2018高中数学人教a版必修3课时作业:18 3.2.2 (整数值)随机数(random numbers)的产生 含解析
- 格式:doc
- 大小:45.00 KB
- 文档页数:7
课时达标检测(二十) (整数值)随机数(random numbers )的产生一、选择题1.袋子中有四个小球,分别写有“伦”“敦”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“伦”“敦”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B .14 C.13D .12 答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B .35 C.25D .13 答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B .710 C.310D .35答案:C5.甲、乙两人一起去游“2014青岛世园会”,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B .19 C.536D .16答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910 三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P=3 10.(2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P=8 15.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A表示“取出的两球是相同颜色”,B表示“取出的两球是不同颜色”.则事件A的概率为:P(A)=3×2+3×29×6=29.由于事件A与事件B是对立事件,所以事件B的概率为:P(B)=1-P(A)=1-29=79.(2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N对随机数中,每对中两个数字不同的对数n.第3步:计算nN的值,则nN就是取出的两个球是不同颜色的概率的近似值.11.先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数.(1)求点P(x,y)在直线y=x-1上的概率;(2)求点P(x,y)满足y2<4x的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P(x,y)在直线y=x-1上”为事件A,A有5个基本事件:A={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P(A)=5 36.(2)记“点P(x,y)满足y2<4x”为事件B,则事件B有17个基本事件:当x =1时,y =1; 当x =2时,y =1,2; 当x =3时,y =1,2,3; 当x =4时,y =1,2,3; 当x =5时,y =1,2,3,4; 当x =6时,y =1,2,3,4.∴P (B )=1736.。
温馨提示:此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
课后提升作业十九(整数值)随机数( )的产生(分钟分)一、选择题(每小题分,共分).关于随机数的说法正确的是().随机数就是随便取的一些数字.随机数是用计算机或计算器随便按键产生的数.用计算器或计算机产生的随机数为伪随机数.不能用伪随机数估计概率【解析】选.因为计算器或计算机是按照固定的算法产生的随机数,并不是真正的随机数..袋中有个黑球个白球,除颜色外小球完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生到的数字进行模拟试验,用代表黑球代表白球.在下列随机数中表示结果为二白一黑的组数为()【解析】选.只要找两个~之间的数和一个~之间的数即可..假定某运动员每次投掷飞镖正中靶心的概率为,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生到之间取整数值的随机数,指定表示命中靶心表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了组随机数:据此估计,该运动员两次掷镖恰有一次正中靶心的概率为 ()【解析】选.两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为中的之一.它们分别是共个,因此所求的概率为..袋子中有四个小球,分别写有“甲、乙、丙、丁”四个字,从中任取一个小球,取到“丙”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生到之间取整数值的随机数,且用表示取出小球上分别写有“甲、乙、丙、丁”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了组随机数:据此估计,直到第二次就停止概率为 ().【解析】选.由题意知在组随机数中表示第二次就停止的有。
机数,第二次产生了200组随机数,那么这两次估计的结果相比较,第________次准确.解析:用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案:二8.抛掷两枚均匀的正方体骰子,用随机模拟方法估计朝上面的点数的和是6的倍数的概率时,用1,2,3,4,5,6分别表示朝上面的点数是1,2,3,4,5,6.用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足朝上面的点数的和是6的倍数:________.(填“是”或“否”)解析:16表示第1枚骰子向上的点数是1,第二枚骰子向上的点数是6,则朝上面的点数的和是1+6=7,不表示和是6的倍数.答案:否三、解答题(每小题10分,共20分)9.小明与同学都想知道每6个人中有2个人生肖相同的概率,他们想设计一个模拟试验来估计6个人中恰有两个人生肖相同的概率,你能帮他们设计这个模拟方案吗?解析:用12个完全相同的小球分别编上号码1~12,代表12个生肖,放入一个不透明的袋中摇匀后,从中随机抽取一球,记下号码后放回,再摇匀后取出一球记下号码……连续取出6个球为一次试验,重复上述试验过程多次,统计每次试验中出现相同号码的次数除以总的试验次数,得到的试验频率可估计每6个人中有两个人生肖相同的概率.10.要产生1~25之间的随机整数,你有哪些方法?解析:方法一可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数.放回后重复以上过程,就得到一系列的1~25之间的随机整数.方法二可以利用计算机产生随机数,以Excel为例:(1)选定A1格,键入“=RANDBETWEEN(1,25)”,按Enter键,则在此格中的数是随机产生的;(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快就得到了100个1~25之间的随机数,相当于做了100次随机试验.。
3.2.2 (整数值)随机数(randomnumbers)的产生课后篇巩固提升1.下列选项不能产生随机数的是( )A.抛掷质地均匀的骰子试验B.抛质地均匀的硬币C.计算器D.质地均匀的正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体项中,出现1,3,4,5的概率均是16,但出现2的概率为13,故D 项不能产生随机数.2.先后抛掷两枚质地均匀的骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x ,y ,则log 2x y=1的概率为( )A.16B.536C.112D.12log 2x y=1,得2x=y ,其中x ,y ∈{1,2,3,4,5,6},所以{x =1,y =2或{x =2,y =4或{x =3,y =6,所以P=336=112,故选C .3.保险柜的密码由0,1,2,3,4,5,6,7,8,9中的四个数字组成,假设一个人记不清自己的保险柜密码,只记得密码全部由奇数组成且按照递增顺序排列,则最多输入2次就能开锁的频率是( )A.15B.14 C.25 D.9201,3,5,7,9,且有1,3,5,7;1,3,5,9;1,3,7,9;1,5,7,9;3,5,7,9共5种密码,最多输入2次就能开锁的频率P=25.故选C .4.掷两枚质地均匀的骰子,用随机模拟方法估计出现点数之和为10的概率时产生的整数随机数中,每几个数为一组( )A.1B.2C.3D.10,所以在产生的整数随机数中,应每两个数字一组.5.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为() A.0.35 B.0.25 C.0.20 D.0.15=0.25.20组随机数中表示恰有两次命中的数据有191,271,932,812,393,所以P=5206.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是..a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b-a+17.在用随机模拟方法解决“盒中仅有4个白球和5个黑球,从中取4个,求取出2个白球2个黑球的概率”问题时,可让计算机产生1~9的随机整数,并用1~4代表白球,用5~9代表黑球.因为是摸出4个球,所以每4个随机数作为一组.若得到的一组随机数为“4678”,则它代表的含义是.,易知数字4代表白球,数字6,7,8代表黑球,因此这组随机数的含义为摸出的4个球中,只有1个白球.4个球中,只有1个白球8.某篮球爱好者做投篮练习,如果他每次投篮命中的概率都是60%,那么在连续三次投篮中,他三次都投中的概率是多少?试设计一个模拟试验计算他三次都投中的概率.,利用计算机或计算器可以产生0到9之间和取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,因为是投篮三次,所以每三个随即数作为一组.例如,产生20组随机数812932569683271989730537925834907113966191432256393027556755就相当于做了20次试验.在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4组数,我们得到三次投篮都投中的概率近似为4=20%.20莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
课时提升卷(二十)(整数值)随机数(random numbers)的产生(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·泰安高一检测)关于随机数的说法正确的是( )A.随机数就是随便取的一些数字B.随机数是用计算机或计算器随便按键产生的数C.用计算器或计算机产生的随机数为伪随机数D.不能用伪随机数估计概率2.袋中有2个黑球,3个白球,除颜色外小球完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生0到9的数字进行模拟试验,用0,1,2,3代表黑球,4,5,6,7,8,9代表白球,在下列随机数中表示结果为二白一黑的组数为( )160 288 905 467 589 239 079 146 351A.3B.4C.5D.63.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( )A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点B.我们通常用计数器n记录做了多少次掷骰子试验,用计数器m记录其中有多少次出现2点,置n=0,m=0C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变D.程序结束.出现2点的频率作为概率的近似值4.袋子中有四个小球,分别写有“神”“十”“飞”“天”四个字,有放回地从中任取一个小球,取到“飞”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“神”“十”“飞”“天”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止概率为( )A. B. C. D.5.袋中有4个小球,除颜色外完全相同,其中有2个黄球,2个绿球.从中任取两球,取出的球为一黄一绿的概率为( )A. B. C. D.二、填空题(每小题8分,共24分)6.一学习小组共有10人,其中有4个女生6个男生,从中任选两人当正副组长.若用随机模拟方法进行模拟试验,那么确定随机数时,代表男生与女生的随机数比例为.7.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.8.(2013·北京高一检测)有五位同学分别来自高一年级一至五班,现从中任选两人担任学生会干部,问选出的两人所在班级编号之差恰好为1的概率是.三、解答题(9~10题各14分,11题18分)9.在10件产品中有7件正品,3件次品,从中任取一件,试用计算机或计算器进行随机模拟试验,写出试验过程,并求取出的一件产品恰为次品的概率.10.甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).11.(能力挑战题)甲、乙两个棋手,甲获胜的概率是,二人和棋的概率是,乙获胜的概率是.若甲、乙两人连下三局,试用随机模拟方法求出甲连胜三局的概率.答案解析1.【解析】选C.随机数是用来模拟试验结果的数字,是在等可能的条件下产生的,不是随便取的,可用计算机或计算器依照一定的算法产生,由此产生的随机数具有周期性,称为伪随机数,但周期较长,可用来近似地估计概率值.故A,B,D错误,C正确.2.【解析】选B.表示二白一黑的有:288,905,079,146.【举一反三】在此题条件下,表示结果为二黑一白的有哪些组数? 【解析】表示事件二黑一白的有:160,239,351.3.【解析】选A.计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数,包括7,共7个整数.4.【解析】选B.由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为P==.5.【解析】选B.取球结果共有:黄黄,黄绿,绿黄,绿绿四种,所以一黄一绿有两种,故所求概率为.【一题多解】利用计算器产生1到4之间的随机整数,用1,2代表黄球,3,4代表绿球.利用模拟试验产生N组随机数,从中数出代表一黄一绿的随机数个数N1,可得≈.6.【解析】因为男生有6人,女生有4人,所以代表男女生的随机数应按3∶2确定.答案:3∶27.【解析】从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5), (3,4,5),其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求的概率为.答案:【误区警示】本题易忽视三角形边的关系:两边之和大于第三边致误.8.【解题指南】利用随机模拟方法,用带有编号1,2,3,4,5的5个小球分别代表1,2,3,4,5班的五位同学,放入箱子内搅拌均匀后取出两球观察结果,写出总的结果数N和所求事件包含的结果数N1,所求概率=.【解析】用带有编号1,2,3,4,5的5个小球分别代表1,2,3,4,5班的五位同学,放入箱子内搅拌均匀后取出两球观察结果,共有10种不同的结果:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中班级编号之差为1的有(1,2),(2,3),(3,4),(4,5),共4种,所以所求概率为=0.4.答案:0.49.【解析】(1)用计算机的随机函数RANDBETWEEN(1,10)或计算器的随机函数RANDI(1,10)产生1到10之间的10个整数值随机数,分别用1,2,3表示次品,4,5,6,7,8,9,10表示正品.(2)统计试验总次数N,数出其中出现1到3之间数的次数N1.(3)计算频率,即为事件取出一件产品恰为次品的概率的近似值.10.【解析】(1)设A表示“取出的两球是相同颜色”,B表示“取出的两球是不同颜色”.则事件A的概率为:P(A)==.由于事件A与事件B是对立事件,所以事件B的概率为:P(B)=1-P(A)=1-=.(2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N对随机数中,每对中的两个数字不同的对数n.第3步:计算的值.则就是取出的两个球是不同颜色的概率的近似值.11.【解析】利用计算机或计算器可以产生0到5之间的整数值随机数,用0,1,2代表棋手甲获胜,3,4代表二人和棋,5代表棋手乙获胜.这样可以满足甲获胜的概率是,二人和棋的概率是,乙获胜的概率是.以每三个随机数作为一组,例如,产生以下30组随机数:293 345 347 489 020 349 217 032 123 034021 348 365 652 113 887 391 037 329 654 071 112 981 053 218 229 221 219 037 376 在30组随机数中代表甲连胜三局的有:020,021,112,221共4组,所以所求事件的概率为≈0.13,所以甲连胜三局的概率约为0.13.关闭Word文档返回原板块。
《(整数值)随机数的产生》教课方案一、教课内容分析本节是人教A版数学必修3第三章第二节古典概型的第二课时的内容。
在第二章统计中,学生学习了几种随机抽样方法,这些人工或借助于随机数表的抽样方法的不足是工作量大、成本高。
本节课的主要内容是介绍用计算机或计算器产生取整数值的随机数,并用随机模拟的方法预计事件的概率。
它是在学生学习了随机事件、频次、概率的意义和性质以及古典概型后,为了让学生进一步领会用频次预计概率的思想,同时也是为了让学生深故意识到在面对实质问题且不可以利用概型公式求解时,能够用随机模拟的方法计算事件发生的频次而学习的内容。
当随机模拟试验次数特别多的时候,频次的稳固值就是概率,这也是一种求概率的有效方法。
所以这节课既是随机抽样的延长,也是古典概型的重要增补,仍是信息技术与数学的有效交汇,能有效的培育学生数学建模能力。
据此,本节课的教课重点是:经过模拟试验的设计与实行,认识利用计算机和计算器产生随机数的方法;经过模拟实验的设计和实行,领会如何运用模拟试验的方法获得事件发生的频次,并以此来预计概率。
二、教课目的设置1、经过介绍让学生认识产生(整数值)随机数的两种方法及其意义,并初步学会利用计算机或计算器产生随机数;2、经过教师演示及学生实践操作,让学生进一步理解随机模拟的基本思想是用频次近似预计概率;3、经过例题教课让学生学会设计一种随机模拟方法,初步掌握成立概率模型解决简单的实质问题的方法。
三、学生学情剖析:本班学生素质整体水平较高,他们拥有扎实的数学基础,思想敏锐,拥有一定的剖析问题、解决问题的能力。
但要较好地达成本节所设教课目的、达成预设的教课内容,学生还存在以下差距:一是利用计算器和计算机产生随机数还存在一些困难,主假如学生的计算器和计算机的应用水平较低,需要提早适合的培训。
二是面对实质问题,学生应用数学建模的意识仍是比较单薄,不可以有效的把学到的知识方法迁徙到详细的问题中去,需要教师在教课中适合指引。
【成才之路】-高中数学 3.2.2(整数值)随机数(randomnumbers )的产生强化练习 新人教A 版必修3一、选择题1.关于随机数的说法正确的是( )A .随机数就是随便取的一些数字B .随机数是用计算机或计算器随便按键产生的数C .用计算器或计算机产生的随机数为伪随机数D .不能用伪随机数估计概率[答案] C2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( )A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值[答案] A3.袋中有2个黑球,3个白球,除颜色外小球完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生0到9的数字进行模拟试验,用0,1,2,3代表黑球.4,5,6,7,8,9代表白球.在下列随机数中表示结果为二白一黑的组数为( )160 288 905 467 589 239 079 146 351A .3B .4C .5D .6 [答案] B4.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A .一定不会淋雨B .淋雨机会为34C .淋雨机会为12D .淋雨机会为14[答案] D[解析] 用A 、B 分别表示下雨和不下雨,用a 、b 表示帐篷运到和运不到,则所有可能情形为(A ,a ),(A ,b ),(B ,a ),(B ,b ),则当(A ,b )发生时就会被雨淋到,∴淋雨的概率为P =14. 5.袋子中有四个小球,分别写有“神”、“十”、“飞”、“天”四个字,有放回地从中任取一个小球,取到“飞”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1、2、3、4表示取出小球上分别写有“神”、“十”、“飞”、“天”四个字,以每两个随机数为一组,代表两次的结果.经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止概率为( )A .15B .14C .13D .12 [答案] B[解析] 由随机模拟产生的随机数可知,直到第二次停止的有13、43、32、13、13共5个基本事件,故所求的概率为P =520=14. 6.袋中有4个小球,除颜色外完全相同,其中有2个黄球,2个绿球.从中任取两球。
3.2.2(整数值)随机数(randomnumbers)的产生[学习目标] 1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质.知识点(整数值)随机数的产生1.随机数要产生1~n(n∈N*)之间的随机整数,把n个大小形状相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数.2.伪随机数计算机或计算器产生的随机数是依照确定算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,因此,计算机或计算器产生的并不是真正的随机数,我们称它们为伪随机数.3.产生随机数的常用方法(1)用计算器产生;(2)用计算机产生;(3)抽签法.4.随机模拟方法(蒙特卡罗方法)用计算器或计算机模拟试验的方法.题型一随机数的产生方法例1产生10个1~100之间的取整数值的随机数.解方法一抽签法.(1)把100个大小、形状相同的小球分别标上号码1,2,3, (100)(2)把这些已经标上号码的小球放到一个袋子中搅拌均匀.(3)从袋子中任意摸出一个小球,这个球上的数就是第一个随机数.(4)把步骤(3)中的操作重复10次,即可得到10个1~100之间的取整数值的随机数.方法二用计算器产生按键过程如下:以后反复按ENTER键10次,就可得到10个1~100之间的取整数值的随机数.反思与感悟 1.可以采用抽签法或用计算机(器)产生随机数.2.利用计算机或计算器产生随机数时,需切实保证操作步骤与顺序的正确性.并且注意不同型号的计算器产生随机数的方法可能会不同,具体操作可参照其说明书.跟踪训练1某校高一年级共20个班,1200名学生,期中考试时如何把学生分配到40个考场中去?解要把1200人分到40个考场,每个考场30人,可用计算机完成.(1)按班级、学号顺序把学生档案输入计算机.(2)用随机函数按顺序给每个学生一个随机数(每人都不相同).(3)使用计算机的排序功能按随机数从小到大排列,可得到1200名学生的考试号0001,0002,…,1200,然后0001~0030为第一考场,0031~0060为第二考场,依次类推.题型二随机数的应用例2一个袋中有7个大小、形状相同的小球,6个白球,1个红球,现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次摸到红球的概率.解用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间(包括1和7)取整数值的随机数.因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.如下,产生20组随机数:666743671464571561156567732375716116614445117573552274114662就相当于做了20次试验,在这些数组中,前两个数字不是7,第三个数字恰好是7就表示第一次、第二次摸到的是白球,第三次摸到的是红球,它们分别是567和117,共两组,因此恰好第三次摸到红球的概率约为220=0.1.反思与感悟整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.跟踪训练2某种树苗成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率.设计一个试验,随机模拟估计上述概率.解利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9代表成活,这样可以体现成活率是0.9,因为种植5棵这种树苗,所以每5个随机数作为一组,可产生30组随机数:69801660977712422961742353151629747 24945575586525874130232243744544344 33315271202178258555910174524144134 922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活.其中有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率为930=30%.用随机模拟估计概率例3通过模拟试验产生了20组随机数:683030137055743077404422788426043346 09526807970657745725657659299768607191386754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________.错解因为表示三次击中目标分别是:2604,5725,6576,6754共4个数.随机总数为20.所以所求概率为P=420=15=0.2.错解分析 分析解题过程,你知道错在哪里吗?错误的根本原因是由于审题不清,或因击中目标数多查或漏查而出现错误,导致计算结果不正确.正解 因为表示三次击中目标分别是:3013,2604,5725,6576,6754,共5个数.随机数总共20个,所以所求的概率近似为520=0.25. 答案 0.251.用随机模拟方法估计概率时,其准确程度取决于( )A .产生的随机数的大小B .产生的随机数的个数C .随机数对应的结果D .产生随机数的方法答案 B解析 随机数容量越大,概率越接近实际数.2.与大量重复试验相比,随机模拟方法的优点是( )A .省时、省力B .能得概率的精确值C .误差小D .产生的随机数多 答案 A3.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .0.25C .0.20D .0.15答案 B解析 易知20组随机数中表示恰有两次命中的数据有191,271,932,812,393,所以P =520=0.25.4.从数字1,2,3,4,5中任意取出两个不同的数字构成一个两位数,则这个两位数大于40的概率是( )A.15B.25C.35D.45答案 B解析 基本事件总数为20,而大于40的基本事件数为8个,所以P =820=25. 5.在利用整数随机数进行随机模拟试验中,整数a 到整数b 之间的每个整数出现的可能性是________.答案 1b -a +1解析 [a ,b ]中共有b -a +1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b -a +1.1.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验.要熟练掌握随机数产生的方法以及随机模拟试验的步骤:(1)设计概率模型;(2)进行模拟试验;(3)统计试验结果.2.计算器和计算机产生随机数的方法用计算器的随机函数RANDI(a ,b )或计算机的随机函数RANDBETWEEN(a ,b )可以产生从整数a 到整数b 的取整数值的随机数.。
课时提升作业十九(整数值)随机数(random numbers)的产生(25分钟60分)一、选择题(每小题5分,共25分)1.用计算机随机模拟掷骰子的试验,估计出现2点的概率,则下列步骤中不正确的是( )A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点B.我们通常用计数器n记录做了多少次掷骰子试验,用计数器m记录其中有多少次出现2点,置n=0,m=0C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变D.程序结束,出现2点的频率作为概率的近似值【解析】选A.计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数(包括1,7),共7个整数.2.(2018·成都高一检测)某中学高一有21个班、高二有14个班、高三有7个班,现采用分层抽样的方法从这些班中抽取6个班对学生进行视力检查,若从抽取的6个班中再随机抽取2个班作进一步的数据分析,则抽取的2个班均为高一的概率是( )A. B. C. D.【解析】选A.先按分层抽样抽取,比例为21∶14∶7=3∶2∶1,所以高一年级抽3个班,高二年级抽2个班,高三年级抽1个班,分别记为1,2,3,4,5,6,再从中抽取2个班,基本事件一共有15种,其中全部为高一年级的是(1,2),(1,3),(2,3)共3种,所以概率为=.3.一个小组有6名同学,选1名小组长,用随机模拟法估计甲被选中的概率,下面步骤错误的是( )①把6名同学编号为1~6;②利用计算器或计算机产生1到6之间的整数随机数;③统计总试验次数N及甲的编号出现的个数N1;④计算频率f n(A)=,即为甲被选中的概率的近似值;⑤一定等于.A.①B.②③C.⑤D.④【解析】选C.概率是频率的稳定值,频率是概率的近似值,频率不一定等于概率,不一定等于.4.(2018·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A. B. C. D.【解析】选C.从5支彩笔中任取2支不同颜色的彩笔有(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)共10种取法,取出的2支彩笔中含有红色彩笔的有(红,黄),(红,蓝),(红,绿),(红,紫)共4种取法.因此所求概率为=.5.已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器得出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 86369647 1417 4698 0371 6233 2616 80456011 3661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( ) A.0.85 B.0.812 9 C.0.8 D.0.75【解析】选D.由题意知模拟射击4次的结果,经随机模拟产生了20组随机数,在20组随机数中表示射击4次至少击中3次的有: 5727 0293 9857 0347 4373 86369647 4698 6233 2616 8045 36619597 7424 4281共15组随机数,所以所求概率为=0.75.二、填空题(每小题5分,共15分)6.在利用整数随机数进行随机模拟试验中,a到b之间的每个整数出现的可能性是.【解析】[a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.答案:7.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为.【解析】共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为=.答案:8.抛掷两枚均匀的正方体骰子,用随机模拟方法估计朝上面的点数的和是6的倍数的概率时,用1,2,3,4,5,6分别表示朝上面的点数是1,2,3,4,5,6.用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足朝上面的点数的和是6的倍数: .(填“是”或“否”)【解析】16表示第一枚骰子向上的点数是1,第二枚骰子向上的点数是6,则朝上面的点数的和是1+6=7,不表示和是6的倍数.答案:否三、解答题(每小题10分,共20分)9.同时抛掷两枚均匀的正方体骰子,用随机模拟方法计算上面都是1点的概率.【解题指南】抛掷两枚均匀的正方体骰子相当于产生两个1到6的整数随机数.【解析】步骤:(1)利用计算器或计算机产生1到6的整数随机数,然后以两个一组分组,每组第1个数表示第一枚骰子向上的点数.第2个数表示另一枚骰子向上的点数.两个随机数作为一组共组成n组数.(2)统计这n组数中两个整数随机数字都是1的组数m.(3)则抛掷两枚骰子上面都是1点的概率估计为.10.某种心脏手术成功率为0.6,现准备进行3例这样的手术,试用随机模拟的方法求:(1)恰好成功一例的概率.(2)恰好成功两例的概率.【解析】利用计算机(或计算器)产生0至9之间的取整数的随机数,用0,1,2,3表示不成功,4,5,6,7,8,9表示成功,因为成功率为0.6,3例这样的手术.所以每3个随机数为一组,不妨产生100组.(1)计算在这100组中出现0,1,2,3恰有2个的组数N1,则恰好成功一例的概率的近似值为.(2)统计出这100组中,0,1,2,3恰好出现一个的组数N2,则恰好有两例成功的概率的近似值为.(20分钟40分)一、选择题(每小题5分,共10分)1.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A.一定不会淋雨B.淋雨机会为C.淋雨机会为D.淋雨机会为【解析】选D.用A,B分别表示下雨和不下雨,用a,b表示帐篷运到和运不到,则所有可能情形为(A,a),(A,b),(B,a),(B,b),则当(A,b)发生时就会被雨淋到,所以淋雨的概率为P=.2.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出两个小球,则取出的小球标注的数字之和为3或6的概率是( )A. B. C. D.【解析】选A.随机取出两个小球有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4), (2,5),(3,4),(3,5),(4,5),共10种情况,和为3只有1种情况(1,2),和为6可以是(1,5),(2,4),共2种情况.所以P=.二、填空题(每小题5分,共10分)3.(2018·南京一模)从长度为2,3,5,6的四条线段中任选三条,能构成三角形的概率为.【解析】从长度为2,3,5,6的四条线段中任选三条,共有2,3,5;2,3,6;2,5,6;3,5,6,共4种情况,能构成三角形的有2,5,6;3,5,6,两种情况,所以P(任取三条,能构成三角形)==.答案:4.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数.034 743 738 636 964 736 614 698 637 162。
3.3.2 随机数的含义与应用基础检测一、选择题(每小题5分,共20分)1.用计算机随机模拟掷骰子的试验,估计出现2点的概率,则下列步骤中不正确的是( )A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点B.我们通常用计算器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C.出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D.程序结束.出现2点的频率m n作为概率的近似值 解析: 计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数(包括1,7),共7个整数.答案: A2.小明同学的QQ 密码是由0,1,2,3,4,5,6,7,8,9这10个数字中不同的6个数字组成的六位数字,由于长时间未登录QQ ,小明忘记了密码的最后一个数字,如果小明登录QQ 时密码的最后一个数字随意选取,则恰好能登录的概率是( )A.1105B.1104C.1100D.110解析: 从0,1,2,3,4,5,6,7,8,9中任取一个数字有10个基本事件,恰巧是密码最后一位数字有1个基本事件,则恰好能登录的概率为110. 答案: D3.袋子中有四个小球,分别写有“伦”“敦”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“伦”“敦”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止概率为( )A.15B.14C.13D.12解析: 由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为P =520=14. 答案: B4.甲、乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16解析: 甲、乙最后一小时他们所在的景点共有6×6=36种情况,甲、乙最后一小时他们同在一个景点共有6种情况.由古典概型的概率公式知最后一小时他们同在一个景点的概率是P =636=16. 答案: D二、填空题(每小题5分,共15分)5.在利用整数随机数进行随机模拟试验中,整数a 到整数b 之间的每个整数出现的可能性是 W.解析: [a ,b ]中共有b -a +1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b -a +1. 答案: 1b -a +16.抛掷一枚均匀的正方体骰子两次,用随机模拟方法估计朝上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较,第 次准确.解析: 用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案: 二7.一个小组有6位同学,选1位小组长,用随机模拟方法估计甲被选中的概率,给出下列步骤:①统计甲的编号出现的个数m ;②将六名学生编号1、2、3、4、5、6;③利用计算器或计算机产生1到6之间的整数随机数,统计个数为n ;④则甲被选中的概率近似为m n. 其正确步骤顺序是 (只需写出步骤的序号即可)解析: 由随机模拟的步骤可知,正确的顺序为②③①④.答案: ②③①④三、解答题(每小题10分,共20分)8.小明与同学都想知道每6个人中有2个人生肖相同的概率,他们想设计一个模拟试验来估计6个人中恰有两个人生肖相同的概率,你能帮他们设计这个模拟方案吗?解析: 用12个完全相同的小球分别编上号码1~12,代表12个生肖,放入一个不透明的袋中摇匀后,从中随机抽取一球,记下号码后放回,再摇匀后取出一球记下号码……连续取出6个球为一次试验,重复上述试验过程多次,统计每次试验中出现相同号码的次数除以总的试验次数,得到的试验频率可估计每6个人中有两个人生肖相同的概率.9.甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解析: (1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中的两个数字不同的对数n .第3步:计算n N 的值.则n N就是取出的两个球是不同颜色的概率的近似值.。
课时作业18 (整数值)随机数(random numbers)的产生
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.用随机模拟方法估计概率时,其准确程度决定于( )
A.产生的随机数的大小
B.产生的随机数的个数
C.随机数对应的结果
D.产生随机数的方法
解析:用随机模拟方法估计概率时,其准确程度决定于产生的随机数的个数.故选B.
答案:B
2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( )
A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点
B.我们通常用计数器n记录做了多少次掷骰子试验,用计数器m记录其中有多少次出现2点,置n=0,m=0
C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变
D.程序结束,出现2点的频率作为概率的近似值
解析:计算器的随机函数RANDI(1,7)或计算机的随机函数。