第七章 分支限界法
- 格式:ppt
- 大小:360.50 KB
- 文档页数:35
算法分析与设计分支限界法分支限界法是一种常用的优化算法,它通过剪枝和分支的方式在空间中找到最优解。
在算法设计与分析中,分支限界法在求解组合优化问题和图论问题中有广泛应用。
分支限界法的基本思想是将问题划分为一个个子问题,并对每个子问题进行求解,同时通过剪枝操作减少空间。
算法从一个初始状态开始,通过扩展子节点来生成树。
在每个节点上,先判断该节点是否需要剪枝操作。
如果需要剪枝,则舍弃该节点及其子节点;如果不需要剪枝,则继续扩展该节点为新的可能解。
通过不断扩展和剪枝操作,最终找到最优解。
分支限界法的核心是选择一个合适的策略来确定节点的扩展顺序。
常用的策略包括优先级队列、最小堆、最大堆等。
这些策略可以根据问题的性质和特点来选择,以保证效率。
同时,剪枝操作也是分支限界法中关键的一环。
剪枝操作有多种方式,如上界和下界剪枝、可行剪枝、标杆剪枝等。
通过剪枝操作,可以减少空间,提高算法的效率。
分支限界法的时间复杂度通常是指数级别的,因为每个节点需要根据策略进行扩展,并进行剪枝操作。
然而,通过合理选择策略和剪枝操作,可以显著减少空间,降低时间复杂度。
此外,分支限界法还可以通过并行计算等技术进一步提高效率。
分支限界法在求解组合优化问题中有广泛应用。
组合优化问题是在有限的资源条件下,通过组合和选择来达到最优解的问题。
例如,旅行商问题、背包问题等都是经典的组合优化问题,而分支限界法可以在有限的时间内找到最优解。
在图论问题中,分支限界法也有重要的应用。
例如,最短路径问题、图着色问题等都可以通过分支限界法求解。
总之,分支限界法是一种基于和剪枝的优化算法,通过合理选择策略和剪枝操作,在有限的时间内找到最优解。
该算法在组合优化问题和图论问题中有广泛应用,可以有效提高问题求解的效率。
在实际应用中,可以根据问题性质和特点选择合适的策略和剪枝操作,以达到最佳的求解效果。
分支限界算法
通俗来讲,分支限界法是一种将一个具有相互冲突和复杂约束的大型优化问题划分成一系列规模较小的子问题的方法,并以此最终获得给定问题的最优解。
它把原问题分割成几个小子问题,每个子问题都有一个限制条件,分支限界法从一个子集中选择,分支出若干解法,并把选出的最优解作为下一次算法迭代的初始解,继续作为一个新的子集挑选优解,以此迭代直至找到了全局最优解。
分支限界法的运行流程主要包括以下几个步骤:
1.初始化:确定问题的规模大小及初始解;
2.分支:根据某种规则,将现有的一个节点分成若干个候选子节点,并构建子节点与父节点之间的映射关系;
3.限界:每个候选子节点都有一个下限价值,以降低算法计算量;
4.剪枝:根据某种明确的剪枝规则,去除那些应该剪枝的节点,减少计算量;
5.搜索:递归搜索下一个更优解,直至得出最优解。