17.4一元二次方程根与系数的关系
- 格式:ppt
- 大小:663.00 KB
- 文档页数:31
《17.4 一元二次方程的根与系数的关系》教案教学目标:1.发现一元二次方程的根与系数的关系定理-----韦达定理. 2.初步掌握一元二次方程的根与系数的关系. 3.培养学生的观察问题、发现问题和解决问题的能力.教学过程:一、创设情境 复习提问:1、解一元二次方程有哪些方法?2、写出一元二次方程的求根公式.3、说出下列一元二次方程的根.(1)0652=+-x x (2)0452=+-x x(3)0232=+-x x (4)二、提出问题:以上这些方程的根与系数有什么关系?三、探究猜测:观察上面四个方程的根与系数:两根之和等于一次项系数的相反数,两根之积等于常数项. 这个结论是否对于所有的一元二次方程都成立? 进一步研究这类二次项系数不为1的方程:0432=--x x有如下关系:两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数. 四、提出假设:一元二次方程的根与系数之间有如下关系: 如果的两个根是x 1,x 2,那么:a b x x -=+21,ac x x =⋅⋅21,五、推理验证:1、学生运用一元二次方程求根公式自行证明.得出定理并证明(韦达定理) 若一元二次方程a 2x +bx +c =0(a ≠0)的两根为1x 、2x ,则:1x +2x =-b a 1x .2x =c a特殊的:若一元二次方程2x +px +q =0的两根为1x 、2x ,则:1x +2x =-p 1x .2x =q证明此处略(师生合作完成)设计意图:让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程. 六、学以致用:例1:求下列方程的两根之和与两根之积. (1)2x -6x -15=0 (2)5x -1= 42x (3)2x =4 (4)22x =3x(5)2x -(k +1)x +2k -1=0(x 是未知数,k 是常数)设计意图:让学生初步学会运用根与系数的关系来求两根和与两根积,比较简便,(3)、(4)、(5)的设计加深学生对根与系数关系的本质理解.例2:若一元二次方程22x +3 x -1=0的两根是1x 、2x ,求下列各式的值. (1)11x +12x (2)21x +22x 设计意图:进一步巩固根与系数的关系,体会“整体代入”思想在解题中的运用,可起到简便运算的作用.七、课堂小结:让学生谈谈本节课的收获与体会,教师可适当引导和点拨.。
沪科版数学八年级下册《17.4 一元二次方程的根与系数的关系》教学设计1一. 教材分析《17.4 一元二次方程的根与系数的关系》是沪科版数学八年级下册的一个重要内容。
本节内容是在学生已经掌握了方程的解法、根的判别式的基础上,进一步引导学生探究一元二次方程的根与系数之间的关系,培养学生的抽象概括能力,也为后续学习一元二次方程的应用打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了方程的基本概念和解法,对根的判别式也有了一定的了解。
但学生对于根与系数之间的关系可能存在一定的困惑,因此,在教学过程中,教师需要引导学生通过观察、实验、猜想、验证等方法,逐步发现并理解根与系数之间的关系。
三. 教学目标1.让学生理解一元二次方程的根与系数之间的关系。
2.培养学生通过观察、实验、猜想、验证等方法探索问题的能力。
3.提高学生运用一元二次方程解决实际问题的能力。
四. 教学重难点1.教学重点:一元二次方程的根与系数之间的关系。
2.教学难点:理解并运用根与系数之间的关系解决实际问题。
五. 教学方法1.引导法:教师引导学生通过观察、实验、猜想、验证等方法,发现并理解根与系数之间的关系。
2.互动法:教师与学生进行提问、讨论,促进学生对知识的理解和运用。
3.案例分析法:教师给出实际问题,引导学生运用一元二次方程解决。
六. 教学准备1.教学课件:制作课件,展示一元二次方程的根与系数之间的关系。
2.实际问题:准备一些实际问题,用于引导学生运用一元二次方程解决。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元二次方程的解法和根的判别式,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一元二次方程的根与系数之间的关系,引导学生观察、实验、猜想、验证,让学生通过自主学习发现并理解这一关系。
3.操练(10分钟)教师给出一些练习题,让学生运用所学知识解决问题,巩固对根与系数之间关系的理解。
4.巩固(10分钟)教师继续给出练习题,让学生进一步巩固对根与系数之间关系的理解。
一元二次方程的根与系数之间的关系一元二次方程是数学中经常遇到的一类方程,它由一个未知数的二次多项式等于一个常数构成,通常的一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,而x为未知数。
解一元二次方程的根是求出使得方程成立的未知数的值。
在研究一元二次方程的根之前,我们先来了解一下一元二次方程的系数。
系数是指方程中各个项的系数,即a、b和c。
在一元二次方程中,系数与根之间存在着一些规律和关系。
首先,我们来探讨一元二次方程的两个根与系数之间的关系。
根据求根公式,一元二次方程的根可以通过以下公式求得:x = (-b ± √(b^2 - 4ac)) / (2a)。
从该公式中可以看出,根的值与方程的系数a、b和c有关。
具体来说,b^2 - 4ac称为判别式,它决定了方程有多少个根以及根的性质。
1. 当判别式大于0时(b^2 - 4ac > 0),方程有两个不相等的实根。
这意味着方程在坐标系中图像与x轴交于两个点。
此时,判别式的平方根√(b^2 - 4ac)为实数,且有两个解分别为x1和x2。
可以推导出,这两个解与系数的关系为:x1 + x2 = -b/ax1 * x2 = c/a2. 当判别式等于0时(b^2 - 4ac = 0),方程有两个相等的实根。
这意味着方程在坐标系中图像与x轴有且只有一个交点。
此时,判别式的平方根√(b^2 - 4ac)为0,解的公式变为:x = -b/(2a)。
可以看出,根与系数的关系为:x1 = x2 = -b/(2a)3. 当判别式小于0时(b^2 - 4ac < 0),方程没有实根,而是有两个共轭复根。
也就是说,方程在坐标系中与x轴没有交点。
此时,判别式的平方根√(b^2 - 4ac)为纯虚数,解的公式可以写成:x = (-b ± i√(|b^2 - 4ac|)) / (2a),其中i为虚数单位。
因此,系数与根的关系可以表示为: x1 + x2 = -b/ax1 * x2 = -c/a由上述关系可知,一元二次方程的根与系数之间确实存在一些规律。
一元二次方程方程根与系数关系
一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c分别是二次项系数、一次项系数和常数项。
方程的根是使方程成立的x值。
在这篇文章中,我们将探讨一元二次方程的根与系数之间的关系。
首先,我们来看一元二次方程的根的求解公式,x = (-b ± √(b^2 4ac)) / (2a)。
这个公式告诉我们,方程的根取决于方程的系数a、b和c。
1. 系数a的影响:
当a>0时,抛物线开口向上,方程有两个实根或没有实根。
当a<0时,抛物线开口向下,方程有两个实根。
2. 系数b的影响:
系数b影响方程的根的位置,它决定了根的和与积的关系。
当b>0时,两个根的和为负值,两个根的积为正值。
当b<0时,两个根的和为正值,两个根的积为正值。
3. 系数c的影响:
系数c决定了方程的常数项,它影响方程的根的大小。
当c>0时,两个根都是负数。
当c<0时,两个根一个是正数,一个是负数。
通过分析上述关系,我们可以看出,方程的根与系数之间存在着一定的关联。
系数a决定了抛物线的开口方向,系数b决定了根的和与积的关系,系数c决定了根的大小。
因此,我们可以通过观察方程的系数来初步判断方程的根的性质。
总之,一元二次方程的根与系数之间存在着密切的关系,通过对系数的分析,我们可以初步了解方程根的性质。
这种关系不仅有助于我们更好地理解方程的性质,也为我们解决实际问题中的应用提供了一定的指导。
《17.4 一元二次方程的根与系数的关系》教学目标:1.掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题.2.经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想.3.情感态度:通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神.教学重点:根与系数关系及运用.教学难点:定理的发现及运用.教学过程:一、创设情境,激发探究欲望我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,比如:抛出的重物总会落下------------------万有引力定律(牛顿)而我们数学学科中更蕴藏着大量的规律,比如:直角三角形的三边a,b,c满足关系:2a+2b=2c--------------------勾股定理(毕达哥拉斯)那么一元二次方程中是否也存在什么规律呢?今天共同去探究,感受一次当科学家的味道.设计意图:让学生感受到数学和其他学科一样,里边有很多有价值的规律,等待我们去探索,激发学生的学习兴趣,探究欲望.二、探究规律先填空,再找规律:么规律?设计意图:通过学生计算一些特殊的一元二次方程的两根之和与两根之积,启发学生从中发现存在的一般规律,渗透特殊到一般的思考方法. 三、得出定理并证明(韦达定理)若一元二次方程a 2x +bx +c =0(a ≠0)的两根为1x 、2x ,则:1x +2x =-b a 1x .2x =c a特殊的:若一元二次方程2x +px +q =0的两根为1x 、2x ,则:1x +2x =-p 1x .2x =q证明此处略(师生合作完成)设计意图:让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程. 四、运用定理解决问题例1:求下列方程的两根之和与两根之积. (1)2x -6x -15=0 (2)5x -1= 42x (3)2x =4 (4)22x =3x(5)2x -(k +1)x +2k -1=0(x 是未知数,k 是常数)设计意图:让学生初步学会运用根与系数的关系来求两根和与两根积,比较简便,(3)、(4)、(5)的设计加深学生对根与系数关系的本质理解.例2:若一元二次方程2x -4 x +2=0的两根是1x 、2x ,求下列各式的值. (1)11x +12x (2)21x +22x 设计意图:进一步巩固根与系数的关系,体会“整体代入”思想在解题中的运用,可起到简便运算的作用.例3:若一元二次方程2x +ax +2=0的两根满足:21x +22x =12,求a 的值.设计意图:它是例2的一个变式,目的是考察学生灵活运用知识解决问题能力,让学生感受到根与系数的关系在解题中的运用,同时也考察学生思维的严密性,根据情况可再进一步变式,如两根互为相反数;两根的倒数和等于2等. 五、课堂小结:让学生谈谈本节课的收获与体会:知识?方法?思想?等,教师可适当引导和点拨.。
2023-2024学年八年级数学下册17.4一元二次方程的根与系数的关系教学设计新版沪科版一. 教材分析《2023-2024学年八年级数学下册17.4一元二次方程的根与系数的关系》是新版沪科版教材中的一节内容。
本节课主要让学生掌握一元二次方程的根与系数之间的关系,能够根据方程的根判断方程的系数,并能够运用这一关系解决实际问题。
教材中通过实例引导学生探究根与系数的关系,并通过练习题进行巩固。
二. 学情分析学生在学习本节课之前,已经学习了一元二次方程的解法,对一元二次方程的概念和性质有一定的了解。
但是,对于根与系数之间的关系,学生可能还没有直观的认识。
因此,在教学过程中,需要引导学生通过实例探究,发现并理解根与系数之间的关系。
三. 教学目标1.让学生掌握一元二次方程的根与系数之间的关系。
2.培养学生通过实例探究,发现并理解数学规律的能力。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:一元二次方程的根与系数之间的关系。
2.教学难点:理解并运用根与系数之间的关系解决实际问题。
五. 教学方法1.实例探究:通过实例引导学生发现并理解根与系数之间的关系。
2.小组讨论:让学生在小组内进行讨论,共同解决问题。
3.练习巩固:通过练习题让学生巩固所学知识。
4.实际应用:让学生运用所学知识解决实际问题。
六. 教学准备1.教学PPT:制作教学PPT,展示实例和练习题。
2.练习题:准备一些练习题,用于巩固所学知识。
3.教学素材:准备一些与实际生活相关的问题,用于引导学生运用所学知识解决实际问题。
七. 教学过程1.导入(5分钟)利用PPT展示一元二次方程的解法,引导学生回顾一元二次方程的概念和性质。
然后提出问题:“你们知道一元二次方程的根与系数之间有什么关系吗?”引发学生的思考。
2.呈现(15分钟)利用PPT展示实例,引导学生探究一元二次方程的根与系数之间的关系。
通过计算实例,让学生观察根与系数之间的关系,并引导学生总结出规律。
一元二次方程的根与系数的关系一元二次方程是数学中常见的一种方程形式,具有形如ax^2+bx+c=0的表达式。
在解一元二次方程时,我们通常需要找到方程的根,也就是满足方程的x值。
本文将讨论一元二次方程的根与方程的系数之间的关系。
一元二次方程的一般形式为:ax^2+bx+c=0,其中a、b、c为常数,且a≠0。
方程的根可以通过求解“求根公式”得到,即:x = (-b±√(b^2-4ac))/(2a)在上述公式中,b^2-4ac被称为“判别式”。
判别式的值可以用来判断一元二次方程的根的性质。
1. 判别式大于零当判别式大于零时,即b^2-4ac>0,方程的根是两个不相等的实数根。
这意味着方程表示的曲线与x轴有两个交点。
2. 判别式等于零当判别式等于零时,即b^2-4ac=0,方程的根是两个相等的实数根。
这意味着方程表示的曲线与x轴有一个交点,该交点称为方程的“重根”。
3. 判别式小于零当判别式小于零时,即b^2-4ac<0,方程的根是两个共轭的复数根。
这意味着方程表示的曲线与x轴没有交点。
从以上的讨论可以看出,一元二次方程的判别式对方程的根有着重要的作用。
但是判别式与方程的系数之间也有着一定的关系。
考虑判别式的表达式b^2-4ac,我们可以从中看出与方程的系数之间的关系。
1. a为正数当a为正数时,判别式的值受到b和c的影响。
当b和c同时大于零或同时小于零时,判别式为正;当bc同时异号时,判别式为负。
2. a为负数当a为负数时,判别式的值受到b和c的影响。
当b和c同时大于零或同时小于零时,判别式为负;当bc同时异号时,判别式为正。
综上所述,一元二次方程的根与方程的系数之间存在着一定的关系。
判别式的正负决定了方程的根的性质,而方程的系数则决定了判别式的正负。
我们可以通过观察方程的系数来大致判断方程的根的情况。
但是要求根的具体值还需要通过求解一元二次方程来获得。
总结起来,一元二次方程的根与系数的关系主要体现在判别式上。
一元二次方程的根与系数的关系解一元二次方程的根可以通过求根公式得到,即 x = (-b ± √(b^2 - 4ac)) / 2a。
根据这个公式,我们可以看到根与系数之间有以下几个关系。
1.一元二次方程的根与a的关系:系数a出现在求根公式的分母位置,因此当a为0时,求根公式中将出现分母为零的情况,方程则不再是二次方程。
而当a不为0时,方程为一元二次方程,并且a的绝对值越大,求根公式的分母则越大,从而根的倒数也越大,因此a的变化会影响根的大小。
2.一元二次方程的根与b的关系:系数b出现在求根公式的分子位置,因此b的变化将直接影响根的值。
当b为正数时,根的值有两种可能:一种是两个实数根都为正数,另一种是两个实数根中一个为正数,另一个为负数。
当b为负数时,根的值也有两种可能:一种是两个实数根都为负数,另一种是两个实数根中一个为负数,另一个为正数。
3.一元二次方程的根与c的关系:系数 c 出现在求根公式中的平方根部分,从而 c 的变化对根的值起到重要的影响。
当 c 为正数时,根的值可能为两个实数,也可能为两个虚数。
当 c 为负数时,根的值为两个虚数。
而当 c 为零时,即方程为ax^2 + bx = 0,其中 a 和 b 不同时为零,方程则简化为 bx = 0,解为x = 0。
根据以上的分析,我们可以得出一些结论:-当a和b的值都相同时,方程的根的形态也相同。
例如,方程x^2+x+1=0和2x^2+2x+2=0都是只有虚根的方程。
-当a的绝对值很小时,方程的根的绝对值也较小;当a的绝对值很大时,方程的根的绝对值也较大。
-当b的绝对值很小时,方程的根的绝对值也较小;当b的绝对值很大时,方程的根的绝对值也较大。
-当c的绝对值很小时,方程的根的绝对值也较小;当c的绝对值很大时,方程的根的绝对值也较大。
综上所述,一元二次方程的根与系数之间存在着一定的关系,系数的变化会对根的大小、正负以及虚实等性质产生影响。