武汉理工大学量子力学模拟试题3
- 格式:pdf
- 大小:674.89 KB
- 文档页数:9
量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。
2. 描述态叠加原理的内容。
答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。
系统的态函数可以表示为这些可能状态的叠加。
3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。
4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。
5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。
6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。
7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。
8. 描述量子力学中的隧道效应。
答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。
这是量子力学中粒子波性质的体现。
9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。
10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。
量子力学导论考试题及答案一、选择题(每题2分,共20分)1. 量子力学中,波函数的模平方代表什么?A. 粒子的动量B. 粒子的位置C. 粒子的概率密度D. 粒子的能量2. 海森堡不确定性原理中,哪两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 电荷和质量D. 速度和加速度3. 薛定谔方程是量子力学的哪个基本方程?A. 描述粒子运动的方程B. 描述粒子能量的方程C. 描述粒子自旋的方程D. 描述粒子相互作用的方程4. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒5. 量子力学中的“量子”一词意味着什么?A. 一个基本粒子B. 一个基本的物理量C. 一个离散的量D. 一个连续的量6. 波粒二象性是量子力学中的一个基本概念,它指的是什么?A. 粒子同时具有波和粒子的特性B. 粒子只能表现为波或粒子C. 粒子在宏观尺度下表现为波,在微观尺度下表现为粒子D. 粒子在宏观尺度下表现为粒子,在微观尺度下表现为波7. 量子纠缠是什么现象?A. 两个或多个粒子之间存在一种特殊的相互作用B. 两个或多个粒子的波函数是相互独立的C. 两个或多个粒子的波函数是相互关联的D. 两个或多个粒子的动量是相互关联的8. 量子隧道效应是指什么?A. 粒子在没有足够能量的情况下也能通过势垒B. 粒子在有足够能量的情况下不能通过势垒C. 粒子在有足够能量的情况下更容易通过势垒D. 粒子在没有足够能量的情况下不能通过势垒9. 以下哪个实验验证了量子力学的波粒二象性?A. 光电效应实验B. 双缝实验C. 康普顿散射实验D. 光电效应实验和康普顿散射实验10. 量子力学中的“叠加态”指的是什么?A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子的状态是随机的D. 粒子的状态是确定的二、简答题(每题10分,共30分)1. 简述量子力学中的波函数坍缩概念。
2. 解释什么是量子力学的测量问题。
量子力学考研模拟题(3)参考答案一、(20分)质量为m 的粒子做一维自由运动,如果粒子处于)(sin )(2kx A x =ψ的状态上,求其动量p 与动能T 的取值概率分布及平均值。
解 做一维自由运动粒子的动量与动能算符分别为dxd i p-=ˆ; mp T2ˆˆ2=显然两者相互对易,有共同完备本征函数⎪⎭⎫⎝⎛=px i x p exp 21)(πϕ 分别满足)()(ˆx p x pp p ϕϕ= )(2)(ˆ2x mp x T pp ϕϕ= 将)(x ψ向)(x p ϕ展开,即dp x cx p p)()(⎰∞∞-=ϕψ展开系数==⎰∞∞-dx x x c p p )()(*ψϕ=⎥⎦⎤⎢⎣⎡--⎰∞∞-dx i ikx ikx x A p2*2)exp()exp()(ϕ []=-+--⎰∞∞-dx ikx ikx x A p )2exp(2)2exp()(4*ϕ[]=+---∞∞-⎰dx x x x x A k k p )()(2)(2)(4202*ϕϕϕπϕ[])2()0(2)2(24k p p k p A ++----δδδπ只有当p=0,±2k 时,0≠p c 。
利用归一化条件∑=ppc 12可知,归一化常数为π34=A于是归一化后的展开系数为612-= k c ; 320=c ; 612-=- k c动量的取值概率为61)2(== k p W ; 32)0(==p W ; 61)2(=-= k p W平均值为0)(==∑pp pW p动能的取值概率与动量相同,而平均值为mk p W mpT p32)(2222==∑二、(20分)质量为m 的粒子处于如下一维势阱中⎪⎩⎪⎨⎧>∞=)0(0)(0V x V )()0()0(a x a x x >≤≤<若已知粒子在此势阱中存在一个能量20V E =的本征态,试确定此势阱的宽度a 。
解 对于002V V E <=的情况,三个区域中的波函数分别为0)(1=x ψ)sin()(2δψ+=kx A x)exp()exp()(3x C x B x ααψ+-=其中mE k 2=;)(20E V m -=α当∞→x 时,0)(3=x ψ,于是C=0。
一、基本概念1. 简述量子力学的基本假设。
2. 解释波粒二象性及其意义。
3. 什么是测不准原理?举例说明。
4. 什么是薛定谔方程?其物理意义是什么?5. 什么是量子态?如何表示?6. 什么是本征态和本征值?举例说明。
7. 什么是叠加原理?举例说明。
8. 什么是量子纠缠?举例说明。
9. 什么是量子隧穿效应?举例说明。
10. 什么是量子退相干?举例说明。
二、一维势阱1. 画出无限深势阱的势能分布图。
2. 写出无限深势阱中粒子的波函数和能级公式。
3. 计算无限深势阱中粒子在第一激发态时的能量。
4. 画出无限深势阱中粒子在第一激发态时的波函数图。
5. 证明无限深势阱中粒子的波函数满足薛定谔方程。
6. 讨论无限深势阱中粒子波函数的归一化条件。
7. 举例说明无限深势阱中粒子波函数的物理意义。
8. 讨论无限深势阱中粒子波函数的时间演化。
9. 举例说明无限深势阱中粒子波函数的空间演化。
10. 讨论无限深势阱中粒子波函数的相干性。
三、谐振子1. 画出谐振子的势能分布图。
2. 写出谐振子波函数和能级公式。
3. 计算谐振子基态能量。
4. 画出谐振子基态波函数图。
5. 证明谐振子波函数满足薛定谔方程。
6. 讨论谐振子波函数的归一化条件。
7. 举例说明谐振子波函数的物理意义。
8. 讨论谐振子波函数的时间演化。
9. 举例说明谐振子波函数的空间演化。
10. 讨论谐振子波函数的相干性。
四、量子力学中的算符1. 什么是算符?举例说明。
2. 什么是厄米算符?举例说明。
3. 什么是本征值和本征态?举例说明。
4. 什么是算符的对易关系?举例说明。
5. 什么是算符的谱分解?举例说明。
6. 什么是算符的期望值?举例说明。
7. 什么是算符的本征态展开?举例说明。
8. 什么是算符的投影算符?举例说明。
9. 什么是算符的逆算符?举例说明。
10. 什么是算符的线性组合?举例说明。
五、多粒子系统1. 什么是多粒子系统?举例说明。
2. 什么是费米子和玻色子?举例说明。
量⼦⼒学模拟题《量⼦⼒学基础》模拟题⼀、选择题(18分)1. 波函数满⾜的标准条件是( )A. 单值、正交、连续B. 归⼀、正交、完全性C. 连续、有限、完全性D. 单值、连续、有限2. ⼀振⼦处于ψ=c 1ψ1+ c 3ψ3,则该振⼦能量取值分别为()A . 3/2 ?ω, 5/2 ?ω B. 1/2 ?ω, 5/2 ?ω C. 3/2 ?ω, 7/2 ?ω D. 1/2 ?ω, 5/2 ?ω3. ⼏率流密度⽮量的表达式为()A. ]-[2**ψ?ψψ?ψ=µi J B. ][2ψ?ψ-ψ?ψ=**µ i J C. ]-[2ψ?ψψ?ψ=**µ i J D . ]-[2**ψ?ψψ?ψ=µi J 4. 如果算符∧A 、∧B 对易,且∧A ψ =A ψ,则:BA. ψ⼀定不是∧B 的本征态;B. ψ⼀定是∧B 的本征态;C.*ψ⼀定是∧B 的本征态; D. ∣Ψ∣⼀定是∧B 的本征态得分5. L x 在 L 2, Lz 共同表象,l =2⼦空间中是⼀个 ( )的矩阵A. 2×2.B. 3×3C. 4×4D. 5×56. 下列哪⼀项中的算符O ?是厄密算符()A. τφψτφψd O d O ??=*??*)(B. τφψτφψd O d O ??=*)?(?C. τφψτφψd O d O ??=*??*D. τφψτφψd O d O ??=*??⼆、填空题(20分) 1. 写出⼀维的⾃由粒⼦的波函数_____。
2. 对易关系[Lx, Ly] 等于_____ 。
3. 在z S ?表象中xS ?的矩阵表⽰为_____ 。
4. 算符Q 的本征值为:Q 1, Q 2, ..., Q n …, 相应本征函数为:u 1(x), u 2(x), ..., u n (x), ...。
将Ψ(x,t)按Q 的本征函数展开为)()(),(x u t a t x n n n∑=ψ,则n a 等于_____ 。
第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
武汉理工大学教务处试题标准答案及评分标准用纸课程名称——《量子力学》——— ( A 卷)一、(5×2’=10’) 1-5╳ ╳√√╳ 二、(5×2’=10’) 1、,E h h p νλ==2、ˆri p∂=∂ 和ˆpp = 3、A =三、证明(2×10’=20’)1、厄米算符的属于不同本征值的本征函数,彼此正交。
(即*3120d r ψψ=⎰⎰⎰) 证明:设n n nm m mA A A A ψψψψ==,并设(,)m n ψψ存在,有***m m m A A ψψ=,上式右乘,n ψ积分,即(,)(,)m n m m n A A ψψψψ=由于A 是厄米算符,上式左边=(,)(,)m n n m n AA ψψψψ= 所以有(,)(,n m n m mn A A ψψψψ=,如果m n A A ≠,则必有(,)0m n ψψ=。
得证2、[,]0,[,].x x x y z l p l l i l == 证明:[,]()()0x x x x x xz y x x z y z x y x x z x y l p l p p l yp zp p p yp zp yp p zp p p yp p zp =-=---=--+= (5’)[,]()()()()()()()x y x y y xz y x z x z z y z x z z y x y z x z x y z z z y z x y z x z z y x z z y z z y x zl l l l l l yp zp zp xp zp xp yp zp yp zp yp xp zp zp zp xp zp yp zp zp xp yp xp zp yp zp zp xp zp yp xp zp yp p z zp xp zp p z i xp yp i l =-=-----=--+-++-=+--=-+-=-=(5’) 得证。
2,2- (C )2,,,2-- (D )2,,0,,2-- 、在光的照射下,原子从低能级跃迁到高能级,这种现象称为 ( ))自发和受激吸收 (C )光的吸收 (D )自发辐射 f E 与电子气密度ρ的关系为:( )2f E ρ∝ (C )1/3f E ρ∝ (D )f E ρ∝ˆp= ,ˆr= )线性厄米算符的本征值必为)线性厄米算符的属于不同本征值的本征函数,彼此、具有半整数自旋的全同粒子体系用反对称波函数来描述,这种粒子遵循 统计,、在利用正则方程处理电磁场中带电荷为P 与粒子的机械动量p 之间的关系式为正则量子化程序,应该把 动量变成算符。
、变分原理在于:根据具体问题在物理上的特点,先提出能量平均值,最后对能量平均值求 。
分,要有具体证明步骤,否则不给分))在一维谐振子中,可以引入升降算符来计算系统的本征值,已知升降算符的表达式为表示写振子的能量本征态。
证明:ˆzi L 题各15分,第、在一维无限深势阱〔0,a 〕中,粒子处于第一激发态,即的平均值x 、的平均值p 、的粒子组成的系统由等效哈密顿量:12BS S ⋅ 1S ,2S 是二个自旋,1z S ,求该哈密顿量的所有能级。
0时刻,氢原子处于状态 ψ()r 为氢原子的第武汉理工大学教务处试题标准答案及评分标准用纸| 课程名称—量子力学—— ( B 卷) | 一、选择题(每题3分,共15分) 装 1.C 2.B 3. D 4.C 5.A| 二、填空题 (每空2分,共20分)1. i -∇,p i ∇2. 实数 正交3. 费米-狄拉克 费米子4. qp P A c=-正则动量 5. 试探 极值三、 证明题(共15分)(1)证明:令1a n n λ+=+ 则其共轭式为*1n a n λ=+,与上式两边分别作用得 (2分) *11n aa n n n λλ+=++利用a a n n n += ,1a a +⎡⎤=⎣⎦和mn m n δ= (5分)等式左边=111n a a n n n n n ++=+=+ 等式右边=()2221111n n n n λλλ++=++=故λ=1a n n +=+ (3分)(2)证明:ˆˆˆx z y L yp zp =- ˆˆˆy x z L zp xp =- ˆˆˆzy x L xp yp =- (2分)[][][][][]()ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,,,,,,ˆˆˆˆˆˆˆ,00,x y z y x z z x z z y x z z zxyzyxzL L yp zp zp xp yp zp yp xp zp zp yp xp y pz p p z p x i xp yp i L ⎡⎤⎡⎤⎡⎤=--=--+⎣⎦⎣⎦⎣⎦=--+=-=利用动量分量彼此对易和[]ˆ,z z pi= (3分) 四 计算题(第1、2题各15分,第3、4题各10分,要求有具体计算步骤)1、解:一维无限深势阱中,粒子处于第一激发态的波函数为 ()22x x a πψ⎛⎫=⎪⎝⎭(2分) (1)粒子坐标的平均值:()()*2220022sin 2a x a x x x x dx x dx a a πψψ∞⎛⎫=== ⎪⎝⎭⎰⎰ ()()2*2222222002211sin 38a x x x x x dx x dx a a a πψψπ∞⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭⎰⎰x ∆== (5分)(2)动量的平均值:()()()()**22220ˆ0d p x p x dx x ix dx dx ψψψψ∞∞⎛⎫==-= ⎪⎝⎭⎰⎰ ()()()()2222*2*2222222004ˆd p x px dx x x dx dx a πψψψψ∞∞⎛⎫==-= ⎪⎝⎭⎰⎰2p aπ∆==(5分) (3)粒子动能为22p E m=,则有2222422p E m ma π== (3分) 2、解:(1)Hamilton 量满足的本征方程为2102101201200003003a a a b b b c c c λλλλ-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪=⇒-= ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭非零解的条件为()()221012031003λλλλλ--=--=- (6分)即123λλ== 31λ=是可能的能量本征值,能量有简并。
量子力学模拟试题及答案一、选择题1. 根据量子力学,以下哪个选项描述了波函数的物理意义?A. 粒子的位置B. 粒子的动量C. 粒子在空间中某点出现的概率密度D. 粒子的质量答案:C2. 海森堡不确定性原理表明,粒子的什么两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 质量与速度D. 动量与能量答案:A二、填空题1. 量子力学中的波函数通常用符号________表示。
答案:Ψ2. 薛定谔方程是量子力学的基本方程,它描述了波函数随时间的________。
答案:演化三、简答题1. 简述量子力学中的叠加原理。
答案:量子力学中的叠加原理表明,如果一个量子系统可以处于多个可能状态中的任何一个,那么它实际上可以处于这些状态的任意线性组合,即叠加态。
这意味着,除非进行测量,否则系统的行为不能被归结为单一确定的状态。
四、计算题1. 假设一个粒子在一维无限深势阱中,其势阱宽度为L。
求该粒子的基态能量。
答案:基态能量可以通过以下公式计算:E0 = (h^2 / (8mL^2)),其中h是普朗克常数,m是粒子质量,L是势阱宽度。
五、论述题1. 论述量子纠缠现象及其在量子信息科学中的应用。
答案:量子纠缠是量子力学中的一种非经典现象,其中两个或多个量子系统处于一种特殊的关联状态,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。
在量子信息科学中,量子纠缠是实现量子通信、量子计算和量子密钥分发等技术的关键资源。
例如,在量子密钥分发中,纠缠粒子可以用来生成和共享密钥,确保通信的安全性。
六、实验题1. 设计一个实验来验证海森堡不确定性原理。
答案:一个简单的实验设计是使用双缝干涉实验。
通过测量通过双缝的粒子的位置和动量,可以观察到当一个物理量被更精确地测量时,另一个物理量的不确定性会增加,从而验证海森堡不确定性原理。
实验中,可以使用光电探测器来测量粒子通过特定缝隙的位置,然后通过测量粒子在屏幕上的分布来估算其动量的不确定性。
量子力学中的测量测试题量子力学是研究微观粒子行为的重要理论,其中测量是一个核心概念。
量子力学中的测量与经典物理中的测量有所不同,涉及到了波函数坍缩和不确定性原理等重要概念。
接下来,我将为您提供一些关于量子力学中的测量的测试题。
测试题一:波函数坍缩1. 量子力学中,什么是波函数坍缩?2. 波函数坍缩发生在量子体系的哪个阶段?3. 波函数坍缩后,量子体系处于什么样的状态?4. 请解释为什么波函数坍缩是量子力学中的一个奇特现象。
测试题二:不确定性原理1. 请简要介绍不确定性原理是什么?2. 不确定性原理对于测量中的哪些物理量起到了重要作用?3. 不确定性原理告诉我们什么?4. 请解释为什么存在不确定性原理。
测试题三:量子测量1. 在量子力学中,测量是如何定义的?2. 请解释测量对量子体系的影响。
3. 什么是观测算符?4. 您能否解释为什么测量结果是离散的?测试题四:测量算符1. 什么是测量算符?2. 测量算符可以描述哪些物理量的测量?3. 请解释为什么测量算符的本征值对应于测量的结果。
4. 您能否给出一个具体的测量算符的例子?测试题五:测量的统计解释1. 请简要介绍测量的统计解释。
2. 为什么在量子力学中,我们只能给出测量的概率?3. 请解释为什么在重复测量中,我们观察到的是统计规律而不是确定结果。
测试题六:电子自旋测量1. 电子自旋是什么?2. 请简要介绍电子自旋的测量是如何进行的。
3. 自旋上态和自旋下态分别对应于什么?4. 您能否解释为什么电子自旋测量的结果只能是自旋上态或自旋下态?以上是关于量子力学中的测量的测试题,希望能帮助您巩固对量子力学的理解。
量子力学中的测量是极其重要且复杂的一部分,对于深入理解量子世界至关重要。
通过这些测试题,您可以考察自己对于测量概念的掌握程度,并进一步拓展对量子力学的认识。
祝您学习进步!。
模拟试题试题1一. (20分)设氢原子处于 ()()()()()()()ϕθϕθϕθϕθψ,Y R 21,Y R 21,Y R 21,,112110311021---=r r r r的状态上,求其能量、角动量平方及角动量z 分量的可能取值与相应的取值几率,进而求出它们的平均值。
二. (20分)作一维运动的粒子,当哈密顿算符为()x V p H +=μ2ˆˆ20时,能级是0nE ,如果哈密顿算符变成μαp H H ˆˆˆ0+=(α为实参数),求变化后的能级n E 。
三. (20分)质量为μ的粒子处于如下的一维位势中 ()()()x V x c x V 0+-=δ 其中,()⎩⎨⎧>≤=0 ,0,010x V x x V 且 0>c ,01>V , 求其负的能量本征值。
四.(20分)已知在2L 与z L 的共同表象中,算符yL ˆ的矩阵形式为⎪⎪⎪⎭⎫ ⎝⎛--=0i0i 0i0i 02ˆy L 求yL ˆ的本征值和归一化的本征矢。
五.(20分)两个线谐振子,它们的质量皆为μ,角频率皆为ω,加上微扰项21 ˆx x Wλ-=(21,x x 分别为两个谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正。
试题2一.(20分)质量为m 的粒子作一维自由运动,如果粒子处于()kx A x 2sin =ψ的状态 上,求其动量pˆ与动能T ˆ的取值几率分布及平均值。
二. (20分)质量为m 的粒子处于如下一维势阱中()⎪⎩⎪⎨⎧>>≤≤<∞=a x V a x x x V )0(0 ,00.0若已知该粒子在此势阱中存在一个能量20V E =的状态,试确定此势阱的宽度a 。
三. (20分)体系的三维空间是由三个相互正交的态矢1u、2u和3u 构成的,以其为基矢的两个算符Hˆ和B ˆ的矩阵形式如下⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=010100001ˆ ;100010001ˆb B H ω其中,ω,b 为实常数。
武汉理工大学教务处试题标准答案及评分标准用纸| 课程名称—量子力学—— ( A 卷) | 一、选择题(每题3分,共15分) 装 1.B 2.C 3. A 4.D 5.B | 二、填空题 (每空2分,共20分)1. 单值的,平方可积的2. 线性算符,厄米算符3. 平均值 几率分布4. 4 200ψ,211ψ,210ψ,211ψ-5. 平均场 积三、 证明题(共15分)证明:(1)[][]ˆˆ,1111ˆˆˆˆ2222ˆˆˆˆ,,122a a p p p p p p i i x p p x +⎡⎤⎫⎫⎡⎤=-⎥⎪⎪⎣⎦⎪⎪⎥⎭⎭⎦⎤⎡⎤⎡⎤⎤=+--⎥⎥⎥⎥⎥⎥⎥⎦⎦⎦⎦=-=-其中利益[]ˆˆ,xp i = (6分) (2)[],,,a a a a a a a a a a +++⎡⎤⎡⎤=+=-⎣⎦⎣⎦ ,,,a a a a a a a a a a +++++++⎡⎤⎡⎤⎡⎤=+=⎣⎦⎣⎦⎣⎦(4分) (3)可以求得:)ˆxa a +=+)ˆpa a +=-系统Hamilton 为()()()()22222ˆ1111ˆˆ2222211121222p H xa a a a a a aa a a a a μωωμωωω++++++⎡⎤=+=--++⎢⎥⎣⎦⎛⎫=+=+=+ ⎪⎝⎭ (5分)四 计算题(第1、2题各15分,第3、4题各10分,要求有具体计算步骤)1、解:(1)一维无限深势阱的本征态波函数是()n n xx aπψ=(2分) 利用三角函数积化和、差,将()x ψ改写 ()2cos x x x a a ππψ=21cos x x a a ππ⎡⎤=+⎢⎥⎣⎦22sin 2sin cos x x x a a a πππ⎤=+⎥⎦3sin sin xx a a ππ⎤=+⎥⎦3x x a a ππ⎤=+⎥⎦()()13x x ψψ=+⎤⎦ (4分) ()x ψ是非本征态,它可以有二种本征态,部分处在()1xx aπψ=出现几率为12,能量为22122E ma π=部分处在()33xx aπψ=,出现几率为12,能量为223292E ma π= (2分) (2)处于这种状态下粒子的能量平均值22132115222E E E ma π=+= (3分)(3)粒子随时间变化的波函数为 ()229223,n i i iE t t t ma ma nnx x x t C ee e a a ππππψψ---⎫⎫==⎪⎪⎪⎪⎭⎭∑(4分) 2、解:(1)在z σ表象中,0110x σ⎛⎫=⎪⎝⎭ 00y i i σ-⎛⎫= ⎪⎝⎭ 1001z σ⎛⎫= ⎪-⎝⎭(3分)cos sin sin cos i x x y y z z i e n n n n eϕϕθθσσσσθθ-⎛⎫=++= ⎪-⎝⎭,其本征方程为cos sin cos sin 0sin cos sin cos i i i i a a a e e b b b ee ϕϕϕϕθθθλθλθθθθλ--⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=⇒= ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 有非零解的条件为cos sin 01sin cos i i e eϕϕθλθλθθλ--=⇒=±-- (4分)当1λ=时,对应的本征态为()()1cos /2sin /2i e ϕθψθ-⎛⎫=⎪⎝⎭ 当1λ=-时,对应的本征态为()()2sin /2cos /2i e ϕθψθ-⎛⎫=⎪-⎝⎭ (2分) (2)在ˆz s本征态1/2χ下,n σ的可能测值为1± 故n σ的可能测值为1+的几率为()()()()22211/21cos /2,sin /2cos /20i e ϕψχθθθ⎛⎫== ⎪⎝⎭(3分)故n σ的可能测值为1-的几率为()()()()22221/21sin /2,cos /2sin /20i e ϕψχθθθ-⎛⎫=-= ⎪⎝⎭(3分)3、解:微扰算符的的矩阵是'''111213'''212223'''31323300'000H H H b H H H H a H H H ba **⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (1) 根据无简并微扰论,一级能量修正量是: kk H从(1)中看出,对角位置的矩阵元全是零,因此一级修正量0)0(3)0(2)0(1===E E E (2分)又二级能量公式是: 2'(2)(0)(0)nkknk nn kH E E E ≠=-∑(2分)所需的矩阵元'nk H 已经直接由式(1)表示出,毋需再加计算,因而有:2222'''12131(2)1(0)(0)(0)(0)(0)(0)(0)(0)1121313n nnH H H b E EEEEEEEE ==+=----∑(2分)2222'''21232(2)2(0)(0)(0)(0)(0)(0)(0)(0)2312123n n n H H H aE EE E E E E E E ==+=----∑ (2分)22222'''32313(2)3(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)332313132n nnH H H b a E EEEEEEEEEE==+=+-----∑(2分)4.解:(1)利用21ˆˆ2q H P A q c φμ⎛⎫=-+ ⎪⎝⎭可得系统的哈密顿量为222222211ˆˆˆˆˆ221ˆˆˆ2x x y y zz x y z q q q q H P A q P A P A P A q y c c c c q P By P P q yc φεμμεμ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+-+--⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=+++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4分)(2)证明:2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222x x y z x x x y x z x x q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222z x y z z x z y z z z z q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦ˆx P 的本征函数为()/x x ip x P x ψ= ,本征值为x p -∞<<∞ ˆz P 的本征函数为()/z zip z P x ψ= ,本征值为z p -∞<<∞ (4分) (3)选守恒量完全集为()ˆˆˆ,,x zH P P (2分)。
量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。
这种相互转化的现象称为________。
答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。
答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。
答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。
答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。
这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。
实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。
当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。
同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。
b) 请解释量子力学中的不确定性原理及其意义。
答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。
不确定性原理的意义在于限制了我们对微观世界的认知。
它告诉我们,粒子的位置和动量无法同时被精确地确定。
这是由于测量过程中的不可避免的干扰和相互关联性导致的。
量子力学习题及答案1. 简答题a) 什么是量子力学?量子力学是一门研究微观领域中原子和基本粒子行为的物理学理论。
它描述了微观粒子的特性和相互作用,以及它们在粒子与波的二重性中所呈现出的行为。
b) 什么是波函数?波函数是描述量子体系的数学函数。
它包含了关于粒子的位置、动量、能量等信息。
波函数通常用符号ψ表示,并且可用于计算概率分布。
c) 什么是量子态?量子态是描述量子系统的状态。
它包含了有关系统性质的完整信息,并且根据量子力学规则演化。
量子系统可以处于多个量子态的叠加态。
d) 什么是量子叠加态?量子叠加态是指量子系统处于多个不同态的线性叠加。
例如,一个量子比特可以处于0态和1态的叠加态。
2. 选择题a) 下列哪个物理量在量子力学中具有不确定性?1.速度2.质量3.位置4.电荷答案:3. 位置b) 关于波函数的哪个说法是正确的?1.波函数只能描述单个粒子的行为2.波函数可以表示粒子的位置和动量的确定值3.波函数的模的平方表示粒子的位置概率分布4.波函数只适用于经典力学体系答案:3. 波函数的模的平方表示粒子的位置概率分布c) 下列哪个原理是量子力学的基本假设?1.宏观世界的实在性2.新托尼克力学3.不确定性原理4.不可分割性原理答案:4. 不可分割性原理3. 计算题a) 计算氢原子的基态能级氢原子的基态能级可以通过解氢原子的薛定谔方程得到。
基态能级对应的主量子数为n=1。
基态能级的能量公式为: E = -13.6 eV / n^2代入n=1,可以计算得到氢原子的基态能级为:-13.6 eVb) 简述量子力学中的双缝干涉实验双缝干涉实验是一种经典的量子力学实验,用于研究光和物质粒子的波粒二象性。
实验装置包括一道光源、两个狭缝和一个光屏。
当光的波长足够小,两个狭缝足够细时,光通过狭缝后会形成一系列的波纹,这些波纹会在光屏上出现干涉条纹。
实验结果显示,光在光屏上呈现出干涉现象,表现为明暗相间的条纹。
这种实验结果说明了光具有波动性,同时也具有粒子性。
量子物理考试试题量子物理,这个听起来就充满神秘色彩的领域,对于许多学生来说,既是挑战,也是充满探索乐趣的知识宝库。
下面就让我们一起来看看一套可能出现在量子物理考试中的试题。
一、选择题(每题 5 分,共 30 分)1、以下哪个实验证实了光具有粒子性?()A 双缝干涉实验B 光电效应实验C 迈克尔逊莫雷实验D 泊松亮斑实验2、关于量子力学中的不确定关系,下列表述正确的是()A 粒子的位置和动量可以同时被精确测量B 粒子的能量和时间可以同时被精确测量C 粒子的位置和动量不能同时被精确测量D 不确定关系只适用于微观粒子,对宏观物体不适用3、一个处于 n=3 激发态的氢原子向低能级跃迁时,可能发出的光子频率有()A 1 种B 2 种C 3 种D 6 种4、下列哪种粒子的波动性最明显?()A 电子B 质子C 中子D 分子5、量子力学中,描述微观粒子状态的函数是()A 概率密度函数B 波函数C 能量函数D 动量函数6、以下哪个概念不是量子物理中的基本概念?()A 波粒二象性B 能量量子化C 相对论D 薛定谔方程二、填空题(每题 5 分,共 30 分)1、普朗克常量的数值约为_____。
2、德布罗意波长的计算公式为λ =_____。
3、氢原子基态的能量为_____eV。
4、量子隧道效应是指粒子在能量_____势垒高度时仍能穿过势垒的现象。
5、泡利不相容原理指出,在一个原子中,不能有两个或两个以上的电子具有完全相同的_____。
6、量子纠缠是一种奇特的量子力学现象,其中两个或多个粒子之间存在_____的关联。
三、计算题(每题 20 分,共 40 分)1、已知氢原子的一个电子处于 n=4 的轨道上,求其电子的动能、势能和总能量。
2、一个质量为m 的粒子在一维无限深势阱中运动,势阱宽度为a,求粒子的基态能量和第一激发态能量。
在学习量子物理的过程中,我们需要深入理解这些概念和原理,通过不断的练习和思考来掌握这门学科。
量子物理的世界充满了奇妙和未知,每一次的探索都可能带来新的发现和突破。
武汉理工大学考试试题纸( A 卷)课程名称《量子力学》 专业班级光信科0701-03一、填空题。
(8×3’=24’)1、Born 给波函数的统计诠释,认为量子力学中波函数所描述的,不是经典波那样代表什么实在物理量的波动,而是 。
2、根据波函数的统计要求,波函数要求 、 、 。
3、一般情况下薛定諤方程为: ,定态薛定諤方为: , 从数学的角度看,从一般情况下薛定諤方程变化到定态薛定諤方程的条件是薛定諤方程可以采用 方法求解。
4、中心力场中粒子能级的简并度最低为 ,三维各向同性谐振子的能级简并度为 ,其中 。
(写出量子数之间的关系式)5、=102Y l , 11Y l z = 。
6、设波函数,求=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡ψψ22)(dx d x x dx d 。
7、全同玻色子体系波函数特点是 ,全同费米子体系波函数特点是 。
8、=],[x p x ,=],[z p y 。
二、选择题。
(5×3’=15’)1、关于全同性原理,下列哪种说法正确? ( )A )、所有的微观粒子都是全同的;B)、所有的微观粒子都是不可分辨的; C)、全同粒子组成的体系,交换其中任何两个粒子不改变体系的物理量; D)、以上说法没有正确的;2、下列哪个函数不是22dxd 的本征函数,请指出来。
( )A )x sin B)2x C) x x sin cos + D)xe3、关于两个算符之间的对易关系,下列哪种说法正确? ( )A)、如果它们有共同的本征函数φn ,且φn 组成完备系,则它们对易,反之亦然; B)、只要这两个算符都是厄密算符,它们就对易,反之亦然;C)、只要这两个算符在经典物理中有相应得力学量,它们就对易,反之亦然;D)、以上三种说法的根本错误在于没弄清楚算符的基本意义。
4、设A 为对应力学量A 的算符,其本征值为一系列分立值k a 。
现在对量子态()x ψ的大量复制品进行了关于A 的重复测量,所得A 的实测值: ( )A ) 必为分立的; B) 不一定是分立的。
ˆz L (B )ˆy i L (C )、如果原子本身处于激发态,在没有外界光照时,也可能跃迁到某些较低能级而放出光来,(B )自发和受激吸收(C )光的吸收、电子气的按能量分布的态密度与能级关系正确的是((B )正比于(C )反比于)r ,一般要求波函数满足三个条件即 ;(、根据态叠加原理的要求,表示力学量的算符必须是 是可观测量,应为实数,表示力学量的算符必须是 量对易的不显含时间的力学量,称为守恒量,其时,有ˆˆi x p μωμω+⎪⎪⎭和ˆˆi a x p μωμω-⎪⎪⎭,对于一维谐振子,证明:1=- (2),a a a +⎡⎤⎣⎦,a a a a +++⎤=⎦(3)ˆH ω、2题各15分,第3、,要求有具体计算步骤)设在一维无限深势阱中运动的粒子的状态用:4x x ππn σ的本征态,已知下,求n σ的可能测值及相应的几率。
的矩阵为: (0)1(0)b a E ⎤⎥<⎥⎥⎦、设质量为μ的带电粒子在相互垂直的均匀电场和磁场中运动,设电场沿(0,,0E ε=(0,0,B B =(,0,0A By =-(1)写出运动粒子的哈密顿算符(2)证明:为守恒量,写出它们的本征值和本征函数 (3)写出守恒量完全集 (10试题标准答案及评分标准用纸| 课程名称—量子力学—— ( A 卷) | 一、选择题(每题3分,共15分) 装 1.B 2.C 3. A 4.D 5.B | 二、填空题 (每空2分,共20分)1. 单值的,平方可积的2. 线性算符,厄米算符3. 平均值 几率分布4. 4 200ψ,211ψ,210ψ,211ψ-5. 平均场 积三、 证明题(共15分)证明:(1)[][]1ˆˆˆˆ,,21111ˆˆˆˆˆˆˆˆ,,,,2222ˆˆˆˆ,,122i ia a x p x p i i i ix x x p p x p p i i x p p x μωμωμωμωμωμωμωμωμωμωμωμω+⎡⎤⎫⎛⎫⎡⎤=-+⎥⎪ ⎪⎣⎦⎪ ⎪⎥⎭⎝⎭⎦⎡⎤⎡⎤⎡⎤⎤=+--⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎢⎥⎦⎣⎦⎣⎦⎣⎦=-=- 其中利益[]ˆˆ,xp i = (6分) (2)[],,,a a a a a a a a a a +++⎡⎤⎡⎤=+=-⎣⎦⎣⎦ ,,,a a a a a a a a a a +++++++⎡⎤⎡⎤⎡⎤=+=⎣⎦⎣⎦⎣⎦(4分) (3)可以求得:()ˆxa a μω+=+ ()ˆpa a μω+=-系统Hamilton 为 ()()()()22222ˆ1111ˆˆ2222211121222p H x a a a a a a aa a a a a μωωμωωω++++++⎡⎤=+=--++⎢⎥⎣⎦⎛⎫=+=+=+ ⎪⎝⎭ (5分)四 计算题(第1、2题各15分,第3、4题各10分,要求有具体计算步骤)1、解:(1)一维无限深势阱的本征态波函数是()n n xx aπψ=(2分) 利用三角函数积化和、差,将()x ψ改写 ()2cos x x xa a ππψ=21cos x x a a ππ⎡⎤=+⎢⎥⎣⎦22sin 2sin cos x x xa a a πππ⎤=+⎥⎦3sin sin xx a a ππ⎤=+⎥⎦3x x a a ππ⎤=+⎥⎦()()13x x ψψ=+⎤⎦ (4分)()x ψ是非本征态,它可以有二种本征态,部分处在()1xx aπψ=出现几率为12,能量为22122E ma π=部分处在()33xx aπψ=,出现几率为12,能量为223292E ma π= (2分) (2)处于这种状态下粒子的能量平均值22132115222E E E maπ=+= (3分) (3)粒子随时间变化的波函数为()2222922123,sin2n i i iE tt t ma ma nnx x x t C ee e a a ππππψψ---⎫⎛⎫==+⎪ ⎪⎪⎪⎭⎭∑ (4分) 2、解:(1)在z σ表象中,0110x σ⎛⎫=⎪⎝⎭ 00y i i σ-⎛⎫= ⎪⎝⎭ 1001z σ⎛⎫= ⎪-⎝⎭(3分) cos sin sin cos i x x y y z z i e n n n n eϕϕθθσσσσθθ-⎛⎫=++= ⎪-⎝⎭,其本征方程为cos sin cos sin 0sin cos sin cos i i i i a a a e e b b b e eϕϕϕϕθθθλθλθθθθλ--⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=⇒= ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭有非零解的条件为cos sin 01sin cos i i e eϕϕθλθλθθλ--=⇒=±-- (4分)当1λ=时,对应的本征态为()()1cos /2sin /2i e ϕθψθ-⎛⎫=⎪⎝⎭ 当1λ=-时,对应的本征态为()()2sin /2cos /2i e ϕθψθ-⎛⎫= ⎪-⎝⎭(2分) (2)在ˆz s本征态1/2χ下,n σ的可能测值为1± 故n σ的可能测值为1+的几率为()()()()22211/21cos /2,sin /2cos /20i e ϕψχθθθ⎛⎫== ⎪⎝⎭(3分)故n σ的可能测值为1-的几率为()()()()22221/21sin /2,cos /2sin /20i e ϕψχθθθ-⎛⎫=-= ⎪⎝⎭(3分)3、解:微扰算符的的矩阵是'''111213'''212223'''31323300'000H H H b H H H H a H H H ba **⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (1) 根据无简并微扰论,一级能量修正量是: kk H从(1)中看出,对角位置的矩阵元全是零,因此一级修正量0)0(3)0(2)0(1===E E E (2分)又二级能量公式是: 2'(2)(0)(0)nkknk nn kH E E E ≠=-∑(2分)所需的矩阵元'nk H 已经直接由式(1)表示出,毋需再加计算,因而有:2222'''12131(2)1(0)(0)(0)(0)(0)(0)(0)(0)1121313n nnH H H b E EEEEEEEE ==+=----∑(2分)2222'''21232(2)2(0)(0)(0)(0)(0)(0)(0)(0)2312123n nnH H H aE EE E E E E E E ==+=----∑ (2分)22222'''32313(2)3(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)332313132n nnH H H baE E E E E E E E E E E ==+=+-----∑(2分)4.解:(1)利用21ˆˆ2q H P A q c φμ⎛⎫=-+ ⎪⎝⎭可得系统的哈密顿量为 222222211ˆˆˆˆˆ221ˆˆˆ2x x y y zz x y z q q q q H P A q P A P A P A q y c c c c q P By P P q yc φεμμεμ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+-+--⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=+++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4分)(2)证明:2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222x x y z x x x y x z x x q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222z x y z z x z y z z z z q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦ˆx P 的本征函数为()/x x ip x P x e ψπ=,本征值为x p -∞<<∞ ˆz P 的本征函数为()/z zip z P x e ψπ=,本征值为z p -∞<<∞ (4分) (3)选守恒量完全集为()ˆˆˆ,,x zH P P (2分)。