实验四
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
实验四溶液吸附法测定固体比表面一、实验目的1、了解溶液吸附法测定固体比表面的原理和方法。
2、用溶液吸附法测定活性炭(硅藻土、碱性层析氧化铝)的比表面。
3、掌握分光光度计工作原理及操作方法。
二、实验原理1、朗伯-比尔定律(光吸收原理)根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比:A = lg(l0/I) =abc式中:A :吸光度;Io:入射光强度;I:透射光强度;a:摩尔吸收系数,与吸收物质的性质及入射光的波长入有关;b:液层厚度;c:溶液浓度。
一般来说光的吸收定律可适用于任何波长的单色光,但同一种溶液在不同波长所测得的吸光度不同,如果把吸光度A对波长入作图可得到溶液的吸收曲线,为了提高测量的灵敏度,工作波长一般选在A值最大处。
亚甲基蓝溶液在可见区有二个吸收峰:445nm和665nm,但在445nm处活性炭吸附对吸收峰有很大的干扰,固本实验选用的工作波长为665nm。
2、亚甲基蓝结构及吸附特征亚甲基蓝具有以下矩形平面结构:阳离子大小为17.0 >7.6 >3.25 X0-3O m3o亚甲基蓝的吸附有三种取向:平面吸附投影面积为135X10-20m2,侧面吸附投影面积为75X10-20m2,端基吸附投影面积为39X0-20m2。
对于非石墨型的活性炭,亚甲基蓝是以端基吸附取向,吸附在活性炭表面。
3、朗格缪尔(Langmuir)单吸附理论朗格缪尔吸附理论的基本假设是:固体表面是均匀的,吸附时单分子层吸附,吸附剂一旦被吸附质覆盖就不能再吸附,在吸附平衡时,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面积成正比,解吸速率与覆盖度成正比。
水溶性染料的吸附已经应用于测定固体表面积比表面,在所有的染料中亚甲基蓝具有最大的吸附倾向。
研究表明,在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附,符合朗格缪尔吸附理论。
但当原始溶液的浓度过高时,会出现多分子层吸附,而如果平衡浓度过低,吸附又不能达到饱和,因此原始溶液的浓度以及平衡后的浓度应选择在适当的范围。
实验四:传热(空气—蒸汽)实验一、实验目的1.了解间壁式换热器的结构与操作原理;2.学习测定套管换热器总传热系数的方法;3.学习测定空气侧的对流传热系数;4.了解空气流速的变化对总传热系数的影响。
二、实验原理对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为:(4-1)对于强制湍流而言,Gr准数可以忽略,故(4-2)本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。
用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。
本实验可简化上式,即取n=0.4(流体被加热)。
这样,上式即变为单变量方程再两边取对数,即得到直线方程:(4-3)在双对数坐标中作图,找出直线斜率,即为方程的指数m。
在直线上任取一点的函数值代入方程中,则可得到系数A,即:(4-4)用图解法,根据实验点确定直线位置有一定的人为性。
而用最小二乘法回归,可以得到最佳关联结果。
应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。
对于方程的关联,首先要有Nu、Re、Pr的数据组。
其准数定义式分别为:实验中改变冷却水的流量以改变Re准数的值。
根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。
同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。
进而算得Nu准数值。
牛顿冷却定律:(4-5)式中:α—传热膜系数,[W/m2·℃];Q—传热量,[W];A—总传热面积,[m2];△tm—管壁温度与管内流体温度的对数平均温差,[℃]。
传热量Q可由下式求得:(4-6)W—质量流量,[kg/h];Cp—流体定压比热,[J/kg·℃];t1、t2—流体进、出口温度,[℃];ρ—定性温度下流体密度,[kg/m3];V—流体体积流量,[m3/s]。
三、实验设备四、实验步骤1.启动风机:点击电源开关的绿色按钮,启动风机,风机为换热器的管程提供空气2.打开空气流量调节阀:启动风机后,调节进空气流量调节阀至微开,这时换热器的管程中就有空气流动了。
实验四火焰原子吸收光谱法测定铁(标准曲线法)一、目的与要求1.加深理解火焰原子吸收光谱法的原理和仪器的构造。
2.掌握火焰原子吸收光谱仪的基本操作技术。
3.掌握标准曲线法测定元素含量的分析技术。
二、方法原理金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。
标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。
试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。
三、仪器与试剂1.原子吸收分光光度计。
2.铁元素空心阴极灯。
3.空气压缩机。
4.瓶装乙炔气体。
5.(1+1)盐酸溶液。
6.浓硝酸7.铁标推溶液(储备液),1.000mg·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。
8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=0.05)稀释10倍,摇匀。
四、内容与步骤1.试样的处理(平行三份)准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。
2.标准系列溶液的配制取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入0.0,2.0,5.0,10.0,15.0,20.0mL铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。
3.仪器准备在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线:271.9nm 灯电流:8mA狭缝宽度:0.1mm 燃器高度:5mm空气压力:1.4kg/cm2乙炔流量:1.1L/min空气流量:5L/min 乙炔压力:0.5kg/cm24.测定标准系列溶液及试样镕液的吸光度。
实验四 叠加定理和戴维宁定理叠加定理和戴维宁定理是分析电阻性电路的重要定理。
一、实验目的1. 通过实验证明叠加定理和戴维宁定理。
2. 学会用几种方法测量电源内阻和端电压。
3. 通过实验证明负载上获得最大功率的条件。
二、实验仪器直流稳压电源、数字万用表、导线、430/1000/630/680/830欧的电阻、可变电阻箱等。
三、实验原理1.叠加定理:在由两个或两个以上的独立电源作用的线性电路中,任何一条支路中的电流(或电压),都可以看成是由电路中的各个电源(电压源和电流源)分别作用时,在此支路中所产生的电流(或电压)的代数和。
2.戴维宁定理:对于任意一个线性有源二端网络,可用一个电压源及其内阻RS 的串联组合来代替。
电压源的电压为该网络N 的开路电压u OC ;内阻R S 等于该网络N 中所有理想电源为零时,从网络两端看进去的电阻。
3.最大功率传输定理:在电子电路中,接在电源输出端或接在有源二端网络两端的负载RL ,获得的功率为当RL=R0时四、实验内容步骤1.叠加定理的验证根据图a 联接好电路,分别测定E 1单独作用时,E 2单独作用时和E 1、E 2共同作用时电路中的电流I 1,I 2,I 3。
同时,判定电流实际方向与参考方向。
测量数据填入表4-1中。
2. 戴维宁定理的验证根据图b 联接好电路,测定该电路即原始网络的伏安特性I R L =f (U R L )。
依次改变可变电阻箱RL 分别为1K Ω、1.2K Ω、1.6K Ω、2.24K Ω、3K Ω、4K Ω、5K Ω,然后依次测量出对应RL 上的电流和电压大小,填入表4-2中。
并绘制其伏安曲线。
然后,计算其对应功率。
含源网络等效U0,R0的测定方法:a.含源消源直测法;b.开压短流测量法:R R R U R I P OC 202⎪⎪⎭⎫ ⎝⎛+==COCR U P 42max =U0,Is,R0=U0/Is。
根据上述两种方法之一测出U0,R0,从而将图b的电路可以等效成图c。
实验四易燃固体燃烧速度实验实验目的1、学会使用固体燃烧速度测定仪测定金属和非金属样品的燃烧速度。
2、根据燃烧速度的数值评价易燃固体的相对危险性,即包装等级。
实验样品金属镁粉:150克冰片:150克实验原理及包装等级标准1、用气体火焰点燃样品,看样品是否出现燃烧带着火焰或冒烟传播。
如果在规定的时间内出现传播,那么进行下一步试验来确定燃烧速率和强度。
2、用同样的方法点燃样品,测试样品在规定的长度内的燃烧时间来确定样品的燃烧速率和强度。
3、易于燃烧的固体(金属粉末除外),如燃烧时间小于45秒并且火焰通过湿润段应划入II 类包装。
金属或金属合金粉末,如反应段在5分钟以内蔓延到试样的全部长度,应划入II 类包装。
4、易于燃烧的固体(金属粉末除外),如燃烧时间小于45秒并且湿润段阻止火焰传播至少4分钟,应划入III类包装。
金属或金属合金粉末,如反应段在大于5分钟但小于10分钟内蔓延到试样的全部长度,应划为III类包装。
实验仪器固体燃烧速度测定仪、2kg液化气罐、样品盛装模具。
图1 图2如图1、图2所示盛装样品的模具示意图。
模具装样品部分的尺寸为长250毫米、剖面高10毫米和宽20毫米的三角形。
三角形样品料堆台板箱体燃烧喷嘴导热性低的地板通液化气体图3如图3所示样品燃烧台,将样品放在导热性低的底板上,用液化汽喷嘴喷出的高温火焰灼烧样品的一端,直到粉末点燃或在规定的时间内不反应。
使用液化气罐点燃火焰。
实验程序1、初步甄别试验将粉状或颗粒状样品松散地装入模具。
然后让模具从20毫米高处跌落在硬表面上三次。
在模具顶上安放冷的不渗透、低导热的平板,把设备倒置,拿掉模具把平板放到燃烧台上(如图3所示)。
用液化汽喷嘴(最小直径5毫米)喷出的高温火焰(最低温度1000℃)烧样品带的一端,直到样品点燃,喷烧最长时间为2分钟(金属或合金粉末为5分钟)。
应注意燃烧在2分钟(或金属粉为20分钟)试验时间内是否沿着样品带蔓延200毫米。
实验四探究水沸腾时温度变化的特点【设计与进行实验】1.主要实验器材:温度计、停表、烧杯、酒精灯、硬纸板等;2.器材组装顺序:自下而上:3.温度计的原理、使用和读数;4.硬纸板:减少热量损失,缩短加热时间;AB C甲乙【分析数据和现象,总结结论】5.通过气泡的变化判断液体所处的状态:气泡沸腾前只有少量,且气泡在上升过程中逐渐变小(如图A),沸腾时有大量的气泡,且气泡在上升的过程中逐渐变大(如图B);6.温度-时间曲线图的分析与绘制:判断沸点、沸腾时间等;7.表格数据分析:找错误数据、判断沸点、沸腾时间等;【交流与讨论】8.缩短加热时间的方法:①用初温较高的水;②减少水的质量;③加带孔的纸盖;④调大酒精灯火焰。
9.验证水沸腾过程中持续吸热的方法:停止加热,观察水能否继续吸热;10.水沸腾的条件:达到沸点,继续吸热;11.水沸腾时的特点:持续吸热,温度不变;12.烧杯口处产生“白气”的原因:水蒸气遇冷液化形成的小水珠;13.沸点与气压的关系:(1)水的沸点低于100℃的原因:当地大气压低于一个标准大气压;(2)水的沸点高于100℃的原因:杯口盖密封较严,导致烧杯内的气压高于一个标准大气压;(3)将装有刚停止沸腾的水的烧瓶倒置,浇上冷水,水又重新沸腾:浇冷水,温度降低,瓶内气压降低,导致水的沸点降低;14.撤去酒精灯,水未立即停止沸腾的原因:石棉网温度高于水的沸点,水会继续吸热;15.100℃的水蒸气比100℃的水烫伤更严重:因为水蒸气液化要放热;16.改变液体内能的方式:热传递;17.水温度上升不是直线的原因:随着水温的升高,散热越来越来快,所以水温升高速度变慢;18.若增加水量,水的沸点不变,沸腾时间延长,如图乙所示。
实验结论:水沸腾时,持续吸热,温度保持不变。
【例1】某实验小组的同学们在实验室做“探究水沸腾时温度的变化特点”实验.图1 图2(1)实验装置如图1 B (选填“A”或“B”)的位置.(2)某同学在实验中记录的实验数据如表所示,其中1 min时温度计的示数如图2所示,此时水的温度是 92 ℃.时间/min01234567温度/℃90949698989898(3)分析表格中的数据可知水的沸点是 98 ℃,此时当地的气压小于(选填“大于”“小于”或“等于”)1个标准大气压.(4)请根据表中的数据在图3中画出水加热至沸腾过程中温度随时间的变化图像.图3(5)由实验数据可知,水沸腾时,继续加热,水的温度不变.(6)细心的同学们发现水沸腾时,烧杯上方出现了“白气”,“白气”是水蒸气液化形成的;请推测被水蒸气烫伤比被相同温度的水烫伤严重的原因:水蒸气在液化成水时放出热量(7)实验中,水沸腾时的现象应与图4中的 b 图一致.图4 图5(8)如图5所示是小明在实验过程中的操作图,老师发现他在实验过程中存在一些错误,请你指出他的错误之处:①温度计的玻璃泡碰到容器底;②读取温度计的示数时,视线未与温度计液柱的液面相平(9)如图6所示是甲、乙两位同学在实验过程中绘制的水的温度随时间变化的图像,由图像知,乙同学将水加热至沸腾的时间明显较长,原因可能是乙同学所用水的质量比甲同学的大(或乙同学在实验时未给烧杯加盖子) .图6(10)若用水浴法给试管中的水加热,则试管中的水不能(选填“能”或“不能”)沸腾,原因是试管内的水达到沸点后无法继续吸热 .(11)在实验结束后,有同学发现撤掉酒精灯后,水不会立刻停止沸腾,原因是石棉网的温度高于水的沸点,水可以继续吸热.(12)通过对本实验的学习,同学们终于明白妈妈在炖汤时,在汤沸腾后总是调为小火(选填“保持大火”或“调为小火”)的道理.【例2】(1)在图1的实验装置中除了硬纸板上没有一个小孔外,还有两处错误,请你指出错误之处:①视线没有与温度计液柱表面相平;②温度计的玻璃泡碰到烧杯底部.(2)给烧杯上加硬纸板盖子的主要目的是缩短加热时间,除此外,还可以利用哪些办法达到这个目的:适当减少水量(或用热水) .(写出一种方法即可)(3)实验过程中主要观察水沸腾时的现象和水沸腾时的温度,如图2甲、乙所示,图乙是水沸腾时气泡的情况.撤掉酒精灯后,水不会立刻停止沸腾,原因是石棉网的温度高于水的温度,水能继续吸热.(4)下表是本实验过程中不同时刻温度的记录,则该地水的沸点为 98 ℃,可能的原因是当地的大气压低于(选填“高于”“等于”或“低于”)1个标准大气压.t/min …8 9 10 11 12 13 …T温/℃…96 97 98 98 98 98 …(5)如图3所示,是三位同学做出水沸腾的温度-时间图像,其中正确的是 B (选填“A”“B”或“C”).图4是两名同学根据实验数据绘制的水温度随时间变化的图像.请根据图像分析,小红从给水加热到水沸腾,所用时间较长的原因是小红所用水的初温较低.(6)水在沸腾过程中需要吸热,如果继续给沸腾的水加热,水的温度不变(选填“升高”“不变”或“降低”).(7)实验结束停止加热后,发现水在高温时散热快,低温时散热慢.查阅资料,同一燃气灶不同火力加热时的耗气量如表所示:火力大小水的质量m/kg水的初温t0/℃水的末温t/℃消耗的燃气V/m3大火 4.0 26.0 50.0 0.0453中火 4.0 26.0 50.0 0.0278综合分析可知,从节能的角度,用燃气灶烧开水的策略为 B (填字母)A.先中火后大火B.先大火后中火C.一直用大火 D.一直用中火(8)实验中所用的温度计不能选用酒精温度计,这因为酒精的沸点低于(选填“高于”或“低于”)100℃.(9)水沸腾时,杯口不断冒出的“白气”是水蒸气遇冷液化(填物态变化名称)而形成的小水珠.(10)撤去酒精灯,水停止沸腾,将水倒入烧瓶中用橡皮塞塞住烧瓶口并将其倒置,向烧瓶底部浇冷水,如图5所示,结果发现水又重新沸腾了,这是因为瓶内气压减小,水的沸点会降低(选填“升高”“降低”或“不变”).。
实验四沸点的测定
一、实验目的
1. 1.了解测定沸点的意义;
2. 2.掌握微量法测定沸点的原理和方法。
二、实验原理
测定液体的蒸汽压与外界施于液面的总压力相等时对应的温度就是液体的沸点。
三、实验仪器与药品
b形管、温度计、硅油、铁架台、沸点管、苯
四、实验步骤
采用微量法测定沸点
取一根内径2-4mm,长约8-9cm的玻璃管,用小火封闭其一端,作为沸点管的外管,放入欲测定沸点的样品4-5滴,在此管中放入一根长约7-8cm,内径约1mm的上端封闭的毛细管,即开口处浸入样品中,与熔点测定装置图相同,加热,由于气体膨胀,内管中有断断续续的小气泡冒出,到达样品沸点时,将出现一连串小气泡,此时应停止加热,使油浴温度下降,气泡逸出的速度即渐渐减慢,仔细观察,最后一个气泡出现而刚欲缩回到管内的瞬间温度即表示毛细管内液体蒸汽压与大气压平衡时的温度,亦就是该液体的沸点。
五、问题讨论
1、用微量法测定沸点,把最后一个气泡刚欲缩回至管内的瞬间的温度作为该化合物的沸点,为什么?
2、如果液体具有恒定的沸点,能否说明它一定是纯净物质?。
实验四直角坐标法测设1.实验目的(1)培养学生读图、用图的能力,能在地形图上进行设计。
(2)掌握施工放样的几种基本方法。
(3)学会对放样结果进行误差分析和精度评定2.实验内容(1)在已有的地形图上设计一条建筑基线。
(2)在图上读取该基线起、终点坐标,设计、选择放样方法。
(3)根据已知控制点数据和设计点数据,按设计方案计算放样数据。
(4)放样该基线的平面位置和高程。
(5)对放样结果进行误差分析,评定放样结果的精度。
3.实验步骤1、图上设计基线位置①从已有图纸上根据控制点位置和建筑物轴线位置设计一条建筑基线,须满足:a.建筑基线与建筑物轴线水平或垂直;b.控制点尽量与基线的起、终点通视。
②读取基线的起、终点坐标,设计放样方案。
2、测设数据的准备①准备控制点资料(一般选择原测图控制点作为放样控制点)。
②选择测站点和定向点。
③计算各点的放样数据。
3、用经纬仪正、倒镜分中法放样角度β,钢尺放样水平距离D,水准仪放样高程①在测站点上安置经纬仪。
②盘左:望远镜照准已知方向,配水平度盘读数为0°00 00²。
松开照准部,顺转到度盘读数约为β值时制动,用水平微动螺旋准确调至读数β。
指挥人在望远镜视线上适当的位置打一木桩,用小钉准确地在木桩上标定其位置。
③盘右:望远镜再照准已知方向,配水平度盘读数为180°00¢00²。
松开照准部,逆转到度盘读数约为180°+β值时制动,用微动螺旋准确调至读数180°+β。
指挥人在望远镜视线方向原木桩上,用小钉准确地标定其位置;若两点重合,该点即是正确位置。
若两点不重合,则取两点连线的中点作为正确位置,则该点与测站点的连线方向即为放样方向。
④在已放样方向上粗放设计距离D并测量丈量时钢尺温度t,打桩,并用水准仪往返测定测站点与粗放点间高差。
⑤计算三项改正数和实际已粗放平距D¢及距离改正数ΔD。
在已放方向上延长或缩短ΔD即可。
实验四用相位法测声速一、实验目的1.、学习用相位法测量空气中的声速。
2.、了解空气中的声速与温度的关系。
3、提高声学、电磁学等不同类型仪器的综合使用能力。
4、了解换能器的原理及工作方式。
二、实验仪器综合声速测定仪、综合声速测定仪信号源、双综示波器。
三、实验原理测量声速一般的方法是在给定声音信号的频率f 情况下,测量声信号的波长λ,由公式v fλ=,计算出声速v。
相位法测量声速的原理。
由信号源产生的一正弦波信号,一方面由“示波器”端钮将信号送入示波器的“CH1(X轴)”,另一方面由“换能器”端钮将信号送入综合测定仪的“S1”,再传送到“S2”,然后送入示波器的“CH2(Y轴)”。
在示波器上将显示出两个频率相等、振动方向相互垂直、位相差恒定的利萨如图形。
由于两信号到达时间不同(或存在有波程差)而产生相位差。
2Lϕπλ=相位差不同,利萨如图形也不同。
如1sin()X A tωϕ=+2sin()Y A tωϕ=+两者相位相同或相位差为2π的整数倍,合成为一条直线。
如果两者相位差为2π的奇数倍,即1sin()2X A t πωϕ=++2sin()Y A tωϕ=+合成后的利萨如图形为椭圆。
可见利萨如图形随相位差的变化而改变。
当连续移S2,以增大S1与S2之间的距离时L,利萨如图从直线到椭圆再到直线变化,如图2所示。
当L改变一个波长时,两信号的相位差改变2π,图形就重复变化。
这样就可以测量出波长的长度。
四、实验步骤1、按图1接线,将换能器间距离调整到约50mm。
信号源输出频率为0f,大约为36000ZH。
2、打开示波器电源,预热5分钟,待出现一条绿色的水平线。
将开关置于“CH1”,显示X方向的正弦波形,然后将开关置于”CH2”,显示Y方向的波形。
应使两者的幅度大致相等。
幅度不应过大。
3、将示波器的旋钮旋到X Y↔位置,示波器出现“椭圆”图形。
将图形调至中间。
旋转声速测定仪上的手轮,看图形的变化规律,看是否是从左到右再从右到左变化。
实验四全面预算
一、实验目的
全面预算是一整套预计的财务报表和其他附表。
通过该实验,使学生掌握利用Excel电子表格,方便、快捷地做出预算,提高理财效率。
二、实验材料
大通公司目前只生产“康乐”摇摆机一种产品,该产品的市场售价为750元/台。
该公司上年末的资产、负债情况如下表所示。
其他资料如下:
(1)根据销售部门预测下年度各季度的销售量分别是:1000件、1500件、2000件、1500件。
每季度的商品销售款在当季可收到40%,其余在下季收讫。
(2)为满足扩大销售的需要,需增加设备一台。
该设备计划投资160 000元,具体购置时间在明年第二季度初。
(3)根据生产部门提供的资料,该产品材料的耗用量为2千克/件.人工25
工时/件。
(4)根据材料采购部门提供的资料,该产品耗用材料的购买价为150元/千克。
每季度的购料款当季付50%,其余在下季度付讫。
(5)根据人事部门提供的资料,该公司采用计时工资制,为4元/工时。
(6)根据库存商品及材料明细账中记录,至2001年12月31日末,库存产品100件,生产成本为500元/件。
库存材料420千克,计划年度第一、二、三季度末库存产品数量按下季度销售量的10%计算,第四季度库存产品数量计划为110件。
计划年度第一、二、三季度库存材料数量按下季度材料需要量的20%计算,第四季度库存材料数量计划为460公斤。
(7)销售及管理部门预计下年度该部门全年现金支出总额约为720 000元(全年各季度均衡支出)。
(8)生产部门预计下年度该部门的制造费用全年现金支出总额约为400 000元(全年各季度均衡支出),计提固定资产折旧201 000元。
(9)公司董事会计划明年各季末支付股东股利20 000元。
(10)预计下年度各季度需交纳的所得税为40 000元。
(11)计划年度最低现金余额为100 000元。
(12)现金不足时可向银行借款。
银行借还款数以万元为单位。
借款利率为10%。
(13)期末资金结余可进行短期投资。
三、实验要求
根据以上资料,做出该公司下年各季度的以下各项预算。
(1)销售预算。
(2)生产预算。
(3)材料采购预算。
(4)人工费用预算。
(5)现金预算。
(6)该公司下年度预计资产负债表。
(7)该公司下年度预计损益表。
四、实验原理
全面预算是以企业目标利润为核心,按照“以销定产”的方式编制的一整套预计的财务报表和其他附表,其各部分之间的关系如图2.13.1示。
五、实验步骤
1. 编制年度销售预算表
2. 编制年度预计现金收入计算表
3. 编制年度生产预算
4. 编制年度采购预算表
5. 编制现金支出表
6. 编制年度直接人工预算表
7. 编制年度现金预算表
8. 编制预计收益表。