ADAMS机电系统建模与仿真
- 格式:doc
- 大小:4.31 MB
- 文档页数:12
电机及其传动系统原理、控制、建模和仿真电机及其传动系统是现代工业中常见的电力传动装置,其原理、控制、建模和仿真是电机学习的重要内容。
本文将从以下几个方面进行介绍。
一、电机原理:电机是将电能转化为机械能的装置。
按工作原理可以分为直流电机和交流电机两大类。
直流电机以直流电源为动力,通过磁场与电流的相互作用实现转动。
交流电机以交流电源为动力,通过电磁感应原理产生转动力。
电机工作原理涉及到电磁学、电路学和力学等多个学科的知识。
二、电机控制:电机控制是指通过对电机的电流、电压或磁场进行调节,使电机达到所需要的运动控制要求。
常见的电机控制方法有直接启动控制、启动电阻控制、电压调制控制、频率调制控制等。
在现代工业中,常使用的电机控制装置有变频器、PLC、单片机等。
三、电机建模:电机建模是指通过数学方法将电机的物理特性转化为数学模型,以便进行仿真计算和控制设计。
电机建模通常从电机的电磁特性和转动特性入手,运用电机理论和系统理论的知识,建立模型方程。
根据电机的类型和用途不同,建模方法也有所差异,常见的建模方法有瞬态模型、稳态模型、频域模型等。
四、电机仿真:电机仿真是指使用计算机软件对电机的运行过程进行模拟和分析。
通过仿真可以得到电机在不同工况下的性能指标、效率、负载特性等信息。
电机仿真可以辅助电机的设计和调试工作,提高工作效率。
常用的电机仿真软件有ANSYS、MATLAB/Simulink、ADAMS等。
综上所述,电机及其传动系统的原理、控制、建模和仿真是电机学习中不可忽视的内容。
只有深入理解电机原理,掌握电机的控制方法,灵活应用电机建模和仿真技术,才能在实际工程中高效地设计、操控和优化电机及其传动系统。
基于MSC.ADAMS的动力传动系统建模与仿真MSC.ADAMS是一款优秀的动力传动系统建模与仿真软件,在汽车、航空、航天等领域广泛应用。
通过MSC.ADAMS,可以对各种类型的动力传动系统进行建模与仿真,包括发动机、变速器、传动轴、差速器等。
动力传动系统建模是将传动系统各个部分进行分离,逐一建模并组装成一个整体,通过建模可以确定每个部件的性能与参数,以及系统整体的工作原理与性能。
在建模过程中,需要考虑各个部位的受力情况、材料属性、温度等因素,并进行物理学建模、数学建模和计算机辅助设计。
动力传动系统仿真是指将建模进行各种工况下的计算和分析,通过仿真可以确定不同工况下的系统性能和特性,从而优化每个部位的设计。
仿真的结果可以反映出系统的运行情况、动态响应、疲劳情况、噪声等各种细节,为系统的设计、制造和优化提供重要的参考依据。
MSC.ADAMS软件支持动力传动系统的建模和仿真,可以方便的进行各种级别的建模和仿真,包括单部件、子系统和整个系统的建模和仿真。
同时,MSC.ADAMS还支持多种不同的仿真方法,如动态仿真、静态仿真、多体仿真等,可以精确地模拟系统的行为。
在进行动力传动系统建模和仿真时,需要注意以下几点:1. 精确定义每个部位的材料属性和受力情况,包括张力、压力、扭矩等。
2. 确定每个部位的工作原理和控制方法,建立相应的数学模型。
3. 考虑系统的复杂度和耦合效应,因此需要对整个系统进行综合分析和优化。
4. 在进行仿真前,需要对模型进行验证和校准,以确保模型的准确性和可靠性。
总之,使用MSC.ADAMS进行动力传动系统建模和仿真,可以大大提高系统的设计和性能,为实现更高效、更安全的动力传动系统打下坚实的基础。
数据分析是指对所收集到的数据进行系统性分析和处理,通过对数据的分析可以发现内在的规律和价值,提供有关原因和结果的科学依据和参考,为决策提供依据和支持。
在不同领域中,数据分析的方法和技术也存在差异,但在基本原则和数据处理方法上却具有共性。
adams动力学仿真原理
Adams是一种基于动力学原理进行仿真的软件,它使用多体
动力学理论和计算力学算法,对系统中的物体进行建模和仿真,以模拟真实的物体运动和相互作用。
Adams的仿真原理主要基于以下几个方面:
1. 多体动力学:Adams使用多体动力学理论来描述系统中的
物体运动。
多体动力学是物体受力和受力作用导致的加速度之间的关系。
通过建立质点、刚体或弹性体等物体的动力学模型,并考虑物体之间的相互作用,可以求解物体的运动轨迹、速度和加速度等。
2. 约束条件:Adams支持对系统中物体之间的各种约束条件
进行建模和仿真。
约束条件可以是几何约束,如固定连接、旋转关节、滑动关节等,也可以是物理约束,如弹簧、阻尼器等。
Adams利用这些约束条件来限制物体的运动范围,并求解约
束条件下的系统运动。
3. 接触和碰撞:Adams还考虑了系统中物体之间的接触和碰撞。
通过建立接触模型和碰撞模型,Adams可以模拟物体之
间的接触力和碰撞力,并根据物体的质量、形状和速度等参数计算物体的反应。
4. 动力学求解:Adams使用高效的动力学求解算法,通过求
解物体运动的微分方程组,得到物体的运动轨迹、速度和加速度等。
求解过程中,Adams考虑了物体之间的相互作用和约
束条件,并根据物体的质量、惯性、摩擦力等参数计算物体的运动状态。
总的来说,Adams的仿真原理基于多体动力学理论和计算力学算法,并考虑了物体之间的约束、接触和碰撞等相互作用,以模拟系统中物体的真实运动和行为。
基于ADAMS与Simulink的机电一体化系统联合仿真Co-simulationofMechatronicsSystemBasedonADAMSandSimulink任远白广忱(北京航空航天大学能源与动力工程学院,北京100083)摘要:以雷达天线为研究对象,针对天线的方位角控制问题在ADAMS和Simulink的基础上进行了机电一体化仿真研究。
首先利用ADAMS/Controls模块把MATLAB/Simulink与雷达天线样机模型连接在一起,然后分别采用PID算法、PD算法以及模糊理论这3种方法来建立天线方位角控制系统。
仿真结果表明,对于雷达天线这样一个输入输出特性比较复杂且不便于简化建模的受控对象(因为不能忽略天线支撑的柔性及其扭振),模糊控制比前两种经典控制算法更为有效。
关键词:联合仿真雷达天线方位角控制模糊控制doi:10.39690.issn.1007-080X.2009.06.002Abstract:Takingaradarantennaa8researchobjective.themechatronicssimulationbasedonADAMSandSim曲nkWaScarriedouttosolvetheproblemofcontrollingtheantennaazimuth.111evirtualprototypeoftheradarantennawsgcoilnectedtoMATLAB/SimulinkbyADAMS/Controls.Thenthreemethods,i.e.PID,PDand缸研theory,wereutilizedtoestablishtheantennaazimutIIcontrolsystem.Theresultsofthesimulationshowthatfuzzycontrolismoreeffectivethantheothertwoclassiccontrolstrategiesfortheradarantenna,whichhasacomplexinput/outputrelationshipandishardtosimplifybecauseoftheflexibilityoftheantennasupportandthepossibilityofitstorsionalvibration.Keywords:CO—simulationradarantennaazimuthcontrolfuzzycontrolO引育在传统的机电一体化系统设计过程中.机械工程师和控制工程师虽然在共同开发一个系统.但却需要为同一对象建立起各自不同的分析模型.然后在不同的软件平台上进行相互独立的测试与验证.直到在建造物理样机之后才能进行机械一控制系统综合试验。
ADAMS 2023动力学分析与仿真从入门到精通简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems)是一种用于进行动力学分析和仿真的强大工具。
它可以帮助工程师和设计师在产品开发过程中预测和优化机械系统的性能。
无论是汽车、飞机还是机械设备,ADAMS都可以用来模拟其在不同工况下的动态行为。
本文档将介绍ADAMS 2023的基本概念和操作指南,从入门到精通,帮助读者快速上手并掌握ADAMS的使用方法。
1. ADAMS简介1.1 ADAMS的定义ADAMS是一种基于多体动力学理论的仿真软件,它能够对复杂的机械系统进行动力学分析和仿真,并提供详细的结果和可视化的模拟效果。
它主要用于评估系统的运动性能、力学特性和振动响应,是工程师进行设计优化和故障排查的重要工具。
1.2 ADAMS的应用领域ADAMS广泛应用于汽车、航空航天、机械设备等领域,用于模拟和分析复杂机械系统的动态行为。
例如,汽车制造商可以使用ADAMS来评估车辆的悬挂系统、转向动力学和车身振动特性;航空航天公司可以使用ADAMS来模拟飞机的飞行动力学和振动响应。
2. ADAMS基本概念2.1 多体系统ADAMS将机械系统建模为多个刚体之间的约束系统。
每个刚体包含了几何特征、质量和惯性属性。
通过在刚体之间添加约束和运动条件,可以建立复杂的多体系统模型。
2.2 约束约束用于描述刚体之间的相对运动关系。
ADAMS提供了各种类型的约束,如平面、关节、铰链等。
通过正确定义约束条件,可以模拟系统的运动和力学特性。
2.3 运动条件运动条件用于描述系统的运动。
ADAMS提供了多种运动模式,如位移、速度、加速度和力矩等。
通过在刚体上施加运动条件,可以模拟系统的各种运动情况。
3. ADAMS操作指南3.1 ADAMS界面ADAMS的用户界面由多个工具栏、菜单和窗口组成。
主要包括模型浏览器、属性编辑器、运动学模块、仿真控制和结果查看器等。
以电动助力转向的联合仿真实现为例,看看怎么联合起来的4.3 ADAMS-MATLAB联合仿真实现ADAMS提供了两种实现机电一体化联合仿真的方法。
一种方法是利用ADAMS 提供的控制工具箱(Control Toolkit)来实现控制等电气系统与机械系统的联合仿真。
控制工具箱提供简单的线性控制模块和滤波模块,可以方便地实现前置滤波、PID控制和其他连续时间单元的模拟仿真。
对于较为简单的控制问题,可以直接在样机模型中添加控制模块,搭建控制系统,完成机电一体化联合仿真。
另一种方法是使用ADAMS/Control模块来实现,利用ADAMS/Control模块可以实现将在ADAMS中建立的样机机械模型与MATLAB、EASY5、MATRIX等软件中建立的电气模型联合起来,实现机电一体化联合仿真。
由于在MATLAB/Simulink中进行电气控制系统建模非常方便,很适合建立比较复杂的控制系统模型,所以本文使用ADAMS/Control模块来将在ADAMS/Car中建立的整车模型与在MATLAB/Simulink中建立的电动助力转向系统模型联合起来,完成整个机电一体化联合仿真。
仿真的过程中,会在ADAMS/Car和MATLAB/Simulink中形成回路[31],如图4-10所示:图 4-10 ADAMS/Car和MATLAB/Simulink联合仿真回路图中,Control Application即在MATLAB/Simulink中建立的电动助力转向系统。
ADAMS/Car中的整车模型输出车速及方向盘扭矩,作为MATLAB/Simulink中建立的电动助力转向系统的输入,电动助力转向系统输出齿条助力,作为整车模型的输入,在仿真的过程中的每个采样时刻信号在两个软件之间进行交换一次。
本文实现联合仿真的过程如下[32][33][34]:1. 要定义好整车模型的输入输出:(1)建立输入,在建立转向系统模板时提到要在Template Builder模式下建立状态变量rack_ assist_ force,使用VARVAL函数,使VFORCE取状态变量rack_ assist_ force的值,即VFORCE的函数值设为VARVAL(._rack_pinion_steering.rack_assist_force),再建立一个名为“control”的Plant_ Input,使用状态变量rack_ assist_ force。
ADAMS参数化建模与优化设计ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种常用的多体动力学仿真软件,被广泛应用于机械系统的动力学分析与设计优化中。
它的参数化建模与优化设计功能可以帮助工程师更快速、更高效地进行系统设计与优化。
参数化建模是将系统的设计参数以变量的形式进行描述和表示,以便进行系统的动力学仿真分析和设计优化。
在ADAMS中,可以通过定义几何参数、材料属性、连接关系等参数的变化范围和约束条件,来进行系统的参数化建模。
对于复杂的机械系统,可以通过ADAMS提供的图形界面来逐步建立模型,并且可以通过自定义脚本进行复杂操作,从而构建方便进行参数化分析和优化的模型。
在参数化建模完成后,可以利用ADAMS进行系统的动力学仿真分析。
通过对系统的各种输入条件施加不同的变化,如力、速度和位移等,可以得到系统在不同工况下的运动学和动力学响应。
这样可以帮助工程师更深入地理解系统的性能和行为,找到系统中可能存在的问题和优化的空间。
基于ADAMS的参数化建模,可以方便地进行系统的设计优化。
通过对设计参数的变化范围和优化目标进行定义,ADAMS可以自动地进行参数寻优和设计优化。
在设计优化过程中,可以将系统的性能指标作为目标函数进行优化,如最小化能耗、最大化刚度和最小化振动等。
同时,还可以设置各种约束条件,如材料强度、装配尺寸和运动范围等,以确保优化设计的可行性和可靠性。
1.提高设计效率:通过参数化建模,可以快速搭建系统模型,减少了从零开始设计的时间和工作量,提高了设计效率。
2.提高设计质量:通过动力学仿真分析和设计优化,可以直观地了解系统的性能与行为,并找到系统存在的问题和待优化的空间,从而提高设计质量。
3.缩短优化周期:ADAMS可以自动进行参数寻优和设计优化,节省了手动调整参数和分析结果的时间,缩短了优化周期。
4.精细设计控制:通过对设计参数的变化范围和优化目标的定义,可以对系统的设计过程进行精细控制,实现更精确的设计结果。
机器人设计与仿真基于Adams与Matlab的案例分析与实现机器人设计与仿真是现代机器人工程领域的核心内容。
这个系列课程旨在帮助学习者掌握使用Adams和Matlab工具进行机器人设计、建模、控制算法开发和仿真分析的技能。
通过理论讲解和实践案例分析,学习者将了解机器人设计的基本原理和方法,并学会将其应用于实际机器人项目中。
课程共分为:基础篇以机械结构中常见机构为仿真示例,其中包含了平面四杆机构、凸轮机构、滑轮组、带传动、齿轮传动等,讲解了Adams/View的操作技巧和实战运用。
学员可:1、掌握Adams/View仿真基本流程。
2、掌握机械结构中常见机构的工作原理。
3、熟练Adams/View在机械系统仿真时常用模块及功能。
4、掌握在Adams中建立柔性体的流程。
5、熟悉Adams和MATLAB机电联合仿真技巧。
强化篇结合串联机器人、并联机器人、特种机器人及机器人控制系统的相关理论知识,运用MATLAB及Adams软件的编程和动力学仿真的强大功能,快速入门机器人领域。
学员可:1、熟悉机器人相关理论知识;2、掌握机器人基础性分析流程3、掌握MATLAB和Adams软件联合验证仿真以串联机器人作为机器人领域的入门,本小节主要以串联机器人的运动学建模、雅可比矩阵及奇异性分析、工作空间分析、轨迹规划及动力学分析为核心内容,通过理论建模,MATLAB编程计算,Adams仿真求解验证的方式,帮助各位学员更加深入理解机器人的基础理论知识。
以并联机器人中两种常见机器人(Delta、Stewart)为主要研究对象,讲解了并联机器人的基础性理论知识和仿真流程,同时,对Stewart平台通过MATLAB编程的方式进行了结构优化,通过Adams的仿真验证了优化结果。
简介特种机器人的发展状况,以四足机器人为研究对象,对其进行了运动学分析和关节空间轨迹规划,在通过MATLAB和Adams联合仿真的方式实现了四足机器人的行走。
ADAMS机电一体化仿真研究本文对如何在ADAMS中实现机械和控制系统联合仿真进行了研究。
首先简单介绍了ADAMS中实现机械和控制系统联合仿真的六种方法,然后用三个实例来详细地说明了机械和控制系统联合仿真分析流程。
1引言航天产品中机电类产品占据了大多数,在传统的机电一体化系统设计过程中,机械工程师和控制工程师虽然在共同设计开发一个系统,但是他们各自都需要建立一个模型,然后分别采用不同的分析软件,对机械系统和控制系统进行独立的设计、调试和试验,最后建造一个物理样机,进行机械系统和控制系统的联合调试。
如果发现问题,机械工程师和控制工程师又需要回到各自的模型中,修改机械系统和控制系统,然后再进行物理样机联合调试,图1说明了这个过程。
图1 传统机电产品开发方法使用MSC.ADAMS仿真软件,机械工程师和控制工程师可以共享同一个样机模型,进行设计、调试和试验。
可以利用虚拟样机对机械系统和控制系统进行反复的联合调试,直到获得满意的设计效果,然后进行物理样机的建造和调试。
图2说明了这个过程。
图2 虚拟样机产品开发新方法显然,利用虚拟样机技术对机电一体化系统进行联合设计、调试和试验的方法,同传统的设计方法相比较具有明显的优势,可以大大地提高设计效率,缩短开发周期,降低开发产品的成本,获得优化的机电一体化系统整体性能。
MSC.ADAMS(Automatic Dynamic Analysis of Mechanical System) 软件是美国MSC公司的旗帜产品,是虚拟样机领域非常优秀的软件。
它的功能很强大,如:给用户提供了友好的界面、快速简便的建模功能、强大的函数库、交互式仿真和动画显示功能等等。
另外,MSC.ADAMS/Controls模块提供了与许多控制系统软件( 如MATLAB,MATRIX X,EASYS5等)的接口功能。
利用这些软件,可以把机械系统仿真与控制系统仿真结合起来[1]。
为此,本报告专门就ADAMS中如何实现机械和控制一体化仿真做一个总结。
adams机械系统动力学仿真实例
在ADAMS中进行机械系统动力学仿真的步骤如下:
1. 建立模型:首先,需要在三维建模软件(如SolidWorks、Proe等)中建立好机器人或机械系统的三维模型。
然后,将模型另存为x_t格式,并导入ADAMS软件中。
在导入之前,可以对模型进行适当简化,去掉不重要的特征或零部件。
2. 添加运动副约束:根据机械系统的关节进行设置,在基座与地面之间添加固定约束;其余各关节依据实际情况添加转动关节或移动关节。
例如,移动副、球副、十字铰链(可视为两个转动副)等。
3. 检验样机模型:利用检验样机工具,显示样机内所有信息,观察零件、约束、载荷及运动参数的正确与否。
4. 定义初始条件和施加载荷:根据需要定义初始条件,如速度、加速度等。
同时,对模型施加适当的载荷,如重力、外部力等。
5. 进行仿真分析:设置仿真时间、步长等参数,运行仿真。
ADAMS会自动计算出系统的动力学响应,如位移、速度、加速度、力等。
6. 结果后处理:在仿真结束后,可以通过ADAMS的后处理模块查看仿真结果。
可以生成动画、绘制曲线、进行数据统计等。
通过以上步骤,就可以在ADAMS中进行机械系统动力学仿真了。
需要注意的是,具体的步骤可能会根据不同的机械系统和仿真需求有所不同。
因此,在进行仿真时,需要根据实际情况进行调整和修改。
ADAMS 2023动力学分析与仿真从入门到精通1. 简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems,机械系统高级动力学分析)是一种用于进行多体动力学分析和仿真的工程软件。
它可以帮助工程师在设计阶段预测和优化机械系统的动态性能。
本文档旨在介绍ADAMS软件的基本概念和使用方法,从入门到精通,帮助读者快速上手并深入了解该软件的应用。
2. ADAMS基本概念2.1 动力学分析动力学分析是研究物体在受力的作用下的运动规律的过程。
在工程领域中,动力学分析可以帮助工程师了解机械系统的受力情况、振动特性以及运动性能,从而进行系统设计和优化。
2.2 多体系统ADAMS主要适用于多体系统的动力学分析和仿真。
多体系统是由多个物体组成的系统,这些物体之间通过连接件(如关节、弹簧等)相互连接。
在ADAMS中,物体和连接件共同构成了一个复杂的多体系统。
2.3 仿真仿真是通过模拟真实系统的运行过程来获取系统的性能和行为数据。
在ADAMS中,可以建立一个虚拟的多体系统模型,并对其进行动态仿真。
通过仿真可以观察系统的运动轨迹、应力情况以及其他动态性能指标。
3. ADAMS软件安装与设置3.1 软件安装ADAMS软件可以从MSC官方网站上下载并安装。
根据操作系统的要求进行安装步骤,并确保软件安装成功。
3.2 界面介绍ADAMS的主界面由多个视图组成,包括模型视图、结果视图、控制视图等。
在开始使用ADAMS之前,需要熟悉界面的各个部分以及其功能。
3.3 工作空间设置在ADAMS中,可以通过设置工作空间来指定工作目录、结果输出路径等。
正确设置工作空间可以提高工作效率并方便管理文件。
4. ADAMS模型的建立与编辑4.1 模型概念在ADAMS中,模型是指多体系统的虚拟表示。
建立一个准确的模型是进行动力学分析和仿真的前提。
4.2 模型创建ADAMS提供了丰富的建模工具和元件库,通过拖拽和连接不同的元件可以创建复杂的多体系统模型。
基于虚拟样机技术电动汽车悬架性能研究XXXX150XXXXX85(西安建筑科技大学机电工程学院,陕西西安 710055)摘要:汽车前悬架系统部件之间的运动关系十分复杂, 对整车操纵稳定性和平顺性有举足轻重的作用。
本文使用ADAMS对汽车的双横臂式前独立悬架系统进行了三维建模和组装,利用虚拟样机这种方式,对汽车横向平面的倾斜角和下横臂轴水平斜置角等参数设计为设计变量,通过优化这些设计变量以达到优化前悬架的目的这些结果对汽车前悬架后续的改进设计有重大的指导意义。
关键词:汽车前悬架;虚拟样机:设计变量;ADAMS1.引言现代社会便捷交通发展的同时,全球汽车数量快速增长,与此同时也导致环境污染问题日益突显[1]。
汽车的乘坐舒适性以及操纵稳定性,不仅会对乘坐人员的舒适性、疲劳程度以及乘员的人身安全造成严重影响,而且也会影响汽车耗油量以及交通的安全性[2]。
因此汽车的乘坐舒适性以及操纵稳定性已经成为各个汽车生产厂商在激烈的汽车市场中参与竞争所必须考虑的两个非常重要的性能了[3]。
所以,对于整车进行操纵稳定性以及平顺性[4]的优化分析,已经成为汽车设计过程中的所要完成的一件重要而艰巨的任务[5]。
本文本文使用ADAMS对汽车的双横臂式前独立悬架系统进行了三维建模和组装,为了使改装后汽车悬架的各项性能参数得到优化以实现车身和悬架相互匹配,从而改善汽车的操纵稳定性,提高行驶平顺性行驶性能,对设计采用传统汽车悬挂系统的电动汽车有一定的参考价值。
2.虚拟样机技术2.1虚拟样机技术的基本概念虚拟样机技术[6]是指在产品设计开发过程中,将分散的零部件设计和分析技术(指在某单一系统中零部件的CAD和FEA技术)糅合在一起,在计算机上创建出产品的整体模型,并针对该产品在投入使用后的各种工况进行仿真分析,预测产品的整体性能,进而改进产品设计、提高产品性能的一种新技术。
它是从分析解决产品整体性能及相关问题的角度出发,解决传统设计与制造过程弊端的高新技术。
在该技术中,工程设计人员可以直接利用CAD系统所提供的各零部件的物理信息及其几何信息,在计算机上定义零部件间的连接关系并对机械系统进行虚拟装配,从而获得机械系统的虚拟样机[7]。
2.2虚拟样机技术的优点虚拟样机技术涉及多体系统动力学与动力学建模理论及技术实现,是基于先进的建模技术、多领域仿真技术、信息管理技术、交互式用户界面技术和虚拟现实技术的综合应用技术。
虚拟样机技术将传统的经验设计方法改为预测方法,具有无法比拟的优点。
使用系统仿真软件可以在各种虚拟环境中真实地模拟系统的运动,并对其在各种工况下的运动和受力情况进行仿真分析,观察并试验各组成部件的相互运动情况;还可以在计算机上方便地修改设计缺陷,仿真试验不同的设计方案,对整个系统进行不断地改进,直至获得最优设计方案后,再做出物理样机。
用虚拟样机代替物理样机验证设计,不但可以缩短开发周期,而且设计质量和效率都得到了提高。
3.ADAMS软件仿真基础ADAMS[8],即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件,由于该软件采用的比较先进的计算方法,大大地缩短了计算时间,而且其精确度也相当高,因此,被广泛应用于机械设计的各个领域并已经被全世界各行各业的数百家主要制造商采用[9]。
用户可以利用Adams在计算机上建立和测试虚拟样机,实现事实再现仿真,了解复杂机械系统设计的运动性能。
MD Adams(MD代表多学科)是在企业级MSC SimEnterprise[10]仿真环境中与MD Nastran相互补充,提供了对于复杂的高级工程分析的完整的仿真环境,SimEnterprise是当今最为完整的集成仿真和分析技术。
MD Adams的发布完全支持运动-结构耦合仿真,与MD Nastran的双向集成可以释放便利地将Adams的模型输出到Nastran进行更为详细的NVH分析或应力恢复,继而进行寿命/损伤计算。
ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。
ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等[11]。
ADAMS中机械系统的模型建立有两种方法:一种是利用ADAMS软件中的建模模块来建立机械系统的模型,该方法的优点是能够进行机械系统的参数化设计及分析,缺点是由于的ADAMS建模能力有限,只能建立简单的几何形状,对于复杂的机械系统建模无法完成;另一种是利用第三方建模软件来进行,然后将建立的模型以通用格式导入到ADAMS中,该方法的优点是就算再复杂的模型也能够根据实际的机械结构来建立机械系统,缺点是不能进行参数化设计也不能对机械系统进行参数化分析[12]。
4.ADAM S 模型的建立与仿真计算4.1ADAMS问题描述汽车的双横臂式前独立悬架模型(Front_Susp)中包括:主销、上横臂、下横臂、拉臂、转向拉杆、转向节、车轮以及测试平台。
悬架模型的主销长度为330mm,主销内倾角为10°,主销后倾角为2.5°,上横臂长350mm,上横臂在汽车横向平面的倾角为11°,上横臂轴水平斜置角为-5°,下横臂长500mm,下横臂在汽车横向平面的倾角为9.5°,下横臂轴水平斜置角为10°,车轮前束角为0.2°。
图1 汽车的前悬架模型4.2前悬架模型建立4.2.1创建新模型文件名更改为Xuan_jia4.2.2设置工作环境设置工作环境下的单位:分别设置为mm、kg、N、s、°、Hz,图标大小为20和网格为750/800,网格间距为50。
4.2.3创建设计点点击零件库中的点“Point”,选择“Add to Ground”和“Don’t Attach”,创建8个设计点,名称和位置见表1-1。
可以使用列表编辑器来修改它们的位置,如图2所示。
结果如图3所示表1-1 设计点的名称和位置图2 列表编辑器图3 8个点的创建结果4.2.4创建主销点击零件库中的圆柱体“Cylinder”,选择New Part,定义圆柱体的半径“Radius”为20,选择设计点LCA_outer和UCA_outer,创建主销,将其重命名为Kingpin,如图4所示。
图4 Kingpin模型4.2.5创建上横臂点击零件库中的圆柱体“Cylinder”,选择New Part,定义圆柱体的半径“Radius”为20,选择设计点UCA_inner和UCA_outer,创建上横臂,将其重命名为UCA。
点击零件库中的球体“Sphere”,选择Add to Part,定义圆柱体的半径“Radius”为25,选择上横臂为参考物体,球体的位置为设计点UCA_outer,如图5所示。
图5 UCA模型4.2.6创建下横臂点击零件库中的圆柱体“Cylinder”,选择New Part,定义圆柱体的半径“Radius”为20,选择设计点LCA_inner和LCA_outer,创建下横臂,将其重命名为LCA。
点击零件库中的球体“Sphere”,选择Add to Part,定义圆柱体的半径“Radius”为25,选择下横臂为参考物体,球体的位置为设计点LCA_outer,如图6所示。
图6 LCA模型4.2.7创建拉臂点击零件库中的圆柱体“Cylinder”,选择New Part,定义圆柱体的半径“Radius”为15,选择设计点Knuckle_inner和Tie_rod_outer,创建拉臂,将其重命名为Pull_arm,如图7所示。
图7 Pull_arm模型4.2.8创建转向拉杆点击零件库中的圆柱体“Cylinder”,选择New Part,定义圆柱体的半径“Radius”为15,选择设计点Tie_rod_inner和Tie_rod_outer,创建转向拉杆,将其重命名为Tie_rod。
点击零件库中的球体“Sphere”,选择Add to Part,定义圆柱体的半径“Radius”为20,选择转向拉杆为参考物体,球体的位置为设计点Tie_rod_outer和Tie_rod_inner,如图8所示。
图8 转向拉杆4.2.9创建转向节点击零件库中的圆柱体“Cylinder”,选择New Part,定义圆柱体的半径“Radius”为20,选择设计点Knuckle_inner和Knuckle_outer,创建转向节,将其重命名为Knuckle,如图9所示。
图9 转向节模型4.2.10创建车轮、弹簧和测试台按照如上步骤,创建车轮,通过创建宽度为215mm,半径为375mm的圆柱,然后进行50mm倒角就可以实现。
创建测试平台是通过以关键点(-350,-320,-200)为角点创建一个长500mm,宽400mm,高45mm的长方体,外加一个质心处的长350mm,半径30mm的圆柱体来实现。
创建长度为290mm,刚度为K为129.8,阻尼C为6000的弹簧,该弹簧固联在UCA上。
图10 弹簧、车轮、测试台增加后的模型4.2.11创建球副和固定副在UCA_outer点,LCA_outer点和Tie_rod_outer点处创建2Bod-1Lco的球副,同时在Tie_rod_inner点处创建1Lco的球副。
通过创建固定副将拉臂、转向节和主销固定在一起。
同时将转向节和车轮固定在一起。
4.2.12创建旋转副实际工作中,UCA绕着UAC_inner 转动,且上横臂UCA轴水平斜置角为-5°,创建转动副后需对其在水平面内进行旋转-5°。
LCA绕着LCA_inner转动,且下横臂轴水平斜置角为10°,创建转动副后需对其在水平面内进行旋转10°。
4.2.13创建移动副在测试平台和大地之间建立一个竖直方向的移动副。
4.2.14创建点-面约束副将车轮与测试台的接触点和测试平台进行点-面约束。
最终模型建立如图11所示。
图11 汽车前悬架模型4.3测试前悬架模型4.3.1.添加驱动选择测试平台和大地之间的移动副约束,创建直线驱动(TRANS_MOTION1)。
创建直线驱动后将驱动函数表达式更改为:100*sin(360d*time),它表示车轮的上挑和下调行程为100mm。
设置终止时间为1,工作步为100.进行仿真。
结果如图12所示。
图12 仿真结果4.3.2测量主销内倾角主销的内倾角定义为主销在绘图平面内的倾角变化。