭圆与双曲线的离心率之积为1,则双曲线的两条渐近线的倾斜角分别为()A.,B.,C.,D.,【答案】C【解析】运用椭圆和双曲线的离心率公式,可得关于a,b的方程,再由双曲线的渐近线方程,即可得到结论.【详解】椭圆中:a=2,b=1,所以,c=,离心率为,设双曲线的离心率为e则,得,双曲线中,即,又,所以,得,双曲线的渐近线为:,所以两条渐近线的倾率为倾斜角分别为,.故选C.【点睛】本题考查椭圆和双曲线的方程和性质,主要考查离心率和渐近线方程的求法,考查运算能力,属于易错题.8.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在层班级,生物在层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()层化学化学层层生物层生物层A.8种B.10种C.12种D.14种【答案】B【解析】根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.二、解答题9.已知函数的最大值为.(1)求的值;(2)求函数的单调递增区间.【答案】(1);(2).【解析】(1)化简f(x)为A sin(ωx+φ)+b的形式,根据最大值列出方程解出a;(2)结合正弦函数的单调性列出不等式解出【详解】(1)因为,所以函数的最大值为 ,所以,所以 .(2)因为的单调递增区间为,, 令 ,所以,函数的单调递增区间为,.【点睛】本题考查了三角函数的恒等变换,三角函数的最值及单调性,属于基础题.10.据《人民网》报道,“美国国家航空航天局发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过的概率是多少?(3)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记为这两个地区中退化林修复面积超过六万公顷的地区的个数,求的分布列及数学期望.【答案】(1)甘肃省,青海省;(2);(3).【解析】(1)根据表格即可得到结果;(2)利用古典概型概率公式即可得到结果;(3)的取值为0,1,2,分别求出相应的概率值,即可得到的分布列及数学期望.【详解】(1) 人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2) 设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值超过为事件在十个地区中,有7个地区(内蒙、河北、河南、陕西、甘肃、宁夏、北京)人工造林面积占总面积比超过,则.(3)新封山育林面积超过五万公顷有个地区:内蒙、河北、河南、重庆、陕西、甘肃、新疆、青海,其中退化林修复面积超过六万公顷有个地区:内蒙、河北、重庆,所以的取值为所以,,.随机变量的分布列为.【点睛】本题考查离散型随机变量的分布列与期望,考查古典概型概率公式,考查分析问题解决问题的能力,属于中档题.11.如图,在直三棱柱中,,点分别为棱的中点.(1)求证:平面;(2)求证:平面平面;(3)在线段上是否存在一点,使得直线与平面所成的角为?如果存在,求出线段的长;如果不存在,说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)1.【解析】(1)方法一:取中点为,连结,,要证平面,即证:,;方法二:以为原点,分别以为轴,轴,轴,建立空间直角坐标系,求出平面的法向量为,又因为,即可得证.(2)方法一:要证平面平面,转证平面即证;方法二:分别求出两个平面的法向量即可得证.(3)建立空间直角坐标系,利用坐标法即可得到结果.【详解】方法一:(1)取中点为,连结,由且,又点为中点,所以 ,又因为分别为,中点,所以 ,所以,所以共面于平面 ,因为,分别为中点, 所以,平面,平面,所以平面 .方法二:在直三棱柱中,平面又因为,以为原点,分别以为轴,轴,轴,建立空间直角坐标系,由题意得,.所以,,设平面的法向量为,则,即,令,得,于是 ,又因为,所以 ,又因为平面,所以平面 .(2)方法一:在直棱柱中,平面,因为,所以,又因为,且,所以平面 ,平面,所以,又,四边形为正方形,所以 ,又,所以,又,且,所以平面 ,又平面,所以平面平面 .方法二:设平面的法向量为,,,即 ,令,得,于是 ,,即,所以平面平面.(3)设直线与平面所成角为,则,设,则 ,,所以 ,解得或(舍),所以点存在,即的中点,.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.12.已知函数.(1)求曲线在点处的切线方程;(2)当时,求证:函数存在极小值;(3)请直接写出函数的零点个数.【答案】(1);(2)证明见解析;(3)当或时,函数有一个零点;当且时,函数有两个零点.【解析】(1) 求出函数f(x)的导数,可得切线的斜率和切点,可得切线的方程;(2),说明有可变零点即可;(3)由题意可得函数的零点个数.【详解】(1)的定义域为因为所以切点的坐标为因为所以切线的斜率,所以切线的方程为(2)方法一:令因为且,所以,,从而得到在上恒成立所以在上单调递增且,所以在上递减,在递增;所以时,取得极小值,问题得证方法二:因为当时,当时,,所以当时,,所以所以在上递减,在递增;所以时,函数取得极小值,问题得证.(3)当或时,函数有一个零点;当且时,函数有两个零点.【点睛】本题考查函数的导数的运用:求切线的方程,确定函数的极值,考查函数的零点个数判断,以及分类讨论思想方法,属于中档题.13.已知抛物线,其中.点在的焦点的右侧,且到的准线的距离是与距离的3倍.经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线交轴于点.(1)求抛物线的方程和的坐标;(2)判断直线与直线的位置关系,并说明理由.【答案】(1),;(2)平行.【解析】(1)由到的准线的距离是与距离的3倍可得p值,从而得到抛物线的方程和的坐标;(2)方法一:设直线的方程为,对m分类讨论,分别计算二者的斜率,即可作出判断.方法二:先考虑直线的斜率不存在时,在考虑直线的斜率存在,设直线的方程为,,联立求点坐标,利用两点斜率公式求出,即可得出结论.【详解】(1)抛物线的准线方程为,焦点坐标为 ,所以有,解得 ,所以抛物线方程为,焦点坐标为 .(2)直线 ,方法一:设,,设直线的方程为联立方程消元得,,所以, ,,显然,直线的方程为 ,令,则,则,因为,所以 ,直线的方程为,令,则,则① 当时,直线的斜率不存在,,可知,直线的斜率不存在,则② 当时,,,则综上所述,方法二:直线(i) 若直线的斜率不存在,根据对称性,不妨设,直线的方程为,则直线的方程为,即,令,则,则直线的斜率不存在,因此(ii) 设,,当直线的斜率存在,设直线的方程为,联立方程,消元得,,整理得,由韦达定理,可得,,因为,可得.显然,直线的方程为令,则,则因为,所以直线的方程为,令,则,则,则综上所述, .【点睛】本题考查了抛物线的简单性质,直线和抛物线的位置关系,直线的斜率和直线的位置关系,属于中档题.14.首项为O的无穷数列同时满足下面两个条件:①;②.(1)请直接写出的所有可能值;(2)记,若对任意成立,求的通项公式;(3)对于给定的正整数,求的最大值.【答案】(1);(2);(3)当为奇数时的最大值为; 当为偶数时,的最大值为.【解析】(1)由递推关系得到的所有可能值;(2)由题意可知数列的偶数项是单调递增数列,先证明数列中相邻两项不可能同时为非负数,即可得到结果;(3)由(2)的证明知,不能都为非负数,分类讨论即可得到结果.【详解】(1)的值可以取 .(2)因为,因为对任意成立,所以为单调递增数列,即数列的偶数项是单调递增数列,根据条件,,所以当对成立,下面我们证明“数列中相邻两项不可能同时为非负数”,假设数列中存在同时为非负数,因为,若则有,与条件矛盾,若则有,与条件矛盾,所以假设错误,即数列中相邻两项不可能同时为非负数,此时对成立,所以当时,,即,所以,,所以,即,其中,即,其中,又,,所以是以,公差为的等差数列,所以 .(3)记,由(2)的证明知,不能都为非负数,当,则,根据,得到,所以,当,则,根据,得到,所以,所以,总有成立,当为奇数时,,故的奇偶性不同,则,当为偶数时,,当为奇数时,,考虑数列:,,可以验证,所给的数列满足条件,且,所以的最大值为,当为偶数时,,考虑数列:,,-,, ,可以验证,所给的数列满足条件,且,所以的最大值为.【点睛】本题考查数列的性质和应用,解题时要注意归纳总结能力的培养,考查了转化能力和运算能力,属于难题.三、填空题15.已知成等比数列,且,则____.【答案】4【解析】利用等比中项可得=16,结合对数运算性质可得结果.【详解】解:依题意,得:=16,所以,=4故答案为:4【点睛】本题考查了等比数列的性质,对数的运算性质,考查计算能力.16.在中,,则_______;_________.【答案】6【解析】利用余弦定理可得c值,由平方关系得到,借助可得结果.【详解】解:由余弦定理,得:=36,所以,c=6,由得:,所以,=【点睛】本题考查余弦定理,平方关系,以及三角形的面积公式的应用,熟练掌握公式是解题的关键.17.已知向量,同时满足条件①,②的一个向量的坐标为_____ .【答案】(答案不唯一)【解析】设=(x,y),由∥得:y=-2x,结合,可得x的范围,进而可得结果.【详解】解:设=(x,y),由∥得:y=-2x,+=(1+x,-2+y),由,得:,把y=-2x代入,得:,化简,得:,解得:,取x=-1,得y=2,所以,=(-1,2)(答案不唯一)故答案为:=(-1,2)(答案不唯一)【点睛】本题考查向量共线的性质,考查平面向量的坐标运算,属于基础题.18.在极坐标系中,若圆关于直线对称,则_____.【答案】【解析】把极坐标方程化为普通直角方程,利用圆心在直线上,得到a值.【详解】解:圆方程化为:,化为直角坐标方程为:,直线化为直角坐标方程为:,圆关于直线对称,则直线经过圆的圆心(,0),所以,,解得:=-1.故答案为:-1【点睛】本题考查极坐标与直角坐标的互化,考查直线与圆的位置关系,属于基础题.19.设关于的不等式组表示的平面区域为.记区域上的点与点距离的最小值为,则(1)当时,____;(2)若,则的取值范围是____.【答案】2【解析】(1)当时,作出可行域,数形结合即可得到结果,(2)恒过定点(0,1),对k分类讨论,数形结合即可得到结果.【详解】(1)当时,不等式组为,表示的平面区域如下图1,区域上的点B与点距离的最小,最小值为|AB|=2,所以, 2(2)恒过定点(0,1),(i)当k>0时,如图1,,符合题意(ii)当k=0时,如图2,,符合题意(iii)当k<0时,如图3,,解得:,综上可知的取值范围是.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.20.已知函数,,其中.若,使得成立,则____.【答案】【解析】根据题意可得,分别求两边的范围,利用子集关系,得到结果. 【详解】解:依题意,得:,化简,得:,因为.,所以,,即,所以,,因为,且,因为,有成立,所以,,所以,所以,,所以,.故答案为:【点睛】本题考查了函数的单调性与值域,考查了推理能力与计算能力,属于中档题.。
海淀区高三年级第二学期期中练习数 学 (理科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}32<<x xB. {}32<≤x xC. {}322<≤-≤x x x 或D. R2.已知数列{}n a 为等差数列,n S 是它的前n 项和.若21=a ,123=S ,则=4S A .10 B .16 C .20 D .243. 在极坐标系下,已知圆C 的方程为2cos ρθ=,则下列各点在圆C 上的是 A .1,3π⎛⎫- ⎪⎝⎭B . 1,6π⎛⎫⎪⎝⎭C.34π⎫⎪⎭D .54π⎫⎪⎭4.执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为A .0 B.1 C .2 D .11 5.已知平面l =αβ,m 是α内不同于l 的直线,那么下列命题中错误..的是 A .若β//m ,则l m // B .若l m //,则β//m C .若β⊥m ,则l m ⊥ D .若l m ⊥,则β⊥m6. 已知非零向量,,a b c 满足++=a b c 0,向量,a b 的夹角为120,且||2||=b a ,则向量a 与c 的夹角为 A .︒60 B .︒90 C .︒120D . ︒1507.如果存在正整数ω和实数ϕ使得函数)(cos )(2ϕω+=x x f (ω,ϕ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为A .1B .2C . 3 D. 48.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是 A .(0,1]r ∈ B .(1,2]r ∈ C .3(,4)2r ∈ D .3[,)2r ∈+∞非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数3i1i-+= . 10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为 . (用“>”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B , D 是CE 与⊙O 的交点.若︒=∠70BAC ,则=∠CBE ______;若2=BE ,4=CE , 则=CD .12.已知平面区域}11,11|),{(≤≤-≤≤-=y x y x D ,在区域D 内任取一点,则取到的点位于直线y kx =(k R ∈)下方的概率为____________ .13.若直线l 被圆22:2C x y +=所截的弦长不小于2,则在下列曲线中:乙丙甲①22-=x y ② 22(1)1x y -+= ③ 2212x y += ④ 221x y -=与直线l 一定有公共点的曲线的序号是 . (写出你认为正确的所有序号) 14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ;(Ⅱ)求ABC ∆的面积.16. (本小题共14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==, G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦值.17. (本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的CBD A DFEB G C概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1:(||)2l y kx m k =+≤与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.20. (本小题共13分)已知每项均是正整数的数列A :123,,,,n a a a a ,其中等于i 的项有i k 个(1,2,3)i =⋅⋅⋅,设j j k k k b +++= 21 (1,2,3)j =,12()m g m b b b nm =+++-(1,2,3)m =⋅⋅⋅.(Ⅰ)设数列:1,2,1,4A ,求(1),(2),(3),(4),(5)g g g g g ; (Ⅱ)若数列A 满足12100n a a a n +++-=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(理)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分所以tan tan(180())tan()1A B C B C =-+=-+=-. …………………5分 (II )因为0180A <<,由(I )结论可得:135A = . …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分所以sin B=sin C =. …………9分由sin sin a cA C=得a =, …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC ,∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB , ∴EF AE ⊥, 又,AE EB EBEF E ⊥=,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分 ∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥, ∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分又,BHDH H BH =⊂平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分 ∵BD ⊂平面BHD ,HADFEBGC∴BD EG ⊥. ………………………9分 解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分 以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0), C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分∴(2,2,0)EG =,(2,2,2)BD =-,………7分 ∴22220BD EG ⋅=-⨯+⨯=, ………8分 ∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =是平面EFDA 的法向量. …………………………10分 设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=, ∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . …………………………12分设二面角C DF E --的大小为θ, 则cos cos ,EB =<>==θn …………………………13分 ∴二面角C DF E --的余弦值为6- …………………………14分 17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分 事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f xx x =-,11()1x f x x x-'=-=, ………………………2分………………………3分所以()f x 在1x =处取得极小值1. ………………………4分 (Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即 函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-,因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得2m =±,所以||OP =……6分 当0k ≠时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③ ……………8分 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则 012012122286,()23434km m x x x y y y k x x m k k=+=-=+=++=++. ……………9分 由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP =====………………………12分因为12k<≤,得23434k<+≤,有2331443k≤<+,2OP<≤. ………………………13分综上,所求OP的取值范围是. ………………………14分(Ⅱ)另解:设,,A B P点的坐标分别为112200(,)(,)(,)x y x y x y、、,由,A B在椭圆上,可得2211222234123412x yx y⎧+=⎨+=⎩①②………………………6分①—②整理得121212123()()4()()0x x x x y y y y-++-+=③………………………7分由已知可得OP OA OB=+,所以120120x x xy y y+=⎧⎨+=⎩④⑤……………………8分由已知当1212y ykx x-=-,即1212()y y k x x-=-⑥………………………9分把④⑤⑥代入③整理得0034x ky=-………………………10分与22003412x y+=联立消x整理得202943yk=+……………………11分由22003412x y+=得2200443x y=-,所以222222000002413||4443343OP x y y y yk=+=-+=-=-+……………………12分因为12k≤,得23434k≤+≤,有2331443k≤≤+,2OP≤≤. ………………………13分所求OP的取值范围是2. ………………………14分20. (共13分)解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)jk k k k k j======12342,213,2103,4,4(5,6,7,)mb b b b b m==+==++====// 112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g b g b b g b b b g b b b b g b b b b b =-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()m g m g m b n ++-=-,根据“数列A 含有n 项”及j b 的含义知1m b n +≤, 故0)()1(≤-+m g m g ,即)1()(+≥m g m g ① …………………7分 另一方面,设整数{}12max ,,,n M a a a =,则当m M ≥时必有m b n =, 所以(1)(2)(1)()(1)g g g M g M g M ≥≥≥-==+=所以()g m 的最小值为(1)g M -. …………………9分 下面计算(1)g M -的值:1231(1)(1)M g M b b b b n M --=++++--1231()()()()M b n b n b n b n -=-+-+-++- 233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123()n M a a a a b =-+++++ 123()n a a a a n =-+++++ …………………12分 ∵123100n a a a a n ++++-= , ∴(1)100,g M -=-∴()g m 最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
海淀区高三年级第二学期期中练习数 学 (理科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}32<<x xB. {}32<≤x xC. {}322<≤-≤x x x 或D. R2.已知数列{}n a 为等差数列,n S 是它的前n 项和.若21=a ,123=S ,则=4S A .10 B .16 C .20 D .243. 在极坐标系下,已知圆C 的方程为2cos ρθ=,则下列各点在圆C 上的是 A .1,3π⎛⎫- ⎪⎝⎭B . 1,6π⎛⎫⎪⎝⎭C.34π⎫⎪⎭D .54π⎫⎪⎭4.执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为A .0 B.1 C .2 D .11 5.已知平面l =αβ,m 是α内不同于l 的直线,那么下列命题中错误..的是 A .若β//m ,则l m // B .若l m //,则β//m C .若β⊥m ,则l m ⊥ D .若l m ⊥,则β⊥m 6. 已知非零向量,,a b c 满足++=a b c 0,向量,a b 的夹角为120,且||2||=b a ,则向量a 与c 的夹角为A .︒60B .︒90C .︒120D . ︒1507.如果存在正整数ω和实数ϕ使得函数)(cos )(2ϕω+=x x f (ω,ϕ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为A .1B .2C . 3 D. 48.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是A .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈D .3[,)2r ∈+∞非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数3i1i-+= . 10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为 . (用“>”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B ,D 是CE 与⊙O 的交点.若︒=∠70BAC ,则=∠CBE ______;若2=BE ,4=CE , 则=CD .12.已知平面区域}11,11|),{(≤≤-≤≤-=y x y x D ,在区域D 内任取一点,则取到的点位于直线y kx =(k R ∈)下方的概率为____________ .13.若直线l 被圆22:2C x y +=所截的弦长不小于2,则在下列曲线中:乙丙0.0002甲①22-=x y ② 22(1)1x y -+= ③ 2212x y += ④ 221x y -=与直线l 一定有公共点的曲线的序号是 . (写出你认为正确的所有序号)14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ;(Ⅱ)求ABC ∆的面积.16. (本小题共14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦值.17. (本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;ACP BD A DFEB G C(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1:(||)2l y kx m k =+≤与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.20. (本小题共13分)已知每项均是正整数的数列A :123,,,,n a a a a ,其中等于i 的项有i k 个(1,2,3)i =⋅⋅⋅,设j j k k k b +++= 21 (1,2,3)j =,12()m g m b b b nm =+++-(1,2,3)m =⋅⋅⋅.(Ⅰ)设数列:1,2,1,4A ,求(1),(2),(3),(4),(5)g g g g g ; (Ⅱ)若数列A 满足12100n a a a n +++-=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(理)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分所以tan tan(180())tan()1A B C B C =-+=-+=-. …………………5分 (II )因为0180A <<,由(I )结论可得:135A = . …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分所以sin B=sin C =. …………9分由sin sin a cA C=得a =, …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC ,∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB , ∴EF AE ⊥, 又,AE EB EBEF E ⊥=,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分 ∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥, ∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分H ADFEBGC又,BH DH H BH =⊂平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分 ∵BD ⊂平面BHD ,∴BD EG ⊥. ………………………9分 解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分 以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0), C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分∴(2,2,0)EG =,(2,2,2)BD =-,………7分 ∴22220BD EG ⋅=-⨯+⨯=, ………8分 ∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =是平面EFDA 的法向量. …………………………10分 设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=,∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . …………………………12分设二面角C DF E --的大小为θ,则cos cos ,6EB =<>==-θn , …………………………13分 ∴二面角C DF E --的余弦值为 …………………………14分 17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分 事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f x x x =-,11()1x f x x x-'=-=, ………………………2分………………………3分所以()f x 在1x =处取得极小值1. ………………………4分 (Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得2m =±,所以||OP = ……6分 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③ ……………8分 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++. ……………9分 由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP ===== ………………………12分因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. ………………………13分 综上,所求OP的取值范围是. ………………………14分 (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、, 由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①② ………………………6分 ①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ ………………………7分 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤……………………8分由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥ ………………………9分把④⑤⑥代入③整理得0034x ky =- ………………………10分与22003412x y +=联立消0x 整理得202943y k =+ ……………………11分由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+ ……………………12分因为12k≤,得23434k≤+≤,有2331443k≤≤+,2OP≤≤. ………………………13分所求OP的取值范围是. ………………………14分20. (共13分)解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)jk k k k k j======12342,213,2103,4,4(5,6,7,)mb b b b b m==+==++====112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g bg b bg b b bg b b b bg b b b b b=-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()mg m g m b n++-=-,根据“数列A含有n项”及jb的含义知1mb n+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg①…………………7分另一方面,设整数{}12max,,,nM a a a=,则当m M≥时必有mb n=,所以(1)(2)(1)()(1)g g g M g M g M≥≥≥-==+=所以()g m的最小值为(1)g M-. …………………9分下面计算(1)g M-的值:1231(1)(1)Mg M b b b b n M--=++++--1231()()()()Mb n b n b n b n-=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++-23[2(1)]Mk k M k=-+++-12312(23)()M Mk k k Mk k k k=-++++++++123()n Ma a a a b=-+++++123()na a a a n=-+++++…………………12分∵123100na a a a n++++-=,∴(1)100,g M-=-∴()g m最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
高三数学下学期期中试题:理科科目2019年高三数学下学期期中试题:理科科目【】对于高中学生的我们,数学在生活中,考试科目里更是尤为重要,高三数学试题栏目为您提供大量试题,小编在此为您发布了文章:2019年高三数学下学期期中试题:理科科目希望此文能给您带来帮助。
本文题目:2019年高三数学下学期期中试题:理科科目本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.若复数 ( 为虚数单位),则的虚部是( ▲ )A. B. C. D.2.已知则等于( ▲ )A. B. C. D.3.阅读右面的程序框图,则输出的( ▲ )A. B. C. D.4.若,则是的( ▲ )A.必要不充分条件B.充分不必要条件C.充要条件D.既非充分又非必要条件5.设是平面上互异的四个点,若( 则△ABC的形状是( ▲ )第Ⅱ卷(非选择题,共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.一个单位共有职工200人,其中不超过45岁的有120人,为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工▲ .12.已知一个空间几何体的三视图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积为____ ▲ _cm3.13.已知双曲线的一个焦点在圆上,则双曲线的渐近线方程为▲ .14.一个人随机的将编号为的四个小球放入编号为的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了,记放对的个数为随机变量,则的期望E = ▲ .15.已知等比数列的第项是二项式展开式的常数项,则▲ .16.所示的几何体中,四边形是矩形,平面平面,已知,,且当规定主(正)视方向垂直平面时,该几何体的左(侧)视图的面积为 .若、分别是线段、上的动点,则的最小值为▲ .17.已知是正整数,若关于的方程有整数解,则所有可能的取值集合是▲ .第Ⅱ卷(非选择题,共100分)三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)己知在锐角中,角所对的边分别为,且 .(Ⅰ)求角大小;(Ⅱ)当时,求的取值范围.19.(本小题满分14分)设数列的前项和为,已知为常数, ), .(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使成立?若存在,求出所有符合条件的有序实数对 ;若不存在,说明理由.20.(本小题满分15分),在三棱锥中,为的中点,平面平面,(Ⅰ)求证: ;(Ⅱ)求直线与平面所成角的正弦值;(III)若动点M在底面三角形ABC上,二面角的余弦值为,求BM的最小值.21.(本小题满分15分)设椭圆:的一个顶点与抛物线:的焦点重合,分别是椭圆的左右焦点,离心率,过椭圆右焦点的直线与椭圆交于两点.(I)求椭圆的方程;(II)是否存在直线,使得,若存在,求出直线的方程;若不存在,说明理由;(III)若是椭圆经过原点的弦,且,求证:为定值. 22.(本小题满分14分)已知函数,设曲线在与轴交点处的切线为,为的导函数,满足 .(1)求 ;(2)设,,求函数在上的最大值;(3)设,若对一切,不等式恒成立,求实数的取值范围. 路桥中学高三(下)第2次月考试卷数学(理科)参考答案本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.若复数 ( 为虚数单位),则的虚部是( B )A. B. C. D.2.已知则等于( D )A. B. C. D.3.阅读右面的程序框图,则输出的 ( A )A. B. C. D.4.若,则是的 ( A )A.必要不充分条件B.充分不必要条件C.充要条件D.既非充分又非必要条件5.设是平面上互异的四个点,若( 则△ABC的形状是( B )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形6.已知符号函数,则函数的零点个数为( C )A. B. C. D.7.,椭圆的中心在坐标原点,顶点分别是,焦点为,延长与交于点,若为钝角,则此椭圆的离心率的取值范围为 ( C )A. B. C. D.8. 含有数字,且有两个数字,则含有数字,且有两个相同数字的四位数的个数为( B )A. B. C. D.9. 已知变量满足约束条件,若目标函数仅在点处取到最大值,则实数的取值范围为( A )A. B. C. D.10. 已知集合,若集合,且对任意的,存在,使得 (其中 ),则称集合为集合的一个元基底.给出下列命题:①若集合,,则是的一个二元基底;②若集合,,则是的一个二元基底;③若集合是集合的一个元基底,则 ;④若集合为集合的一个元基底,则的最小可能值为 . 其中是真命题的为( D )A. ①③B. ②④C. ①③④D. ②③④第Ⅱ卷(非选择题,共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.一个单位共有职工200人,其中不超过45岁的有120人,为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工▲ .10 12.已知一个空间几何体的三视图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积为____ ▲ _cm3.13.已知双曲线的一个焦点在圆上,则双曲线的渐近线方程为▲ .14.一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为,则的期望E = ▲ .15.已知等比数列的第项是二项式展开式的常数项,则▲ .16.所示的几何体中,四边形是矩形,平面平面,已知,,且当规定主(正)视方向垂直平面时,该几何体的左(侧)视图的面积为 .若、分别是线段、上的动点,则的最小值为▲ .17.已知是正整数,若关于的方程有整数解,则所有可能的取值集合是▲ .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)己知在锐角中,角所对的边分别为,且 .(Ⅰ)求角大小;(Ⅱ)当时,求的取值范围.解:(Ⅰ)由已知及余弦定理,得因为为锐角,所以 6分(Ⅱ)由正弦定理,得,11分由得14分19.(本小题满分14分)设数列的前项和为,已知为常数, ), .(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使成立?若存在,求出所有符合条件的有序实数对 ;若不存在,说明理由.解:(Ⅰ)由题意,知即解之得 2分,① 当时,,②① ②得,, 4分又,所以,所以是首项为,公比为的等比数列,所以 .7分(Ⅱ)由⑵得,,由,得,即,10分即,因为,所以,所以,且,因为,所以或或 . 12分当时,由得,,所以 ;当时,由得,,所以或 ;当时,由得,,所以或或,综上可知,存在符合条件的所有有序实数对为:.14分20.(本小题满分15分),在三棱锥中,为的中点,平面平面,(Ⅰ)求证: ;(Ⅱ)求直线与平面所成角的正弦值;(III)若动点M在底面三角形ABC上,二面角的余弦值为,求BM的最小值.解:(Ⅰ)因为为的中点, AB=BC,所以 ,∵平面平面,平面平面 ,平面PAC, 5分(Ⅱ)以为坐标原点, 分别为轴建立所示空间直角坐标系,因为AB=BC=PA= ,所以OB=OC=OP=1,从而O(0,0,0),B(1,0,0),A(0,-1,0),C(0,1,0),P(0,0,1),设平面PBC的法向量,由得方程组,取,直线PA与平面PBC所成角的正弦值为 ;10分(III)由题意平面PAC的法向量,设平面PAM的法向量为∵ 又因为取,,或 (舍去)B点到AM的最小值为垂直距离 .15分21.(本小题满分15分)设椭圆:的一个顶点与抛物线:的焦点重合,分别是椭圆的左右焦点,离心率,过椭圆右焦点的直线与椭圆交于两点.(I)求椭圆的方程;(II)是否存在直线,使得,若存在,求出直线的方程;若不存在,说明理由;(III)若是椭圆经过原点的弦,且,求证:为定值.解:(I)椭圆的顶点为,即,,解得,椭圆的标准方程为 5分(II)由题可知,直线与椭圆必相交.①当直线斜率不存在时,经检验不合题意.②设存在直线为,且, .由得,,,所以,故直线的方程为或 10分(III)设 ,由(II)可得: |MN|=由消去y,并整理得:,|AB|= ,为定值 15分22.(本小题满分14分)已知函数,设曲线在与轴交点处的切线为,为的导函数,满足 .(1)求 ;(2)设,,求函数在上的最大值;(3)设,若对一切,不等式恒成立,求实数的取值范围. 解:(1) ,,函数的图像关于直线对称,则 .2分直线与轴的交点为,,且,即,且,解得, .则 . 5分(2) , 7分其图像所示.当时,,根据图像得:(ⅰ)当时,最大值为 ;(ⅱ)当时,最大值为 ;(ⅲ)当时,最大值为 . 10分(3)方法一:,,,当时,,不等式恒成立等价于且恒成立,由恒成立,得恒成立,当时,,,,12分又当时,由恒成立,得,因此,实数的取值范围是 .14分方法二:(数形结合法)作出函数的图像,其图像为线段 (),的图像过点时,或,要使不等式对恒成立,必须, 12分又当函数有意义时,,当时,由恒成立,得,因此,实数的取值范围是 . 14分方法三:,的定义域是,要使恒有意义,必须恒成立,,,即或. ① 12分由得,即对恒成立,令,的对称轴为,则有或或解得. ②综合①、②,实数的取值范围是 . 14分。
82019届北京市海淀区高三下学期期中考试数学理试卷【含答案及解析】姓名 ____________ 班级 _______________ 分数 ____________题号-二二三总分得分一、选择题1. 已知集合 J={x|.v (.v + l )<0J ,集合 £ = {x|x )0},贝V 血曲=()A.B.h] C.Mx>0}D. : 1 :2.已知复数「二 二蔦+扮](1, .■…),则“为纯虚数”的充分必要条件为 ()A.用+朋H 0B. -,C..-1, .-=1 D.-,i = 0-值为()3.执行如图所示的程序框图,输出的4.设•■!,:;匚関,右;{-•;.,则() A. —— B. 小:C.i : 「D.n hx = 一一t6. 已知曲线:: _ (,为参数),「一丄), 丄匚.v=a + — 1声"、、、线:上存在点,:满足玄志 「.,则实数:的取值范围为( )A. -芈•芈B. [-1.1]C. ' -77,72]D. [-2.2]7. 甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( )A. 12B. 40C. 60D. 80项目②:打开过程中(如图项目④:打开后(如图 3),检查 _ -_ - _ - J ';汨“打>sint5. 已知•:gfta-A关系是(),“n 乩西肓n nn吒冬,若曲项目③:打开过程中(如图 2),检查「.一:.、一:. . - ■:.;8. 某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图 1) ,检查四条桌腿长相等; 2) ,检查‘:项目⑤:打开后(如图3)检查- -■,: -.■在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”(A.①②③B. ②③④C. ②④⑤D. ③④⑤二、填空题9. 若等比数列{dj满足打、口严口片,口& = 8 ,则公比4 = ___________ ,前料项和那二_____________ .10. 已知E(-2.0),耳(>0),满足||Pf;|-|P/\|| = 2的动点P的轨迹方程为 .11. 在±4EC中,占二如出•① __________ ;②若smC = |,贝UI ___________ .12. 若非零向量;5 , 匸满足丘-(石-&)二0,平冃了,则向量石,&夹角的大小为___________ .1— y- V > 013. 已知函数• I -「[若关于的方程f L在I」「内COSJTX. X < 0.有唯一实根,则实数a的最小值是_______________ .14. 已知实数",工 + $ - 1 A D {r-2y + 2>0.则.¥$2.二二杠h + yr 的最大值是_________三、解答题15. 已知一是函数/I-.--的一个零点.(I)求实数.■的值;(H)求r : I的单调递增区间.16. 据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠810万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):p17. ly:Calibri; font-size:10.5pt"> 1 月2 月3 月4 月5 月6 月7 月8 月9 月10月11 月12 月天津24 22 26 23 24 26 27 25 28 24 25 26 上海32 27 33 31 30 31 32 33 30 32 30 30中出签畧460亿美元协3(打S3经济圭BS(I)根据协议提供信息,用数据说明本次协议投资重点;(□)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(川)将(H)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设'为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出■的数学期望(不需要计算过程).18. 如图,由直三棱柱和四棱锥D-BB.QC构成的几何体中,(I)求证:,;(H)若「为」的中点,求证:,… 平面,;(川)在线段. 上是否存在点G ,使直线匚厂与平面 ' ; 所成的角为—?若存在,求一—的值,若不存在,说明理由.nr19. 已知函数I..- m 「,其中实数--.(I)判断.= 是否为函数7 ■ I的极值点,并说明理由;(H)若 / I-.在区间[0.1] 上恒成立,求曰的取值范围.20. 已知椭圆「:一一.,,与轴不重合的直线经过左焦点:,且1 B 1与椭圆.一相交于•,.两点,弦 2 的中点为J ,直线」,与椭圆相交于:,,■;两点.(I)若直线的斜率为1,求直线I的斜率;(H)是否存在直线,使得■ |._-j p.'/成立?若存在,求出直线的方程;若不存在,请说明理由.21. 已知含有-个元素的正整数集- ( ■,.-)具有性质「:对任意不大于:— (其中.)的正整数,存在数集「的一个子集,使得该子集所有元素的和等于(I)写出•,的值;(H)证明:“•,:成等差数列”的充要条件是S(A}=(川)若一…I _|一_ ,求当■取最小值时哉i的最大值.参考答案及解析第1题【答案】A【解析】v J = {v | -1 r 0}, 一*2 B = {t | 工S-1},颉迭儿第2题【答案】D【解析】-=bi)--b (a.beR).m-为纯虛数即f “4“,故选EL第3题【答案】&【解析】由程序框團知I ^=0T.V =9不满足耳乂二历,第一次循环x = Lj = 8 次循环第三次循环r = l,j- = 3,满足三£,输出2玄故选乩7第4题【答案】【解析】顾,若恥异号不威之错误汨项,.厂丁为递増函敎故正确工项,若6^0则无青义,错误□页,函魏」'riiU不单调,故无法判断大勺咲系;综上可知选卫-第5题【答案】C【解析】因为x:rfv= -x'第6题【答案】【解析】_ 曲线厂化为普通方程为;y-x^a,由乔一丽=0 ,可得点尸在叹.仏淘直径的圆”*二=1上,又戸在曲钱Q上即直g垢圆存在公共点,故圆心(0-0)到严X M的5厢小干等于半径1 ,根据点到直^的距画公式有:¥和,解得-运"蛊迈+站L第7题【答案】【解析】 先从五个位羞中选出三个给甲乙丙三人,共有C ;种选^苴中丙在两端,有C ;种逻去,剩余两个位墨乙丙全排,有童种,剩余两个位墨给 丁、戊,有圧种,所決排法种数= 80,故选口第8题【答案】 &【解析】 山鳳项目②和顼目③可推出项目O,所以判断项目②和顼目③,若乙依矽A 乙MON',则临 较低,较高,所法不平行 『错误;即嘉 V Zl = Z2=ZJ = Zxl = 90° .'. ® ABCD f / 面 ? .OA^OC^O^ = OC\\AA 平行底面,*/OM = ON-OM' = OV,/,OdHAAH 面 血NM .所以桌面平行于底面j 故正确4项「由團3的正视图可得j删《=07,加丄曲#'才丄心:曲篇川0.4丁仏创"但G 与O f A 是否相等不确定,所厲 不确定6/与肘 是否平行,又因为W/,必J 所以不确定血 与ACV 是否平行,故错误;DI 页 ,OK=OL-Cf^- OT f :.AA f / IBB!,怛不确走DM 与ONQMlON 的关系「所以无蛙到斷 帰 与底面的关系,错误;综上所述,应选氐I®調富緊间钛t ____ 性》毎?afi 毋不一疋f 寸到』"?第9题【答案】2 2^1【解析】S^2 =«s = = 2 ;Xci]G - = 8珂=8.二碍=1.5^ = ------ — = 2"1 -1,古加 2;2旳 T *合个不虎符-IT法殊素即衆尊元址阿•番方身 1元番段M:夜理鼎丘的S.反■T3TSUB内刖码1.苕郅」旳'_L 严中sc-is驴后元1_矍觀ff isR6^限?•体限匸序•顺第13题【答案】第10题【答案】【解析】根振双曲线的定义可得:长轴长2 \ 2a=2=>a = i ,半焦距匚=2,由广二=/十沪,解得,=3 [故方程为v ; -^—=1 [应填r := 133第11题【答案】904【解析】由正弦定理得:S]nC = si (L^cos£,又 彳十 E 亠 C 二斤, suiC = sin(.4* 5)= suiicosS + casui&in^ - siiL4cai5,即co&Xsinfi »0// sinB >0./.cos^ ■ 0.>4 ■ $0* ,故埴 90® :(T + B)= -COS ^ = cos + C )= cosj 寸+ C ; = -SJII C =-^ T故填, 第12题【答案】120【解析】因币八(石+卩)二0,所以=1关系畫(4幷一 •⑸证明一征明所可题,厲干基础题目+ 斜率公時爲負械为;;eg 点執迹万程”-■— C7 ■方iflP 1曲―因此8呎口时=萌=菊司=・厂又荷》》皂(°"儿所S夹甬为J故5123°第15题【答案】第15题【答案】【解析】r>0时’令1-^=0,解得zl 或・】(舍)帛足在(0.皿)內:v<0时,令co8^ = 0^Tr = ^ + -(ieZh 解得; 工二疋且里C0很卩在〕轴左边距离F 轴最近的零点为“冷帛关于工的万程在(0,-MO )内有唯一实根,即團象最多注右平移+个单位,故填-*第14题【答案】2占抿關意画出可行域如團所示:根据柯西不等式可得:(临+中)飞(加+⑴X"*[)= F 因为x —丁:表示三角形可行域內 的点与原点距离的平方,所以当经过(12)时甌离的平方最大,最穴值为&又【解析】第15题【答案】(?a+iy )2签什 +存)0^ +J 2) = A : + .V :占 h” 宓+ KV £2血,当目仅当 v = i = 2j/ = y= 时等号咸立,故壇2运•SE n 蛊在可&^i :即利遽3SM•嘉胆⑵变>用^<点睛&!r第16题【答案】磚甲试题分析:(I )由题資/= o ,可得個 (n )利用二倍角公式和两甬和与差的正弦公式对画数解析式化简整理 ,i2M--<2_r + —, MZ ,玻得X 的范围,进而确定函数的单调递増M2 6 2所IX /(巧的单调递壇区间为M 一子L」C I )因为能源投资九珈忆,占总投资血亿的5珈 次上,所占比重大;〔II 〕戸⑴二汁迂 I(ill ) X 的数学期望= 8 ■【解析】 试题分析:(I )因为能源投资为3加亿,占总投资禎0亿的50%以,上,所占比重大;(U 〉根摒提供的数据信息,可以得到 天津、上海两港口的冃呑吐量N 和超过閃百万吨的月份个数,根疇古典概型计算出概率; 「〔【II )根据数学期望的公式乗曲即可.试题解析巳C I )由题竜可知/名3 +1 = 0,+1 = 0 •解彳寻血=-Q(II )由〔I 〉可得/(x)= 2coi\ iii2r+l = cos2r sin2x+2 ■■■■ 2sui函y s siax 的14増区间为;卅x—,2k ST H —22jteZ -k eZ •tez -第17题【答案】试題解析:(1)本坎协仪的投资重点为能源,因为能源投资为3丸亿,占总投资4旳亿的丸%以上.所占比重大.CU )设事件直:从12个月中任选一个月皿冃超过閃百万吨.根据提棋的魏据信息;可以得到天津、上海两港口的月呑吐量之和分别是:56, 49, 58, 54, 54, 57, 59, 56, 58, 56, 54, 56,其中超过亦百万吨的月份有8个」所几尸(且)=石=亍*CUI)X的数学期a^V = 8 ■点睛:本题考查学生的是古典概型求概率以及离散型随机变量的期ES与方差,属于中档题目"具育二口现的可能性都相等,那么霉一个基本事件的概率者堤喪口臬某个事件A包括的结果育*H那么事件A 的枫率P(A>=7・(I)见解析:(II)见解析5 (III)不存在这样的点.【解析】试题分析:(I)在直三棱柱.ABC-A}B}C}中,由CC;丄平面zLBC ,推得/C丄CC】,由平面CC]D丄平面ACC}A.,推得zlQ丄平面CCQ ,又C/)u平面CC/),得证• (H)如图建立空间直角坐标系-4-wz ,写出各点坐标,求出平面DR片的法向童为斤,因为A^n=O ,所AM / /平面DBB} . (Ill)设丽学荒,衣[0J]'根据线面角公式列出方程,解得^ = -e[0.1],可得结论.4试题解析:(I〉证明:在直三棱柱肿C-4EQ中,cq丄平面肋c ,由平面CC、D丄平面ACC}A},且平面CC、D C平面ACC^ = CC},所V.AC丄平面CC\D ,又Cpu平面CCQ ,所CUC 1 DC}.(II)证明:在直三棱柱中' *丄平面加C ,所叹龙4】丄.佔,A%丄.4C ,又纫C = 90。
北京市海淀区2019届高三下学期期中练习数学(理)试题本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.函数()f x=A.[0,+∞).[1,+∞).(-∞,0].(-∞,1]【知识点】函数的定义域与值域【试题解析】要使函数有意义,需满足:即所以函数的定义域为:.故答案为:A【答案】A2.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为A.-1B.1C.-iD.i【知识点】算法和程序框图【试题解析】由题知:n=9时,否,是,则输出的值为。
故答案为:D【答案】D3.若x,y 满足2040x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y=+的最大值为A.52B.3C.72D.4【知识点】线性规划【试题解析】作可行域:由图知:当目标函数线过点C (1,3)时,目标函数值最大,为故答案为:C 【答案】C4.某三棱锥的三视图如图所示,则其体积为A .3B .2C D 【知识点】空间几何体的表面积与体积空间几何体的三视图与直观图【试题解析】该三棱锥的底面是以2为底,以为高的三角形,高为1, 所以故答案为:A 【答案】A5.已知数列{}n a 的前n 项和为Sn ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【知识点】充分条件与必要条件 【试题解析】若为常数列,则; 反过来,若,则,即为常数列。
所以“为常数列”是“,”的充分必要条件。
故答案为:C 【答案】C6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=A .1BCD . 2 【知识点】圆与圆的位置关系 【试题解析】化圆为标准方程,两圆方程作差,得相交弦AB 所在直线方程为:圆的圆心为(1,0),半径为1.所以圆心到直线AB 的距离为:所以弦长的一半为:即弦长为:。
海淀区2019年高三年级第二学期期中练习数 学(理) 答案及评分参考选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分)15.(共13分)解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B C B C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分因为180A B C =-- , …………………4分 所以tan tan(180())tan()1A B C B C =-+=-+=-.…………………5分 (II )因为0180A <<,由(I )结论可得:135A = . …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分 所以sin 5B =sin 10C =. …………9分由sin sin a cA C=得a =, …………………11分所以ABC ∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC ,∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB , ∴EF AE ⊥,又,AE EB EB EF E ⊥=,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分 ∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥, ∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分又,BH DH H BH =⊂平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分 ∵BD ⊂平面BHD ,∴BD EG ⊥. ………………………9分 解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0), C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分 ∴(2,2,0)EG =,(2,2,2)BD =-,………7分HADFEBGC∴22220BD EG ⋅=-⨯+⨯=, ………8分 ∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =是平面EFDA 的法向量. …………………………10分 设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=,∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . …………………………12分设二面角C DF E --的大小为θ,则cos cos ,6EB =<>==-θn , …………………………13分 ∴二面角C DF E --的余弦值为 …………………………14分 17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分 事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分当1a =时,()ln f x x x =-,11()1x f x-'=-=, ………………………2分 ………………………3分所以()f x 在1x =处取得极小值1. ………………………4分 (Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>,所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即 函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分 综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得m =,所以||OP =……6分 当0k ≠时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③ ……………8分 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则 012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++. ……………9分 由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP ===== ………………………12分因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP<≤. ………………………13分综上,所求OP的取值范围是. ………………………14分(Ⅱ)另解:设,,A B P点的坐标分别为112200(,)(,)(,)x y x y x y、、,由,A B在椭圆上,可得2211222234123412x yx y⎧+=⎨+=⎩①②………………………6分①—②整理得121212123()()4()()0x x x x y y y y-++-+=③………………………7分由已知可得OP OA OB=+,所以120120x x xy y y+=⎧⎨+=⎩④⑤……………………8分由已知当1212y ykx x-=-,即1212()y y k x x-=-⑥………………………9分把④⑤⑥代入③整理得0034x ky=-………………………10分与22003412x y+=联立消x整理得202943yk=+……………………11分由22003412x y+=得2200443x y=-,所以222222000002413||4443343OP x y y y yk=+=-+=-=-+……………………12分因为12k≤,得23434k≤+≤,有2331443k≤≤+,2OP≤≤. ………………………13分所求OP的取值范围是. ………………………14分20. (共13分)解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)jk k k k k j======12342,213,2103,4,4(5,6,7,)mb b b b b m==+==++====112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g b g b b g b b b g b b b b g b b b b b =-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()m g m g m b n ++-=-,根据“数列A 含有n 项”及j b 的含义知1m b n +≤, 故0)()1(≤-+m g m g ,即)1()(+≥m g m g ① …………………7分 另一方面,设整数{}12max ,,,n M a a a =,则当m M ≥时必有m b n =,所以(1)(2)(1)()(1)g g g M g M g M ≥≥≥-==+=所以()g m 的最小值为(1)g M -. …………………9分 下面计算(1)g M -的值:1231(1)(1)M g M b b b b n M --=++++--1231()()()()M b n b n b n b n -=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++-23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123()n M a a a a b =-+++++ 123()n a a a a n=-+++++…………………12分∵123100n a a a a n ++++-= , ∴(1)100,g M -=-∴()g m 最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
海淀区高三年级第二学期期中练习
2019.4 数学(理科)
本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题要求的一项
(1)已知集合}20|{≤≤=x x P ,且P M ⊆,则M 可以是( )
(A)}1,0{ (B) }3,1{ (C)}1,1{- (D)}5,0{
(2) 若角α的终边在第二象限,则下列三角函数值中大于零的是( ) (A))2sin(π
α+ (B) )2cos(π
α+ (C) )sin(απ+ (D) )cos(απ+
(3) 已知等差数列满足,则中一定为零的是
(A)6a (B)8a (C)10a (D)12a
(4)已知y x >,则下列各式中一定成立的是( ) (A)y x 11< (B) 21>+y
x (C)y
x )21
()21
(> (D)222>+-y x (5) 执行如图所示的程序框图,则输出的m 值为( ) (A)
8
1 (B)6
1 (C)16
5 (D)31 (6)已知复数)(R a i a z ∈+=,则下面结论正确的是( ) (A)i a z +-= (B)1||≥z
(C)z 一定不是纯虚数 (D)在复平面上,z 对应的点可能在第三象限
(7) 椭圆C 1:1422=+y x 与双曲线C 2:12222=-b
y a x 的离心率之积为1,则双曲线C 2 的两条渐近线的倾斜角分别为( )
(A) 6π,6π- (B) 3π,3π- (C) 6π,65π (D) 3π,32π
(8)某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午选科走班的课程安排如下表所示,张毅选择三个科目的课各上
(A) 种 (B) 种 (C) 种 (D)14 种
第二部分(非选择题共110分)
二、填空题共6小题,每小题5分,共30分。
(9)已知c a ,4,成等比数列,且0>a ,则=+c a 22log log ___________.
(10)在△ABC 中,8
1cos ,5,4===C b a ,则=c _______,=∆ABC S ____________ (11)已知向量)2,1(-=,同时满足条件①a ∥b ,②||||<+的一个向量b 的坐标为________
(12)在极坐标系中,若圆θρc o s
2a =关于直线01si n 3c o s =++θθρ对称,则
=a _________ (13)设关于y x ,的不等式组⎪⎩
⎪⎨⎧+≥≥≥100kx y y x .表示的平面区域为Ω.记区域Ω上的点与点A(0,-1)
距离的最小值为d(k),则
(I)当k=1时,d(1)= __________.
(Ⅱ)若d(k)≥2,则k 的取值范围是__________.
(14)已知函数x ax x g x x f -==2)(,)(,其中0>a ,若]2,1[],2,1[21∈∃∈∀x x ,使得)()()()(2121x g x g x f x f =成立,则=a _________
三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程
(15)(本小题满分13分)
已知函数a x x x f +-=cos )4cos(22)(π
的最大值为2 (I)求a 的值
(Ⅱ)求图中0x 的值,并直接写出函数)(x f 的单调递增区间
(16)(本小题满分13分)
据《人民网》报道,“美国国家航空航天局(NASA发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的420/0来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据。
(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)
(I)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区
(Ⅱ)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过50%的概率是多少?
(Ⅲ)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望
如图,在直三棱柱ABC-A
1B 1C 1中,AC ⊥BC,AC=BC=CC 1=2,
点D,E,F 分别棱A 1C 1,B 1C 1,BB 1的中点
(I)求证:AC 1∥平面DEF
(Ⅱ)求证:平面ACB 1⊥平面DEF
(Ⅲ)在线段AA 1上是否存在一点P,使得直线DP 与平面ACB 1
所成的角为30°?如果存在,求出线段AP 的长;如果不存在,说明理由
(18)(本小题满分14分)
已知函数2)1ln()(ax x x x f -+=
(I )求曲线)(x f y =在点))0(,0(f 处的切线方程
(Ⅱ)当0<a 时,求证:函数)(x f 存在极小值
(Ⅲ)请直接写出函数)(x f 的零点个数
已知抛物线G:px y 22=,其中0>p .点M(2,0)在G 的焦点F 的右侧,且M 到G 的准线的距离是M 与F 距离的3倍.经过点M 的直线与抛物线G 交于不同的A,B 两点直线OA 与直线2-=x 交于点P,经过点B 且与直线OA 垂直的直线l 交x 轴于点Q
(I )求抛物线的方程和F 的坐标;
(Ⅱ)判断直线PQ 与直线AB 的位置关系,并说明理由.
(20)(本小题满分13分)
首项为0的无穷数列{n a }同时满足下面两个条件: ①n a a n n =-+||1
②21-≤n a n (I)请直接写出4a 的所有可能值
(Ⅱ)记n n a b 2=,若1+<n n b b 对任意n ∈*
N 成立,求{n b }的通项公式;
(Ⅲ)对于给定的正整数k ,求k a a a +++ 21的最大值
参考答案
1. A
2. D
3. A
4. D
5. B
6. B
7. C
8. B
9. 4
10.6,4
715 11.)2,1(-(答案不唯一) 12. 1-
13.2,),1[+∞- 14.2
3 15.(1)1-=a (2)增区间:Z k k k ∈+-),8
1,83
(ππππ 16. (1)甘肃,青海
(2)10
7
=
EX 76 17.(1)略
(2)略
(3)点P 存在,即AA 1的中点,AP=1
18. (1)0=y (2)略
(3)0≤a 或1=a 有一个零点 0>a 且1≠a 有两个零点
19.(1)x y 42
= F (1,0)
(2)位置关系为:平行
20.(1)4a 可取6,0,2--
(2)2-=n b n
(3)k 为奇数,最大值为0
k 为偶数,最大值为2k -。