千题百炼——高考数学100个热点问题(一):第31炼 解三角形的要素
- 格式:doc
- 大小:1.25 MB
- 文档页数:15
《解三角形》知识点、题型与方法归纳、知识点归纳(★☆注重细节,熟记考点☆★)1正弦定理及其变形a sin A变式: b c —— — 2R (R 为三角形外接圆半径)sin B sin C (1 a 2RsinA,b 2Rsin B,c 2RsinC (边化角公式) (2) si nA,si nB ,si nC (角化边公式)2R 2R2R(3 a: b: c sin A:si nB:si nC一、a sin A a sin A b sin Bb sin Bc sin C c sin C2 •正弦定理适用情况:(1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况) 3 •余弦定理及其推论2 22ab c 2bccosAb ac 2accosB 222cab 2abcosC4.余弦定理适用情况: (1)已知两边及夹角;注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作 用),统一成边的形式或角的形式•7. 实际问题中的常用角 (1)仰角和俯角b 22c 2 a2bc222ac b2ac2.22ab c (2)已知三边.5. 常用的三角形面积公式1(1) S ABC 底2 1(2) S 二一 absi nC26. 三角形中常用结论 1 1 acsin B bcsin A 24c R 为ABC 外接圆半径(两边夹一角);(1) a b c, b c (2) 在 ABC 中, A (3) 在 ABC 中,A Ba, a ③ tan A B tanC ;b(即两边之和大于第三边,两边之差小于第三边) b si nA si n B(即大边对大角,大角对大边) ,所以 ① sin A B sinC :② cos A B cosC ;A B C AB. C ④ sin cos ,⑤ cos sin2 2 2 2cos AcosB cosC 2ab在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图 ①)从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为a (如图②) 注:仰角、俯角、方位角的区别是:三者的参照不同。
第29炼 图像变换在三角函数中的应用在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。
要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。
一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a -:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b -:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称) (二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换 (2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。
解三角形常考基本问题归类正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。
在近几年高考中主要有以下五大命题热点:一、求解斜三角形中的基本元素:指已知两边一角(或二角一边或三边),求其它三个元素问 题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.例1、ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( ) A.)33B π++ B.)36B π++ C .6sin()33B π++ D .6sin()36B π++ 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.解:由正弦定理得:32sin sin sin sin sin sin sin()33b c b c b c B C B C B B ππ++====++-, 得b +c=B +sin(23π-B )]=6sin()6B π+. 故三角形的周长为:3+b +c =6sin()36B π++,故选(D). 评注:由于本题是选择题也可取△ABC 为直角三角形时,即B =6π,周长应为33+ 3,故排除(A)、(B)、(C).而选(D).例2、在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A .解:设E 为BC 的中点,连接DE ,则DE //AB ,且36221==AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=, x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去) 故BC =2,从而328cos 2222=⋅-+=B BC AB BC AB AC , 即3212=AC 又630sin =B ,故2sin A =1470sin =A 二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.例3 在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形解法1:由C B A sin cos sin 2==sin(A +B )=sin A cos B +cos A sin B ,即sin A cos B -cos A sin B =0,得sin(A -B )=0,得A =B .故选(B).解法2:由题意,得cos B =sin 2sin 2C c A a =,再由余弦定理,得cos B =2222a c b ac+-. ∴ 2222a c b ac+-=2c a ,即a 2=b 2,得a =b ,故选(B). 评注:判断三角形形状,通常用两种典型方法:⑴统一化为角,再判断(如解法1),⑵统一化为边,再判断(如解法2).三、解决与面积有关问题:主要是利用正、余弦定理,并结合三角形的面积公式来解题. 例4、在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________ 分析:本题只需由余弦定理,求出边AC ,再运用面积公式S =21AB •AC sin A 即可解决. 解:由余弦定理,得cos A =2222254912102AB AC BC AC AB AC AC +-+-==-∙∙, 解得AC =3.∴ S =21AB •AC sin A =4315. ∴21AB •AC •sin A =21AC •h ,得h =AB • sin A =223,故选(A). 四、求值问题 例5、 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件 222a bc c b =-+和321+=b c ,求A ∠和B tan 的值. 分析:本题给出一些条件式的求值问题,关键还是运用正、余弦定理.解:由余弦定理212cos 222=-+=bc a c b A ,因此,︒=∠60A 在△ABC 中,∠C=180°-∠A -∠B=120°-∠B.由已知条件,应用正弦定理BB BC b c sin )120sin(sin sin 321-︒===+ ,21cot 23sin sin 120cos cos 120sin +=︒-︒=B B B B 解得,2cot =B 从而.21tan =B 五、正余弦定理解三角形的实际应用:利用正余弦定理解斜三角形,在实际应用中有着广 泛的应用,如测量、航海、几何等方面都要用到解三角形的知识,例析如下:(一.)测量问题例1 如图1所示,为了测河的宽度,在一岸边选定A 、B 两点,望对岸标记物C ,测得∠CAB=30°,∠CBA=75°,AB=120cm ,求河的宽度。
高考热点剖析——解三角形热点问题高考对本内容的考查主要有:正弦定理、余弦定理及其应用,要求是B 级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题.试题类型可能是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题.1.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .2.余弦定理及其推论a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .4.三角形中的常用结论(1)三角形内角和定理:A +B +C =π.(2)A >B >C ⇔a >b >c ⇔>sin A >sin B >sin C . (3)a =b cos C +c cos B . 【应对策略】解三角形是三角函数作为工具的重要体现,在历年的高考试题中占有重要地位,尤其是与三角函数的综合更加是考查重点,题型可能是填空题,也可能是解答题.需要熟练掌握三角形中的基本定理及其变形,以及正、余弦定理与三角函数的结合问题. 【必备方法】1.三角形中的三角函数是三角函数图象和性质的一个重要方面的应用,解决的关键是要善于应用诱导公式、同角三角函数的基本关系等三角函数基础知识对三角函数解析式进行化简、变形,同时要注意有关角的范围限制.2.正弦定理的应用:(1)已知两角和任意一边,求其它两边和一角; (2)已知两边和其中一边对角,求另一边的对角,进而可求其他的边和角. 3.利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.命题角度一 正、余弦定理与三角函数的结合问题[命题要点] 正、余弦定理与三角函数结合命题是高考的一个方面,往往以三角函数为载体考查解三角形知识.【例1】► (2012·天一、淮阴、海门中学联考)已知函数f (x )=32sin 2x -cos 2x -12,x ∈R .(1)求函数f (x )的最小值和最小正周期;(2)设△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,且c =3,f (C )=0,若sin B =2sin A ,求a ,b 的值.[思路分析] (1)将原函数解析式通过恒等变换化简成y =A sin(ωx +φ)形解决; (2)通过正、余弦定理的结合解题. 解 (1)f (x )=32sin 2x -1+cos 2x 2-12=sin ⎝⎛⎭⎪⎫2x -π6-1,则f (x )的最小值是-2,最小正周期是T =2π2=π.(2)f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0,则sin ⎝ ⎛⎭⎪⎫2C -π6=1, ∵0<C <π,∴-π6<2C -π6<11π6,∴2C -π6=π2,∴C =π3,sin B =2sin A ,由正弦定理,得a b =12,①由余弦定理,得c 2=a 2+b 2-2ab cos π3,即a 2+b 2-ab =3,②由①②解得a =1,b =2.【方法支招】对边、角混合的问题的处理办法一般是实施边、角统一,而正弦定理、余弦定理在实施边和角相互转化时有重要作用,如果边是一次式,一般用正弦定理转化,如果边是二次式,一般用余弦定理.【突破训练1】 (2012·苏州调研)在△ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,且a -cb -c =sin Bsin A +sin C. (1)求A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间. 解 (1)由a -cb -c =sin B sin A +sin C ,得a -c b -c =ba +c. ∴a 2=b 2+c 2-bc .由余弦定理,得cos A =12.∵0<A <π,∴A =π3.(2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝ ⎛⎭⎪⎫x +π3-sin 2⎝ ⎛⎭⎪⎫x -π3=1+cos ⎝ ⎛⎭⎪⎫2x +2π32-1-cos ⎝ ⎛⎭⎪⎫2x -2π32=-12cos 2x .令2k π≤2x ≤2k π+π(k ∈Z ),得k π≤x ≤k π+π2(k ∈Z ),∴f (x )的单调递增区间为[k π,k π+π2](k ∈Z ).命题角度二 正、余弦定理与三角形面积的结合问题[命题要点] ①根据条件求面积大小、最值或范围;②已知三角形面积,求其它元素. 【例2】►(2012年高考(浙江理))在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值;(Ⅱ)若a 求∆ABC 的面积. .[思路分析] 由已知条件结合三角恒等变换,正、余弦定理及三角形的面积公式解决. 【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ) ∵cos A =23>0,∴sin A =,cos C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C . 又由正弦定理知:sin sin a cA C=,故c =对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b 舍去).∴∆ABC 的面积为:S .. 【方法支招】三角形中的面积公式一般与正弦定理、余弦定理的应用有密切关系,而在解决问题时又要充分应用三角恒等变换公式.三角恒等变换公式是解决三角函数类问题、三角形问题的工具,在复习时要注意这个特点.【突破训练2】 在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,已知2sin A =3cos A . (1)若a 2-c 2=b 2-mbc ,求实数m 的值; (2)若a =3,求△ABC 面积的最大值.解 (1)∵2sin A =3cos A ,∴2sin 2A =3cos A , 即2cos 2A +3cos A -2=0, 解得cos A =12或-2(舍去),又0<A <π,∴A =π3.由余弦定理,知b 2+c 2-a 2=2bc cos A . 又a 2-c 2=b 2-mbc , 可得cos A =m2,∴m =1.(2)由余弦定理及a =3,A =π3, 可得3=b 2+c 2-bc ,再由基本不等式b 2+c 2≥2bc ,∴bc ≤3,∴S △ABC =12bc sin A =12bc sin π3=34bc ≤334,故△ABC 面积的最大值为334.命题角度三 解三角形在实际问题中的应用[命题要点] ①应用正弦定理、余弦定理求距离或航行方向;②与三角函数综合考查,求解最值等实际问题.【例3】►为了测量某城市电视塔的高度,在一条直道上选 择了A ,B ,C 三点,使m BC AB 60==,在A ,B ,C 三点观察塔的最高点,测得仰角分别为602.5445,,,若测量 者的身高为1.5m ,试求电视塔的高度(结果保留1位小数). 【思路分析】引导学生依据题意画出示意图如图,将实际问题转化为解三角形问题。
第30炼 函数()sin y A x ωϕ=+解析式的求解在有关三角函数的解答题中,凡涉及到()()sin f x A x ωϕ=+的性质时,往往表达式不直接给出,而是需要利用已知条件化简或求得,,A ωϕ得到,本讲主要介绍求解()sin y A x ωϕ=+解析式的一些技巧和方法一、基础知识:(一)表达式的化简:1、所涉及的公式(要熟记,是三角函数式变形的基础) (1)降幂公式:221cos21cos2cos ,sin 22αααα+-==(2)2sin cos sin 2ααα=(3)两角和差的正余弦公式()sin sin cos sin cos αβαββα+=+ ()sin sin cos sin cos αβαββα-=- ()cos cos cos sin sin αβαβαβ+=- ()cos cos cos sin sin αβαβαβ-=+(4)合角公式:()sin cos a b αααϕ+=+,其中tan baϕ=(这是本讲的主角,也是化简的终结技)2、关于合角公式:()sin cos a b αααϕ+=+的说明书:(1)使用范围:三个特点:① 同角(均为α),②齐一次,③正余全(2)操作手册:如果遇到了符合以上三个条件的式子,恭喜你,可以使用合角公式将其化为()()sin f x A x ωϕ=+的形式了,通过以下三步:,表达式变为:sin cos a b αααα⎫+=+⎪⎭② 二找:由221+=,故可看作同一个角的正余弦(称ϕ为辅助角),如cos ϕϕ==,可得:)sin cos cos sin sin cos a b ααϕαϕα+=+③ 三合:利用两角和差的正余弦公式进行合角:()sin cos a b αααϕ+=+(3)举例说明:sin y x x =+① 12sin 2y x x ⎛⎫=+⎪⎝⎭②1cos sin 2cos sin sin cos 23333y x x ππππ⎛⎫==⇒=+ ⎪⎝⎭③ 2sin 3y x π⎛⎫=+⎪⎝⎭(4)注意事项:① 在找角的过程中,一定要找“同一个角”的正余弦,因为合角的理论基础是两角和差的正余弦公式,所以构造的正余弦要同角② 此公式不要死记硬背,找角的要求很低,只需同一个角的正余弦即可,所以可以从不同的角度构造角,从而利用不同的公式进行合角,例如上面的那个例子:12sin 2y x x ⎛⎫=+ ⎪⎝⎭,可视为1sin cos 266ππ==,那么此时表达式就变为: 2sin sin cos cos 66y x x ππ⎛⎫=+ ⎪⎝⎭,使用两角差的余弦公式:2cos 6y x π⎛⎫=- ⎪⎝⎭所以,找角可以灵活,不必拘于结论的形式。
专题11 三角恒等与解三角形综合必刷大题100题任务一:善良模式(基础)1-40题1.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,角A 、B 、C 的度数成等差数列,b = (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.2.已知函数()22sin cos 6f x x x x π⎛⎫=-- ⎪⎝⎭.(1)求()f x 的最小正周期;(2)当,44x ππ⎛⎫∈- ⎪⎝⎭时,求()f x 的值域.3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且222sin b A c a +=. (1)求角A ;(2)若a =2tan tan tan a b cA B C=+,求ABC 的面积.4.在ABC 中,120BAC ∠=︒,sin ABC ∠=D 是CA 延长线上一点,且24AD AC ==. (1)求sin ACB ∠的值; (2)求BD 的长.5.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2222sin sin sin b c a B Abc C +--=. .1.求角C 的值;(2)若4a b +=,当边c 取最小值时,求ABC 的面积.6.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知2cos c b b A -=⋅.(1)若a =3b =,求c ; (2)若角2C π=,求角B .7.已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB (1)求B 的大小;(2)求cos 3cos AC A B +的值.8.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且()sin cos 0a B B C ++=. (1)若sin 2a A b =,求sin B ;(2)若a =2sin sin B C =,求ABC 的面积.9.在ABC 中,三内角A ,B ,C 对应的边分别是a ,b ,c ,cos cos 2cos 0b C c B A ++=,且1a =. (Ⅰ)求角A 的大小;(Ⅱ)若ABC ABC 的周长.10.已知函数()()()cos sin f x x x x x =∈R . (1)求()f x 的最小正周期和单调增区间;(2)在ABC 中,角,,A B C 的对边分别为,,a b c .若2B f ⎛⎫= ⎪⎝⎭6b =,求ABC 的面积的取值范围.11.在ABC 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b = (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值12.在ABC 中,已知2cos S bc A =,其中S 为ABC 的面积,a ,b ,c 分别为角A ,B ,C 的对边. (1)求角A 的值;(2)若6tan 5B =,求sin 2C 的值.13.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足3sin c a B =,cos B =, (.)求证:4A π=;(.)若边AB 上中线CD ABC 的面积.14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c sin (2cos )A a B =+. (1)求B ;(2)若△ABC △ABC 的周长的最小值.15.已知平面向量(sin cos ,2sin )a x x x =+,(sin cos ,)b x x x =-,函数()(R)f x a b x =⋅∈. (1)求()f x 的最小正周期及单调递减区间; (2)若(0,)m π∈,223m f ⎛⎫=- ⎪⎝⎭,求sin m 的值.16.在ABC 中,4ABC π∠=,D 是边BC 上一点,且5AD =,3cos 5ADC ∠=.(1)求BD 的长;(2)若ABC 的面积为14,求AC 的长.17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos 0a c B b A ++=. (1)求B ;(2)若4b =,求ABC 的面积的最大值.18.如图,在ABC ∆中,2AC =,3A π∠=,点D 在线段AB 上.(1)若1cos 3CDB ∠=-,求CD 的长;(2)若2AD DB =,sin ACD BCD ∠=∠,求ABC ∆的面积.19.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,且()2cos cos cos A b C c B a +=. (1)求角A ;(2)在ABC 中,D 为BC 边上一点,且()12AD AB AC =+,2AD =,求ABC 面积的最大值.20.已知函数()21sin sin 22f x x x x π⎛⎫=-+- ⎪⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值.21.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin sin 2sin cos 0A B C B --=. (1)求内角C 的大小;(2)若ABC ∆的周长为6+c 的长度.22.ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且满足 ()()cos 2cos b A c a B π=+-. (1)求角B 的大小;(2)若b =ABC ∆a c +的值.23.已知函数()23sin cos f x x x x =x ∈R . (1)求函数()f x 的最小正周期;(2)若2a f ⎛⎫= ⎪⎝⎭,263a ππ⎛⎫<< ⎪⎝⎭,求3cos 2a π⎛⎫+ ⎪⎝⎭的值.24.在ABC ∆中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足sin 4sin b B a A =,()2222bc b a c =--.(1)求角B 的大小; (2)求()sin 2A B -的值.25.在ABC 中,内角A ,B ,C 所对的边长分别为,,,cos 23cos()1a b c C A B ++=. (1)求角C ;(2)若2c =,求ABC 面积的最大值.26.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =. (1)求角C 的大小;(2)若3PB =,sin BAP ∠=ABC 的面积.27.已知向量()2cos ,sin a x x =,()cos ,b x x =-,且()1f x a b =⋅-. (1)求()f x 的单调递增区间;(2)先将函数()y f x =的图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将所得图象向左平移12π个单位,得到函数()y g x =的图象,求方程()1g x =在区间0,2x π⎡⎤∈⎢⎥⎣⎦上所有根之和.28.已知函数443()2sin cos 224x x f x x =++-. (1)求()f x 的最小正周期;(2)求()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上对称轴、对称中心及其最值.29.函数()()2sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<),且()y f x =的最大值为2,其图象相邻两对称轴间的距离为2,并过点()1,2. (1)求ϕ;(2)计算()()12f f ++…()2019f .30.设函数2()sin(2)2cos 16f x x x π=-+-.(Ⅰ)当[0,]2x π∈时,求函数()f x 的值域;(Ⅱ)ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且1()2f A =,2223a b =,1c =,求ABC ∆的面积.31.已知通数()cos()(0,0)f x x ωϕωϕπ=+><<的图像经过点1,62π⎛⎫- ⎪⎝⎭,图像与x 轴两个相邻交点的距离为π.(.)求()f x 的解析式:(.)若335f πθ⎛⎫+=- ⎪⎝⎭,求sin θ的值.32.已知向量()3sin ,2cos a x x =-,()2cos ,cos b x x =,函数()1()f x a b x =⋅+∈R .(1)求函数()f x 的单调递增区间;(2)在ABC ∆中,内角A 、B 、C 所对边的长分别是a 、b 、c ,若()2f A =,4C π,2c =,求ABC∆的面积ABC S ∆.33.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足:()2222sin sin b c a C c B +-=.(.)求角A 的大小;(Ⅱ)若1a =,求b c +的最大值.34.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .35.在①sinsin 2A Bb c B +=)cos sin c A b a C -=-,③cos cos cos c a b C A B+=+这三个条件中任选一个,补充在下面的问题中,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________. (1)求C ;(2)若ABC 的面积为AC 的中点为D ,求BD 的最小值.36.在①22cos a b c B -=(A +B )=1+22sin 2C这两个条件中选一个,补充在下面的横线处,然后解答问题.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设△ABC 的面积为S ,已知___. (1)求角C 的值;(2)若b =4,点D 在边AB 上,CD 为∠ACB 的平分线,△CDB ,求边长a 的值.注:如果选择多个条件分别解答,按第一个解答计分.37.在①2cos (cos cos )A c B b C a +=,②222sin sin sin sin sin B C A B C +-=cos b cC C a++=这三个条件中任选一个,补充在下面问题中,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且________. (1)求角A ;(2)若O 是ABC 内一点,120AOB ∠=︒,150AOC ∠=︒,1b =,3c =,求tan ABO ∠. 注:如果选择多个条件分别解答,按第一个解答计分. 38.在①cos cos 2B b C a c=-+,②sin sin sin A b cB C a c +=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若2a =,4c =,求AC 边上的垂线长.39.在.cos cos 2B b C a c=-+,.sin sin sin A b cB C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,7b =,5c =,求a 的值.40.记ABC 的内角,,A B C 的对边分别为,,a b c .请在下列三个条件中任选一个作为已知条件,解答问题.①()sin sin()sin a c A c A B b B -++=;②2S AB CB =⋅(其中S 为ABC 的面积);③sin cos c B C -=.(1)若4,3b ac ==,求a c +的值;c ,求a的取值范围.(2)若ABC为锐角三角形,且2任务二:中立模式(中档)1-40题1.在.2sin tan a B b A =;.cos sin b a C A =;.()22222cos a c b bc A +-=-三个条件中任选一个,补充在下面问题中,并作答.问题:已知ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,且a =___________. (1)求角A 的大小; (2)求ABC 面积的最大值.2.已知函数2()2cos 1cos (01)f x x x x ωωωω=-+<<,直线3x π=是函数()f x 的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)令()22263g x f x f x m ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭,若12,x x 是函数()g x 在0,2π⎡⎤⎢⎥⎣⎦的零点,求()12cos x x +的值.3.ABC 的内角A ,B ,C 的对边分别是a ,b ,c sin cos c B C +=. (1)求角B 的大小;(2)若b =D 为AC 边上一点,1BD =,且___________,求ABC 的面积.(从①BD 为ABC ∠的平分线,②D 为AC 的中点,这两个条件中任选一个补充在上面的横线上并作答)4.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设ABC 面积的大小为S 32AB AC S ⋅=. (1)求A 的值;(2)若ABC 的外接圆直径为1,求22b c +的取值范围.5.在ABC 中,1a =,2b =.(1)若边c =ABC 的面积S ;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出sin A . ①2B A =; ②π3A B +=; ③2C B =6.已知(1,2)m x ω=,2(2sin 1,cos )n x x ωω=-,令().f x m n =⋅其中01ω<<,满足()43f x f x π⎛⎫-= ⎪⎝⎭. (1)求()f x 的解析式;(2)在锐角ABC 中,角,,A B C 所对边分别为,,a b c ,()1f B =且1c =,求ABC 的面积的取值范围.7.在①()()()sin sin sin sin A B a b C B c +-=-,②sin sin 2B C b a B +=,③2tan tan tan B bA B c=+中任选一个,补充在横线上,并回答下面问题.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且________. (1)求角A 的大小;(2)已知2AB =,D 为AB 中点,且2CD ab =,求ABC 面积.8.如图,D 是直角ABC 斜边上一点(不含端点),AB AD =,记BAD ∠=α,ADC β∠=.(1sin 2αβ-的最大值;(2)若AC =,求角β的值.9.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,点M 在边BC 上,已知2cos 2a C b c =+. (1)求A ;(2)若AM 是角A 的平分线,且2AM =,求ABC 的面积的最小值.10.1.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,()()3cos cos 4cos cos a b A a B c A a C c +=+,再从下面条件①与②中任选1个作为已知条件,完成以下问题.(1)证明:ABC 为锐角三角形;(2)若8CA CB ⋅=,CD 为ABC 的内角平分线,且与AB 边交于D ,求CD 的长. ①2cos 3C =;②1cos 9A =.11.在①2cos (cos cos )A c B b C a +=cos b cC C a++=这两个条件中任选一个,补充在下面问题中,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且________.(1)求角A ;(2)若O 是ABC 内一点,120,150,1,3∠=︒∠=︒==AOB AOC b c ,求tan ABO ∠.12.在“①2cos a B c =;②(),m a c b =-,(),n c b a b =++,//m n ”这两个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,a ,b ,c 分别是三内角A ,B ,C 的对边,已知4b =,D 是AB 边上的点,且3AD DB =,()211sin sin 2cos sin224C A B C -=+,若_______________,求CD 的长度.13.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin 2sin B C A +=,3sin 4sin =b C c A ,点D 在射线AC 上,满足cos 2cos ABD B ∠=. (1)求ABD ∠;(2)设ABD ∠的角平分线与直线AC 交于点E ,求证:111BA BD BE+=.14.在ABC 中,内角、、A B C 所对边分别为a b c 、、,若2222sin sin sin cos cos C A B A B -=++. (1)求C ;(2)若ABC 为锐角三角形,且4b =,求ABC 面积的取值范围.15.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =cos (cos )+-C B B cos 0A =.(1)求角A 的大小;(2)求2b c +的取值范围.16.已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,7cos 25c B a b =-. (1)求cos C ;(2)若点A ,B 是函数()2sin 133f x x ππ⎛⎫=+- ⎪⎝⎭的图象在某个周期内的最高点与最低点,求ABC 面积的最大值.17.在平面四边形ABCD 中,AB =1,BC =CD =2,AD =3. (1)证明:3cos A -4cos C =1;(2)记△ABD 与△BCD 的面积分别为S 1,S 2,求S 12+S 22的最大值.18.在锐角ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos c b a B b A -=-. (1)求角A 的大小;(2)若1a =,求ABC 周长的范围.19.在.cos cos 2B b C a c -=+,.sin sin sin A b cB C a c+=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若2a =,4c =,AB 边上的中垂线交AC 于D 点,求BD 的长.20.ABC 的内角A ,B ,C 的对边分别为a ,b ,c 且满足2a =,()cos 2cos a B c b A =-. (1)求角A 的大小; (2)求ABC 周长的范围.21.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos 2b cC a-=. (1)求角A 的大小;(2)若ABC 的周长为6,求ABC 面积S 的最大值.22.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin 2A Bc B b +=. (1)求角C 的大小;(2)若8b =,cos B D 为边BC 上一点,且7AD =,求BD DC 的值.23.如图,在ABC 中,AB AC >,AD 、AE 分别为BC 边上的高和中线,4=AD ,3DE =(1)若90BAC ∠=︒,求AB 的长;(2)是否存在这样的ABC ,使得射线AE 和AD 三等分BAC ∠?24.已知函数2())2sin 1,(0,0)2x f x x ωϕωϕωϕπ+⎛⎫=++-><< ⎪⎝⎭为奇函数,且()f x 图像相邻的对称轴之间的距离为2π(1)求函数()f x 的解析式及其减区间;(2)在ABC 中,角A 、B 、C 对应的边为a 、b 、c ,且a =26f A π⎛⎫+= ⎪⎝⎭ABC 的周长的取值范围.25.在ABC 中,角,,A B C 的对边分别为,,a b c ,满足sin (1cos )3sin cos cos sin B C A C A C +=+ 且π2C ≠. (1)求证:2b a =;(2)若2c =,求ABC 的面积的最大值.26.在ABC 中,AC AB >,31cos 32A =,8AB =.(1)若ABC S =△BC ;(2)若()1cos 8B C -=,求ABC S ∆.27.1.已知向量()cos ,sin m x x →=,()cos x n x →=,设()12f x m n →→=⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦.(1)求()f x 的值域; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.28.如图,ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,c =,且cos (2)cos -=-a c B c b C .(1)求角C 的大小;(2)在ABC 内有点M ,CMA CMB ∠=∠,且3BM AM =,直线CM 交AB 于点Q ,求cos CQA ∠.29.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且满足22,c a ab =+记ABC 的面积为S. (1)求证:2C A =;(2)若ABC 为锐角三角形,4b =,且S λ<恒成立,求实数λ的范围.30.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,从下面条件①与②中任选一个作为已知条件,并完成下列问题: (1)求B ;(2)若4AC =,求ABC 的周长的最大值.条件①:cos (2)cos 0b C a c B --=;条件②:()(sin sin )()sin a b A B a c C +-=-. 注:如果选择不同的条件分别解答,按照第一种选择的解答计分. 31.在①cos cos 2B b C a c =-+,②sin sin sin A b cB C a c+=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,BD 是ABC ∠的平分线交AC 于点D ,若1BD =,求4a c +的最小值.32.在①cos cos 2B b C a c=-+,②sin sin sin A b cB C a c +=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,作AB AD ⊥,使得四边形ABCD 满足3ACD π∠=,AD =ACDS的最值33.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若b =2-c a 的取值范围.34.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且22cos c a b A -=,3b =.(1)求B 的大小;(2)若a =ABC 的面积;(3)求ac a c+的最大值.35.如图,在四边形ABCD 中,34ABC π∠=,AB AD ⊥,AB =(1)若AC =ABC ∆的面积;(2)若6ADC π∠=,CD =AD 的长.36.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,求a c b+的取值范围.37.在ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++. (1)求A 的大小;(2)若sin sin 1B C +=,试判断ABC 的形状;(3)若3a =,求ABC 周长的最大值.38.如图,在四边形ABCD 中,2D B ∠=∠,且1AD =,3CD =,cos B =(1)求AC 的长;(2)求四边形ABCD 面积的最大值.39.现给出三个条件:①a sin 2A C +=b sin A ,②a cos C +c cos A =2b cosB ,③2c -a =2b cos A .从中选出一个补充在下面的问题中,并解答问题.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,________.(1)求角B 的大小;(2)若b =2,求△ABC 周长的取值范围.40.目前,中国已经建成全球最大的5G 网络,无论是大山深处还是广袤平原,处处都能见到5G 基站的身影.如图,某同学在一条水平公路上观测对面山项上的一座5G 基站AB ,已知基站高50m AB =,该同学眼高1.5m (眼睛到地面的距离),该同学在初始位置C 处(眼睛所在位置)测得基站底部B 的仰角为37°,测得基站顶端A 的仰角为45°.(1)求出山高BE (结果保留整数);(2)如图,当该同学面向基站AB 前行时(保持在同一铅垂面内),记该同学所在位置M 处(眼睛所在位置)到基站AB 所在直线的距离m MD x =,且记在M 处观测基站底部B 的仰角为α,观测基站顶端A 的仰角为β.试问当x 多大时,观测基站的视角AMB ∠最大?参考数据:sin80.14︒≈,sin370.6︒≈,sin 450.7︒≈,sin1270.8︒≈.任务三:邪恶模式(困难)1-20题1.ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC 面积的2倍.(1)求sin sin B C∠∠的值;(2)从①1AD =,②DC =cos C =这三个条件中选择两个条件作为已知,求BD 和AC 的长.2.已知函数()()1sin sin cos 2f x x x x ωωω=+-(0>ω)图象的相邻两条对称轴之间的距离为2π. (1)求()f x 的单调递增区间以及()f x 图象的对称中心坐标;(2)是否存在锐角α,β,使2π23αβ+=,3ππ222f f αβ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭α,β的值;若不存在,请说明理由.3.已知函数()2()2sin 1(0,0 )2x f x x ωϕωϕωϕπ+⎛⎫++-><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为 2π. (1)求()f x 的解析式与单调递减区间;(2)将函数()f x 的图象向右平移 6π个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当 0,2x π⎡⎤∈⎢⎥⎣⎦时,求方程()22()30g x x +-=的所有根的和.4.已知函数()sin (0)f x x x ωωω=>.(1)当03ω<<时,函数()()3y f x f x πω=--的图象关于直线512x π=对称,求()f x 在[]0,π上的单调递增区间;(2)若()f x 的图像向右平移3π个单位得到的函数()g x 在[,]2ππ上仅有一个零点,求ω的取值范围.5.在平面四边形ABCD 中,3AB =,5AD =,120BAD ∠=︒,60BCD ∠=︒(1)求BD 的长;(2)求AD BC AB CD ⋅+⋅的最大值.6.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,作AB AD ⊥,使得四边形ABCD 满足3ACD π∠=,AD = 求BC 的取值范围.7.已知A ∠是ABC 的内角,函数()()3cos sin 2f x x x A π⎛⎫=-- ⎪⎝⎭的最大值为14.(1)求A ∠的大小;(2)若()()124g x f x ⎡⎤=+⎢⎥⎣⎦,关于x 的方程()()2410g x m g x -+=⎡⎤⎡⎤⎣⎦⎣⎦在,33x ππ⎛⎫∈- ⎪⎝⎭内有两个不同的解,求实数m 的取值范围.8.如图,有一景区的平面图是一个半圆形,其中O 为圆心,直径AB 的长为2km ,C ,D 两点在半圆弧上,且BC CD =,设COB θ∠=;(1)当π12θ=时,求四边形ABCD 的面积. (2)若要在景区内铺设一条由线段AB ,BC ,CD 和DA 组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l 的最大值.9.某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB 为地面,CD ,CE 为路灯灯杆,CD AB ⊥,2π3DCE ∠=,在E 处安装路灯,且路灯的照明张角π3MEN ∠=,已知4CD =m ,2CE =m .(1)当M ,D 重合时,求路灯在路面的照明宽度MN ;(2)求此路灯在路面上的照明宽度MN 的最小值.10.已知向量1(sin ,1),3cos ,2m x n x ⎛⎫==- ⎪⎭.令函数()()f x m n m =+⋅. (1)求函数()f x 的最小正周期和单调递增区间;(2)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于D .其中,函数()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a b +的最小值.11.如图,在四边形ABCD 中,CD =BC =cos 14CBD ∠=.(1)求BDC ∠;(2)若3A π∠=,求ABD △周长的最大值.12.已知函数()cos 14f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域; (2)是否同时存在实数a 和正整数n ,使得函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点?若存在,请求出所有符合条件的a 和n 的值;若不存在,请说明理由.1360°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N ,M 在OB 上,设矩形PNMQ 的面积为y .(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设△POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.14.如图,在梯形ABCD 中,//AB CD ,2AB =,5CD =,23ABC π∠=.(1)若AC =ABCD 的面积;(2)若AC BD ⊥,求tan ABD ∠.15.已知a ,b ,c 是ABC 的内角A ,B ,C 的对边,且ABC 的面积214S c =.(1)记(2,1)m c =,(2,cos )n a B =-,若//m n . (i )求角C , (ii )求a b的值;(2)求a b的取值范围.16.如图,某污水处理厂要在一个矩形污水处理池ABCD 的池底水平铺设污水净化管道(Rt FHE ∆三条边,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上,已知20AB =米,AD =BHE θ∠=.(1)试将污水净化管道的总长度L (即Rt FHE ∆的周长)表示为θ的函数,并求出定义域;(2)问θ取何值时,污水净化效果最好?并求出此时管道的总长度.17.某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以AB 为直径的圆,且300AB =米,景观湖边界CD 与AB 平行且它们间的距离为A 点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作PQ .设2AOP θ∠=.(1)用θ表示线段,PQ 并确定sin 2θ的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将PQ 的长度设计到最长,求PQ 的最大值.18.随着生活水平的不断提高,人们更加关注健康,重视锻炼,“日行一万步,健康一辈子”.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,A B C A ---为某市的一条健康步道,AB ,AC 为线段,BC 是以BC 为直径的半圆,AB =,4km AC =,6BAC π∠=.(1)求BC 的长度;(2)为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新增健康步道A D C --(B ,D在AC 两侧),AD ,CD 为线段.若3ADC π∠=,A 到健康步道B C D --的最短距离为,求D 到直线AB 距离的取值范围.19.已知函数()21cos 2sin 222xxxf x ωωω=+-(0>ω)在一个周期内的图象如图所示,A 为()f x 图象的最高点,B ,C 为()f x 图象与x 轴的交点,且ABC 为等腰直角三角形.(1)求ω的值及函数()f x 的值域;(2)若()85f α=,且84,33α⎛⎫∈- ⎪⎝⎭,求()1f α+的值;(3)已知函数()y g x =的图象是由()y f x =的图象上各点的横坐标缩短到原来的12倍,然后再向左平移1个单位长度得到的,若存在()0,2x ∈,使()()24g 12g x a x ⎡⎤+=⋅-⎣⎦成立,求a 的取值范围.20.已知△ABC 中,函数3()cos()sin()2f x x A x π=+⋅-的最大值为14. (1)求△A 的大小;(2)若1()2(())4g x f x =+,方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解,求实数m 取值范围.。
解三角形中的要素一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:(1)222cos 2b c a A bc+-=① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A(2)()()2221cos a b c bc A =+-+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进行整体代入即可 3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)()12S a b c r =++⋅ (r 为三角形内切圆半径,此公式也可用于求内切圆半径)(4)海伦公式:()12S p a b c ==++(5)向量方法:()()22S a b a b =⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==-S ∴=cos a b ab C ⋅=∴ ()()22S a ba b=⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 4、三角形内角和A B C π++=(两角可表示另一角)。
解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。
2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:α北东h i l=θ(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==75A ∠=,则b =α 北东南西 B目标lh( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos 2B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 3b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC·sinC 2752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。
2018年高考数学解三角形专题复习100题1.如图在△ABC中,D是边AC上的点,且AB=AD,,BC=2BD.(1)求的值;(2)求sinC的值.2.△ABC中,角A,B,C所对的边分别为a,b,c.已知 .求sinA和c的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD AC,求△ABD的面积.4.在中,内角A,B,C所对的边分别为a,b,c,.(1)若,求c的值;(2)若,求的面积.5.的内角A,B,C的对边分别为a,b,c,已知,,.(1)求c;(2)设为边上一点,且,求的面积.6.在△ABC中, =60°,c= a.(Ⅰ)求sinC的值;(Ⅱ)若a=7,求△ABC的面积.7.△ABC的三个内角A,B,C所对的边分别为a,b,c,asin Asin B+bcos2A= a.(1)求;2228.△ABC的内角A,B,C的对边分别为、、,且.(1)若,求的值;(2)若,求的值.9.的内角A,B,C的对边分别为a,b,c,其中,且,延长线段到点,使得.(Ⅰ)求证:是直角;(Ⅱ)求的值.10.在△ABC中,内角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若的面积为,△ABC的周长为,求边长a.11.为绘制海底地貌图,测量海底两点C,D间的距离,海底探测仪沿水平方向在A,B两点进行测量,A,B,C,D在同一个铅垂平面内. 海底探测仪测得同时测得海里。
(1)求AD的长度;(2)求C,D之间的距离.12.在中,角A,B,C对边分别为a,b,c,角,且.(1)证明:;(2)若面积为1,求边c的长.(Ⅰ)求B0的值;(Ⅱ)当B=B0,a=1,c=3,D为AC的中点时,求BD的长.14.△ABC的内角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求角C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.15.在中,角,,的对边分别是,,,已知,.(Ⅰ)求的值;(Ⅱ) 若角为锐角,求的值及的面积.16.在△ABC中,已知.(1)求的长;(2)求的值.17.△ABC的内角A,B,C所对的边分别为a,b,c,向量与平行.(I)求A;(II)若,求△ABC的面积.18.的内角A,B,C的对边分别为a,b,c,已知的面积为.(1)求;(2)若,,求的周长.19.在△ABC中,角的对边分别为,且满足.(1)求角的值;20.在△ABC中,角的对边分别为a,b,c, ,c=,又△ABC的面积为,求:(1)角的大小;(2)的值.21.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2﹣sinB•sinC=.(1)求A;(2)若a=4,求△ABC面积的最大值.22.在△ABC中,已知角A,B,C的对边分别是a,b,c,且.(I)求角C的大小;(II)如果,,求实数m的取值范围.23.已知向量=(2cosx,sinx),=(cosx,2cosx),函数f(x)=•﹣1.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在锐角△ABC中,内角A.B、C的对边分别为a,b,c,tanB=,对任意满足条件的A,求fA.的取值范围.24.设△ABC的内角A,B,C的对边分别为,且.(Ⅰ)求B;(Ⅱ)若,求C.25.在△ABC中,a、b、c分别为内角A.B、C的对边,且2sinAcosC=2sinB﹣sinC.(1)求∠A的大小;(2)在锐角△ABC中,a=,求c+b的取值范围.26.在ABC中,(I)求的大小(II)求的最大值27.设函数,其中向量,,.(Ⅰ)求的最小正周期与单调递减区间;(Ⅱ)在△ABC中,a、b、c分别是角A.B、C的对边,已知fA.=2,b=1,△ABC的面积为,求的值.28.△ABC中,角A,B,C的对边分别是a,b,c,已知(2a+b)sinA+(2b+a)sinB=2csinC.(Ⅰ)求C的大小;(Ⅱ)若,求△ABC周长的最大值.29.已知A .B 、C 是△ABC 的三内角,向量m=(-1,3),n=(cosA ,sinA),且m ·n=1.(1)求角A ;(2)若3)4tan(-=+B π,求tanC.30.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且C=,a=6.(Ⅰ)若c=14,求sinA 的值;(Ⅱ)若△ABC 的面积为3,求c 的值.31.在△ABC 中,a,b,c 分别为内角A,B,C 的对边,且(Ⅰ)求A 的大小; (Ⅱ)求的最大值.32.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cosC (acosB+bcosA )=c .(Ⅰ)求C ; (Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.33.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且。
千题百炼——高考数学100个热点问题第四章第26炼求未知角的三角函数值三角函数与解三角形第26炼求未知角的三角函数值在三角函数的解答题中,经常要解决求未知角的三角函数值,此类问题的解决方法大体上有两个,一是从角本身出发,利用三角函数关系列出方程求解,二是向已知角(即三角函数值已知)靠拢,利用已知角将所求角表示出来,再利用三角函数运算公式展开并整体代换求解,本周着力介绍第二种方法的使用和技巧一、基础知识:1、与三角函数计算相关的公式:(1)两角和差的正余弦,正切公式:① sin sin cos sin cos② sin sin cos sin cos③ cos cos cos sin sin④ cos cos cos sin sin⑤ tan tan tan tan tan⑥ tan1tan tan1tan tan(2)倍半角公式:① sin22sin cos② cos2cos sin2cos112sin③ tan222222tan 1tan2,其中tan(3)辅助角公式:asin bcos2、解决此类问题的方法步骤: b a(1)考虑用已知角表示未知角,如需要可利用常用角进行搭配(2)等号两边同取所求三角函数,并用三角函数和差公式展开(3)利用已知角所在象限和三角函数值求出此角的其他函数值(4)将结果整体代入到运算式即可3、确定所涉及角的范围:当已知角的一个三角函数值求其他三角函数值时,角的范围将决定其他三角函数值的正负,所以要先判断角的范围,再进行三角函数值的求解。
确定角的范围有以下几个层次:(1)通过不等式的性质解出该角的范围(例如:5,则) 612243(2)通过该角的三角函数值的符号,确定其所在象限。
专题02 三角函数与解三角形热点问题【最新命题动向】三角函数不仅是数学的重要基础知识,同时也是解决其他问题的一种数学工具.高考命题者常在三角函数、解三角形和平面向量、数列等知识的交汇处命题.对三角函数与平面向量的考查,多以解答题的形式出现,难度中等.备考中注意与平面向量的加法、减法的几何意义,平行、垂直的条件以及数量积的定义相结合来寻找解题突破口,三角函数与数列相交汇时,常常用到数列的基本性质。
【热点一】解三角形与数列的综合问题【典例1】(2019年5月金华模拟卷理17)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cos2B+cos B=1-cos A cos C.(1)求证:a,b,c成等比数列;(2)若b=2,求△ABC的面积的最大值.【审题示例】(1)根据正弦定理将角的问题转化为边的问题,由数列的概念得证;(2)利用均值不等式解决三角形中的面积最值问题.【规范解答】【知识点归类点拔】纵观近年的高考试题,许多新颖别致的三角函数解答题就是以数列为出发点设计的.在这类试题中数列往往只是起到包装的作用,实质是考查考生利用三角函数的性质、三角恒等变换与正、余弦定理来解决问题的能力.解决这类问题的基本思路是脱掉数列的外衣,抓住问题的实质,选择合理的解决方法,灵活地实现问题的转化.【跟踪训练1】在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,已知a cos2C2+c cos2A2=32b.(1)求证:a、b、c成等差数列;(2)若B=π3,S=43,求b.【热点二】三角函数的图像和性质【典例2】(2016·山东卷)设f(x)=23sin (π-x)sin x-(sin x-cos x)2.(1)求f(x)的单调递增区间;(2)把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移π3个单位,得到函数y =g (x )的图像,求g ⎝⎛⎭⎫π6的值.【审题示例】(1)将f (x )化为A sin (ωx +φ)+b 的形式后,利用y =sin x 的单调递增区间得出关于x 的不等式,不等式的解集即为所求;(2)根据三角函数图像变换的方法,得出y =g (x )的图像对应的解析式,再进行计算.【规范解答】【防失误】化a sin x +b cos x =a 2+b 2sin(x +φ)时φ的求法:①tan φ=b a; ②φ所在象限由(a ,b )点确定.【知识点归类点拔】利用辅助角公式a sin x +b cos x =a 2+b 2·sin (x +φ),把形如y =a sin x +b cos x +k 的函数化为一个角的一种函数的一次式,可以求三角函数的周期、单调区间、值域、最值和对称轴对称中心等.其一般步骤: 第一步:将f (x )化为a sin x +b cos x 的形式;第二步:构造f (x )=a 2+b 2·⎝⎛⎭⎫sin x ·a a 2+b 2+cos x ·b a 2+b 2; 第三步:和差公式逆用f (x )=a 2+b 2sin (x +φ)(其中φ为辅助角);第四步:利用f (x )=a 2+b 2sin (x +φ)研究三角函数的性质;第五步:反思回顾,查看关键点、易错点和解题规范.① 化简时公式的准确应用是灵魂;② ②研究三角函数性质时注意整体思想的应用.【跟踪训练2】(2019·合肥市模拟)已知函数f (x )=3sin x cos x -12cos ⎝⎛⎭⎫2x -π3. (1)求函数f (x )图像的对称轴方程;(2)将函数f (x )图像向右平移π4个单位,所得图像对应的函数为g (x ).当x ∈⎣⎡⎦⎤0,π2时,求函数g (x )的值域.【热点三】三角变换与解三角形的综合【典例3】(2019·浙江模拟)在△ABC 中,a 2+c 2=b 2+2ac .(1)求∠B 的大小;(2)求2cos A +cos C 的最大值. 【审题示例】第(1)问条件中有边的平方和边的乘积,显然用余弦定理求解;第(2)问用三角形内角和定理将原三角函数式化为只含一个角的三角函数式,再注意角的取值范围,问题得解.【规范解答】【知识点归类点拔】三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和差公式的灵活运用是解决此类问题的关键.【跟踪训练3】已知在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且⎝⎛⎭⎫b -c 2sin B +⎝⎛⎭⎫c -b 2sin C -a sin A =0. (1)求角A 的大小;(2)若a =3,求b +c 的取值范围.【热点四】平面几何中的三角函数求值【典例4】(2018·全国Ⅰ卷理17)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ;(2)若DC =22,求BC . 【规范解答】【知识点归类点拔】平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.【跟踪训练4】(2019·甘肃模拟)如图,在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD .(1)求AD的长;(2)求△ABC的面积.【热点五】三角函数与平面向量相结合【典例5】(2019·四川模拟)已知△ABC的三内角A,B,C所对的边分别是a,b,c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.(1)求角B的大小;(2)若b=3,求a+c的范围.【规范解答】【知识点归类点拔】(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.本例中,易忽略x∈⎝⎛⎭⎫0,π2导致错解.【跟踪训练5】(2019·达州市模拟)已知向量a =(sin 2x ,cos 2x ),b =⎝⎛⎭⎫32,-12,f (x )=a ·b . (1)求函数f (x )的周期;(2)在△ABC 中,f (A )=12,AB =23,BC =2,求△ABC 的面积S .。
高中数学专题讲义:高考中三角函数问题的热点题型高考导航 从近几年的高考试题看,全国卷交替考查三角函数、解三角形.该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图象变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.热点一 三角函数的图象和性质(规范解答)注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解.【例1】 (满分13分)(2015·北京卷)已知函数f (x )=sin x -23sin 2x2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. 满分解答 (1)解 因为f (x )=sin x +3cos x - 3.2分 =2sin ⎝ ⎛⎭⎪⎫x +π3- 3.4分所以f (x )的最小正周期为2π.6分(2)解 因为0≤x ≤2π3,所以π3≤x +π3≤π.8分 当x +π3=π,即x =2π3时,f (x )取得最小值.11分所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13分❶将f (x )化为a sin x +b cos x +c 形式得2分; ❷将f (x )化为A sin(ωx +φ)+h 形式得2分; ❸求出最小正周期得2分.❹写出ωx +φ的取值范围得2分. ❺利用单调性分析最值得3分. ❻求出最值得2分.求函数y =A sin(ωx +φ)+B 周期与最值的模板第一步:三角函数式的化简,一般化成y =A sin(ωx +φ)+h 或y =A cos(ωx +φ)+h 的形式;第二步:由T =2π|ω|求最小正周期; 第三步:确定f (x )的单调性;第四步:确定各单调区间端点处的函数值; 第五步:明确规范地表达结论.【训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值.解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx=32-3·1-cos 2ωx 2-12sin 2ωx=32cos 2ωx -12sin 2ωx =-sin ⎝ ⎛⎭⎪⎫2ωx -π3. 因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.设t =2x -π3,则函数f (x )可转化为y =-sin t .当π≤x ≤3π2时,5π3≤t =2x -π3≤ 8π3,如图所示,作出函数y =sin t 在⎣⎢⎡⎦⎥⎤5π3,8π3 上的图象,由图象可知,当t ∈⎣⎢⎡⎦⎥⎤5π3,8π3时,sin t ∈⎣⎢⎡⎦⎥⎤-32,1,故-1≤-sin t ≤32,因此-1≤f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.热点二 解三角形高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.【例2】 (2017·成都诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (x )=2sin(x -A )cos x +sin(B +C )(x ∈R ),函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称.(1)当x ∈⎝ ⎛⎭⎪⎫0,π2时,求函数f (x )的值域;(2)若a =7,且sin B +sin C =13314,求△ABC 的面积. 解 (1)∵f (x )=2sin(x -A )cos x +sin(B +C ) =2(sin x cos A -cos x sin A )cos x +sin A =2sin x cos A cos x -2cos 2x sin A +sin A =sin 2x cos A -cos 2x sin A =sin(2x -A ), 又函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称,则f ⎝ ⎛⎭⎪⎫π6=0,即sin ⎝ ⎛⎭⎪⎫π3-A =0,又A ∈(0,π),则A =π3,则f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 由于x ∈⎝ ⎛⎭⎪⎫0,π2,则2x -π3∈⎝ ⎛⎭⎪⎫-π3,2π3,即-32<sin ⎝ ⎛⎭⎪⎫2x -π3≤1,则函数f (x )的值域为⎝ ⎛⎦⎥⎤-32,1.(2)由正弦定理,得a sin A =b sin B =c sin C =143,则sin B =314b ,sin C =314c ,sin B +sin C =314(b +c )=13314,即b +c =13. 由余弦定理,得a 2=c 2+b 2-2bc cos A , 即49=c 2+b 2-bc =(b +c )2-3bc ,即bc =40. 则△ABC 的面积S =12bc sin A =12×40×32=10 3.探究提高 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键.【训练2】 四边形ABCD 的内角A 与C 互补,且AB =1,BC =3,CD =DA =2. (1)求角C 的大小和线段BD 的长度; (2)求四边形ABCD 的面积. 解 (1)设BD =x ,在△ABD 中,由余弦定理,得cos A =1+4-x 22×2×1,在△BCD 中,由余弦定理,得cos C =9+4-x 22×2×3,∵A +C =π,∴cos A +cos C =0. 联立上式,解得x =7,cos C =12. 由于C ∈(0,π). ∴C =π3,BD =7.(2)∵A +C =π,C =π3,∴sin A =sin C =32. 又四边形ABCD 的面积S ABCD =S △ABD +S △BCD =12AB ·AD sin A +12CB ·CD sin C =32×(1+3)=23, ∴四边形ABCD 的面积为2 3. 热点三 三角函数与平面向量结合三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.【例3】 (2016·贵州适应性考试)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n . (1)求角B 的大小; (2)若b =3,求a +c 的范围.解 (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n , ∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0, ∴2cos B sin A +cos B sin C +sin B cos C =0. 即2cos B sin A =-sin(B +C )=-sin A . ∵A ∈(0,π),∴sin A ≠0,∴cos B =-12. ∵0<B <π,∴B =2π3. (2)由余弦定理得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时取等号. ∴(a +c )2≤4,故a +c ≤2. 又a +c >b =3,∴a +c ∈(3,2]. 即a +c 的取值范围是(3,2].探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.【训练3】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解 (1)由题意知f (x )=a·b =m sin 2x +n cos 2x . 因为y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎨⎧m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6.设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1,因为0<φ<π,所以φ=π6,因此g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z .所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z .(建议用时:70分钟)1.(2017·昆明调研)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上最大值和最小值.解 (1)由题得,f (x )的最小正周期为π,y 0=3. 当y 0=3时,sin ⎝ ⎛⎭⎪⎫2x 0+π6=1,由题干图象可得2x 0+π6=2π+π2, 解得x 0=7π6.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是:当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.2.(2017·郑州模拟)在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a sin 2B =3b sin A . (1)求B ;(2)若cos A =13,求sin C 的值. 解 (1)在△ABC 中, 由a sin A =b sin B , 可得a sin B =b sin A , 又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B , 又B ∈(0,π),所以sin B ≠0,所以cos B =32,得B =π6.(2)由cos A =13,A ∈(0,π),得sin A =223, 则sin C =sin[π-(A +B )]=sin(A +B ), 所以sin C =sin ⎝ ⎛⎭⎪⎫A +π6=32sin A +12cos A =26+16.3.(2017·西安调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6+2sin 2ωx 2(ω>0),已知函数f (x )的图象的相邻两对称轴间的距离为π. (1)求函数f (x )的解析式;(2)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c (其中b <c ),且f (A )=32,△ABC 的面积为S =63,a =27,求b ,c 的值. 解 (1)f (x )=32sin ωx +12cos ωx +1-cos ωx=32sin ωx -12cos ωx +1=sin ⎝ ⎛⎭⎪⎫ωx -π6+1.∵函数f (x )的图象的相邻两对称轴间的距离为π, ∴函数f (x )的周期为2π.∴ω=1.∴函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+1.(2)由f (A )=32,得sin ⎝ ⎛⎭⎪⎫A -π6=12.又∵A ∈(0,π),∴A =π3.∵S =12bc sin A =63,∴12bc sin π3=63,bc =24,由余弦定理,得a 2=(27)2=b 2+c 2-2bc cos π3=b 2+c 2-24. ∴b 2+c 2=52,又∵b <c ,解得b =4,c =6.4.(2016·济南名校联考)已知函数f (x )=sin ωx +23cos 2ωx2+1-3(ω>0)的周期为π.(1)求f (x )的解析式并求其单调递增区间;(2)将f (x )的图象先向下平移1个单位长度,再向左平移φ(φ>0)个单位长度得到函数h (x )的图象,若h (x )为奇函数,求φ的最小值. 解 (1)f (x )=sin ωx +23cos 2ωx2+1-3=sin ωx +23×1+cos ωx2+1-3=sin ωx +3cos ωx +1=2sin(ωx +π3)+1.又函数f (x )的周期为π,因此2πω =π,∴ω=2.故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.令2k π-π2≤2x +π3≤2k π+π2(k ∈Z ), 得k π-5π12≤x ≤k π+π12(k ∈Z ),即函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)由题意可知h (x )=2sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π3,又h (x )为奇函数,则2φ+π3=k π,∴φ=k π2-π6(k ∈Z ).∵φ>0,∴当k =1时,φ取最小值π3. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m = (2sin B ,-3),n =(cos 2B ,2cos 2B2-1),且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求S △ABC 的最大值. 解 (1)∵m ∥n ,∴2sin B ⎝ ⎛⎭⎪⎫2cos 2B 2-1=-3cos 2B ,∴sin 2B =-3cos 2B ,即tan 2B =- 3. 又∵B 为锐角,∴2B ∈(0,π), ∴2B =2π3,∴B =π3. (2)∵B =π3,b =2,由余弦定理b 2=a 2+c 2-2ac cos B , 得a 2+c 2-ac -4=0.又a 2+c 2≥2ac ,代入上式,得ac ≤4, 当且仅当a =c =2时等号成立. 故S △ABC =12ac sin B =34ac ≤3, 当且仅当a =c =2时等号成立, 即S △ABC 的最大值为 3.6.(2017·东北四市模拟)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b = (cos x ,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2 cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝ ⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3,∴2A +π3=π,即A =π3.∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.① ∵向量m =(3,sin B )与n =(2,sin C )共线, ∴2sin B =3sin C ,由正弦定理得2b =3c ,② 由①②得b =3,c =2.。
第31炼 解三角形中的要素一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A=2、余弦定理:2222cos a b c bc A =+-变式:(1)222cos 2b c a A bc+-=① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A(2)()()2221cos a b c bc A =+-+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进行整体代入即可 3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)()12S a b c r =++⋅ (r 为三角形内切圆半径,此公式也可用于求内切圆半径)(4)海伦公式:()12S p a b c ==++(5)向量方法:()()22S a b a b =⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==-S ∴=cos a b ab C ⋅=∴ ()()22S a ba b=⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 4、三角形内角和A B C π++=(两角可表示另一角)。
()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-5、确定三角形要素的条件: (1)唯一确定的三角形:① 已知三边(SSS ):可利用余弦定理求出剩余的三个角② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边(2)不唯一确定的三角形① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个。
由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C =② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个。
其原因在于当使用正弦定理求B 时,sin sin sin sin a b b AB A B a=⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一。
(判定是否唯一可利用三角形大角对大边的特点,具体可参考例1) 6、解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解7、三角形的中线定理与角平分线定理(1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一) 证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅ ① 2222cos AC AD DC AD DC ADC =+-⋅ ②D 为BC 中点 BD CD ∴=ADB ADC π∠+∠= cos cos ADB ADC ∴=-∴ ①+②可得:()22222AB AC AD BD +=+(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于EBD BEDC AE∴=EDA DAC ∠=∠ AD 为BAC ∠的角平分线EAD DAC ∴∠=∠ EDA EAD ∴∠=∠EAD ∴为等腰三角形 EA ED ∴= BD BE BEDC AE ED ∴==而由BED BAC 可得:BE ABED AC=AB BDAC CD ∴=二、典型例题:例1:(1)ABC 的内角,,A B C 所对的边分别为,,a b c,若60c b B ===,则C =_____(2))ABC 的内角,,A B C 所对的边分别为,,a b c,若30c b C ===,则B =_____思路:(1)由已知,,B b c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=BB代入可解得:1sin 2C =。
由c b <可得:60C B <=,所以30C = 答案:30C =(2)由已知,,C b c 求B 可联想到使用正弦定理:sin sin sin sin b c b CB BC c=⇒=代入可解得:sin 2B =,则60B =或120B =,由c b <可得:C B <,所以60B =和120B =均满足条件答案:60B =或120B =小炼有话说:对比(1)(2)可发现对于两边及一边的对角,满足条件的三角形可能唯一确定,也有可能两种情况,在判断时可根据“大边对大角”的原则,利用边的大小关系判断出角之间的大小关系,判定出所求角是否可能存在钝角的情况。
进而确定是一个解还是两个解。
例2:在ABC 中,2,60BC B ==,若ABC 的面积等于2,则AC 边长为_________ 思路:通过条件可想到利用面积S 与,BC B ∠求出另一条边AB ,再利用余弦定理求出AC 即可解:11sin 222ABCSAB BC B AB =⋅⋅⇒⋅= 1AB ∴=22212cos 142232AC AB BC AB BC B ∴=+-⋅=+-⋅⋅=AC ∴=例3:(2012课标全国)已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且有cos sin 0a C C b c +--=(1)求A(2)若2a =,且ABC ,b c(1)思路:从等式cos sin 0a C C b c +--=入手,观察每一项关于,,a b c 齐次,考虑利用正弦定理边化角:Acos sin 0sin cos sin sin sin 0a C C b c A C A C B C +--=⇒+--=,所涉及式子与,A C 关联较大,从而考虑换掉()sin sin B A C =+,展开化简后即可求出A 解:cos sin 0a C C b c +--=sin cos sin sin sin 0A C A C B C ⇒+--=()sin cos sin sin sin 0A C A C A C C ⇒-+-=sin cos sin sin cos sin cos sin 0A C A C A C C A C ⇒+---=1cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭ 66A ππ∴-=或566A ππ-=(舍) 3A π∴=(2)思路:由(1)可得3A π=,再由ABCS=2a =可想到利用面积与关于A 的余弦定理可列出,b c 的两个方程,解出,b c 即可 解:1sin 42ABCSbc A bc === 222222cos 4a b c bc A b c bc =+-⇒=+-22224844b c bc b c bc bc ⎧⎧+-=+=∴⇒⎨⎨==⎩⎩ 可解得22b c =⎧⎨=⎩小炼有话说:通过第(1)问可以看出,在遇到关于边角的方程时,可观察边与角正弦中是否具备齐次的特点,以便于进行边角互化。
另一方面当角,,A B C 同时出现在方程中时,通常要从所给项中联想到相关两角和差的正余弦公式,然后选择要消去的角例4:如图,在ABC 中,D 是边AC 上的点,且,2,2AB AD AB BC BD ===,则sin C 的值为___________思路:求sin C 的值考虑把C 放入到三角形中,可选的三角形有ABC 和BDC ,在BDC 中,已知条件有两边,BD BC ,但是缺少一个角(或者边),看能否通过其它三角形求出所需要素,在ABD 中,三边比例已知,进而可求出BDA ∠,再利用补角关系求出BDC ∠,从而BDC 中已知两边一角,可解出C解:由2AB =可设2BD k =则AB =,4AD BC k ∴== ∴ 在ADB中,()2222222cos 2k AD BD ABADB AD BD+-+-===⋅cos cos BDC ADB ∴=-=sinBDC ∴=在BDC 中,由正弦定理可得:sin sin sin sin BD BC BD BDC C C BDC BC ⋅=⇒== 小炼有话说:(1)在图形中求边或角,要把边和角放入到三角形当中求解,在选择三角形时尽量选择要素多的,并考虑如何将所缺要素利用其它条件求出。
(2)本题中给出了关于边的比例,通常对于比例式可考虑引入一个字母(例如本题中的k ),这样可以将比例转化为边的具体数值,便于计算例5:已知ABC 中,,,a b c 分别是角,,A B C 所对边的边长,若ABC 的面积为S ,且()222S a b c =+-,则tan C 等于___________思路:由已知()222S a b c =+-可联想到余弦定理关于cos C 的内容,而1sin 2S ab C =,所以可以得到一个关于sin ,cos C C 的式子,进而求出tan C 解:()22222122sin 22S a b c ab C a b c ab =+-⇔⋅=+-+ 而2222cos c a b ab C =+- 2222cos a b c ab C ∴+-=代入可得:sin 22cos sin 22cos ab C ab ab C C C =+⇒=+224sin sin 22cos 53sin cos 1cos 5C C C C C C ⎧=⎪=+⎧⎪∴⇒⎨⎨+=⎩⎪=-⎪⎩4tan 3C ∴=-答案:4tan 3C =-例6:在ABC ∆ 中,内角,,AB C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 .思路:已知cos A 求a 可以联想到余弦定理,但要解出,b c 的值,所以寻找解出,b c 的条件,1sin 2ABCSbc A ==,而sin A ==代入可得24bc =,再由2b c -=可得 ()22222cos 22cos 64a b c bc A b c bc bc A =+-=-+-=,所以8a =答案:8例7:设ABC 的内角,,A B C 所对边的长分别为,,a b c ,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( )A.2B. C. 2 D. 4思路:由sin cos 0b A B -=可得:sin sin cos 0B A A B -=,从而tan B =,解得3B π=,从2b ac =可联想到余弦定理:222222cos b a c ac B a c ac =+-=+-,所以有()2220a c ac ac a c +-=⇒-=,从而a c =再由2b ac =可得a b c ==,所以a cb+的值为2 答案:C小炼有话说:本题的难点在于公式的选择,2b ac =以及所求a cb+也会让我们想到正弦定理。