液态成型技术基础A
- 格式:doc
- 大小:33.17 KB
- 文档页数:2
1、金属液态成形技术:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成形方法称为液态成形。
简称铸造。
2、充型能力:液态合金充满铸型型腔,获得形状完整,轮廓清晰铸件的能力。
衡量充型能力可用所能形成的铸件最小壁厚。
充型能力的好与差,首先取决于铸造合金的流动性;同时又受到外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。
3、流动性:液态金属本身的流动能力。
衡量流动性一般采用螺旋试样长度。
金属的种类、成分、结晶特征及其它物理性能,决定了流动性4、收缩:金属液态、凝固及固态冷却过程中发生体积减少的现象。
5、铸件在冷却和凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的地方出现孔洞。
容积大而比较集中的孔洞称为缩孔;细小而分散的孔洞称为缩松。
6、缩孔形成条件:金属在恒温或较窄的温度范围内结晶,铸件由表及里逐层凝固。
缩松形成条件:金属结晶温度范围较宽,呈体积凝固方式(糊状凝固)。
7、铸件在凝固和随后的冷却过程中,固态收缩受到阻碍而引起的内应力,称为铸造应力。
热应力、相变应力、机械阻碍应力8、偏析:铸件(尤其是厚壁铸件)凝固后截面上不同部位,以至晶粒内部,产生化学成分不均匀的现象。
偏析产生的原因是由于各种铸造合金在结晶过程中发生了溶质再分配的结果。
9、熔炼:固态炉料按比例装入熔炉加热熔化,通过一系列冶金反应,转化成具有一定化学成分和温度符合铸造成形要求的液态金属。
10、金属熔化后,液态金属通过浇注系统充填铸型型腔的过程称为浇注过程。
11、浇注系统:铸型中液态金属流入铸型型腔的通道。
12、砂型铸造:以粘土砂为主要造型材料13、特种铸造:通过改变铸型材料、浇注方法、充型形式、凝固条件等形成的铸造技术14、金属固态塑性成形:在外力作用下,使金属材料产生预期的塑性变形,以获得所需的形状、尺寸和力学性能的毛坯或零件的加工方法。
15、金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得优质毛坯或零件的难易程度。
三种液态成形方法液态成形是工程领域中的一种重要成形技术,用于制造各种金属或非金属零件。
它通过将材料加热至液态,并注入到模具中,随后冷却并固化成所需形状。
液态成形方法具有制造复杂零件、提高生产效率和减少原材料浪费等优点。
下面将介绍三种常用的液态成形方法:压铸、注射成型和热挤压。
1.压铸压铸是一种通过将液态金属或合金注入高温模具中,并以高压使其充分充实和冷却而形成所需零件的成形方法。
压铸适用于制造具有复杂形状和精密尺寸要求的铝、镁、锌等金属零件。
工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造金属模具。
(2)准备材料:根据所需零件的要求,选择适合的金属或合金,并将其加热至液态。
(3)充填模具:将液态金属或合金注入已加热的模具中。
(4)施加压力:通过驱动液压系统,施加高压使液态金属或合金充实模具腔体,并排除有害气体。
(5)冷却固化:等待足够时间,让液态金属或合金冷却并固化成所需形状。
(6)分离模具:打开模具并取出成品零件。
(7)修整和后处理:将零件上的余料切割掉,并进行必要的表面处理。
2.注射成型注射成型是一种通过将液态或半液态塑料材料注入模具中,并在成型温度下固化成所需形状的成形方法。
注射成型适用于制造塑料零件,广泛应用于电子、汽车、日用品等领域。
工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造塑料模具。
(2)准备材料:选择适合注射成型的塑料树脂,并将其加热至液态或半液态。
(3)充填模具:将液态或半液态塑料注入已加热的模具中。
(4)冷却固化:等待足够时间,让塑料在模具中冷却并固化成所需形状。
(5)分离模具:打开模具并取出成品零件。
(6)修整和后处理:将零件上的余料切割掉,并进行必要的表面处理。
3.热挤压热挤压是一种通过将液态金属在高温和高压下通过模孔挤压成型的成形方法。
热挤压适用于制造具有长直形截面或复杂截面的杆、管和型材等零件。
工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造高温合金模具。
材料成形工艺基础1第一章 材料成形理论基础液态成形--铸造 固态成形--锻造 固态连接--焊接21第一节 液态成形基础1、液态金属的结构液态金属在结构上更象固态而不是汽态,原子之间 仍然具有很高的结合能。
液态金属的结构特征 液态金属内存在近程有序的原子集团。
这种原子集团是不稳定 的,瞬时出现又瞬时消失。
所以,液态金属结构具有如下特 点: l)液态金属是由游动的原子团构成。
2)液态金属中的原子热运动强烈,原子所具有的能量各不相 同,且瞬息万变,这种原子间能量的不均匀性,称为能量起 伏。
3)由于液态原子处于能量起伏之中,原子团是时聚时散,时 大时小,此起彼伏的,称为结构起伏。
3第一节 液态成形基础1、液态金属的性质液态金属是有粘性的流体。
粘度的物理本质是原子间作 相对运动时产生的阻力。
表面张力:在液体表面内产生的平行于液体表面、且各 向均等的张力421.2铸件的凝固组织合金从液态转变成固态的过程,称为一次结晶 或凝固。
当液态金属冷却至熔点以下,经过一定时间的孕 育,就会涌现一批小晶核,随后这些晶核按原子规则 排列的各自取向长大,与此同时又有另一批小晶核生 成和长大,直至液体全部耗尽为止。
51.2铸件的凝固组织合金从液态转变成固态的过程,称为一次结晶 或凝固。
一次结晶从物理化学观点出发,研究液态金属的 生核Formation of stable nuclei 、长大Growth of crystals、结晶组织的形成规律。
凝固从传热学观点出发,研究铸件和铸型的传热过 程、铸件断面上凝固区域的变化规律、凝固方式与 铸件质量的关系、凝固缺陷形成机制等。
631.2铸件的凝固组织凝固组织分宏观和微观。
宏观组织:铸态晶粒的形态、大小、取向、分布 微观组织:晶粒内部的亚结构的形状/大小/相 对分布/缺陷等 晶粒越细小均匀,金属材料的强度和硬度越高,塑 性和韧性越好。
71.3铸件的凝固方式和控制铸件的工艺原则铸件的凝固方式逐层凝固方式(skin-forming solidification) 糊状凝固方式(mushy solidification) 中间凝固方式(middle solidification)。
第五节与液态成形相关的新工艺、新技术简介一、模具快速成形技术快速成形(Rapid Prototyping,简称RP):利用材料堆积法制造实物产品的一项高新技术。
它能根据产品的三维模样数据,不借助其它工具设备,迅速而精确地制造出该产品,集中体现在计算机辅助设计、数控、激光加工、新材料开发等多学科、多技术的综合应用。
传统的零件制造过程往往需要车、钳、铣、刨、磨等多种机加工设备和各种工装、模具,成本高又费时间。
一个比较复杂的零件,其加工周期甚至以月计,很难适应低成本、高效率生产的要求。
快速成形技术是现代制造技术的一次重大变革。
(一)快速成形工艺快速成形技术就是利用三维CAD的数据,通过快速成形机,将一层层的材料堆积成实体原型。
迄今为止,国内、外已开发成功了10多种成熟的快速成形工艺,其中比较常用的有以下几种:1.纸层叠法—薄形材料选择性切割(LOM法)计算机控制的CO2激光束按三维实体模样每个截面轮廓对薄形材料(如底面涂胶的卷状纸、或正在研制的金属薄形材料等)进行切割,逐步得到各个轮廓,并将其粘结快速形成原型。
用此法可以制作铸造母模或用于“失纸精密铸造”。
2.激光立体制模法—液态光敏树脂选择性固化(SLA法)液槽盛满液态光敏树脂,它在计算机控制的激光束照射下会很快固化形成一层轮廓,新固化的一层牢固地粘结在前一层上,如此重复直至成形完毕,即快速形成原型。
激光立体制模法可以用来制作消失模,在熔模精密铸造中替代蜡模。
3.烧结法—粉末材料选择性激光烧结(SLS法)粉末材料可以是塑料、蜡、陶瓷、金属或它们复合物的粉体、覆膜砂等。
粉末材料薄薄地铺一层在工作台上,按截面轮廓的信息,CO2激光束扫过之处,粉末烧结成一定厚度的实体片层,逐层扫描烧结最终形成快速原型。
用此法可以直接制作精铸蜡模、实型铸造用消失模、用陶瓷制作铸造型壳和型芯、用覆膜砂制作铸型、以及铸造用母模等。
4.熔化沉积法—丝状材料选择性熔覆(FDM法)加热喷头在计算机的控制下,根据截面轮廓信息作X-Y平面运动和高度Z方向的运动,塑料、石腊质等丝材由供丝机构送至喷头,在喷头中加热、熔化,然后选择性地涂覆在工作台上,快速冷却后形成一层截面轮廓,层层叠加最终成为快速原型。
一、填空题(每空1分,共20分)1. 机械设计时常用屈服强度和抗拉强度两种强度指标。
2. 纯金属的晶格类型主要有面心立方、体心立方和密排六方三种。
3. 实际金属存在点、线和面缺陷等三种缺陷。
4.F和A分别是碳在α-Fe 、γ-Fe 中所形成的间隙固溶体。
5. 加热是钢进行热处理的第一步,其目的是使钢获得奥氏体组织。
6.QT600-3中,QT表示球墨铸铁,600表示抗拉强度不小于600Mpa 。
7.金属晶体通过滑移和孪生两种方式来发生塑性变形。
8.设计锻件时应尽量使零件工作时的正应力与流线方向相同,而使切应力与流线方向相垂直。
9.电焊条由药皮和焊芯两部分组成。
10.冲裁是冲孔和落料工序的简称。
1.在铁碳合金相图中,碳在奥氏体中的最大溶解度为( b )。
a、0.77%b、2.11%c、0.02%d、4.0%2.低碳钢的焊接接头中,( b )是薄弱部分,对焊接质量有严重影响,应尽可能减小。
a、熔合区和正火区b、熔合区和过热区c、正火区和过热区d、正火区和部分相变区3.碳含量为Wc=4.3%的铁碳合金具有良好的( c )。
a、可锻性b、可焊性c、铸造性能d、切削加工性4.钢中加入除Co之外的其它合金元素一般均能使其C曲线右移,从而( b )a、增大V Kb、增加淬透性c、减少其淬透性d、增大其淬硬性5. 高碳钢淬火后回火时,随回火温度升高其( a )a、强度硬度下降,塑性韧性提高b、强度硬度提高,塑性韧性下降c、强度韧性提高,塑性硬度下降d、强度韧性下降,塑性硬度提高6.感应加热表面淬火的淬硬深度,主要决定于因素( d )a、淬透性b、冷却速度c、感应电流的大小d、感应电流的频率7.珠光体是一种( b )a、单相间隙固溶体b、两相混合物c、Fe与C的混合物d、单相置换固溶体8.灰铸铁的石墨形态是( a )a、片状b、团絮状c、球状d、蠕虫状9.反复弯折铁丝,铁丝会越来越硬,最后会断裂,这是由于产生了( a )a、加工硬化现象b、再结晶现象c、去应力退火d、扩散退火10.下列说法不正确的是( c )a. 调质处理= 淬火+高温回火。
液态成形复习资料第一章1.凝固成形]:熔炼金属,并将熔融金属浇注、压射或吸入铸型型腔中,凝固成为一定形状和性能的铸件。
2.凝固成形]:熔炼金属,并将熔融金属浇注、压射或吸入铸型型腔中,凝固成为一定形状和性能的铸件。
3.按液体的构成类型,可分为:原子液体(如液态金属、液化惰性气体)分子液体(如极性与非极性分子液体)离子液体(如各种简单的及复杂的熔盐)4.液体具有流动性(液体最显著的性质);可完全占据容器的空间并取得容器内腔的形状;(类似于气体,不同于固体)不能够象固体那样承受剪切应力,表明液体的原子或分子之间的结合力没有固体中强;类似于气体,不同于固体)具有自由表面(类似于固体,不同于气体);液体可压缩性很低(类似于固体,不同于气体5.物理性质:密度、粘度、电导率、热导率和扩散系数等;物理化学性质:等压热容、等容热容、熔化和气化潜热、表面张力等;热力学性质:蒸汽压、膨胀和压缩系数及其它6.液体的结构和性质与材料成型的关系液体的界面张力、潜热等性质凝固过程的形核及晶体生长的热力学熔体的结构信息凝固的微观机制液体的原子扩散系数、界面张力、传热系数、结晶潜热、粘度等性质成分偏析、固-液界面类型及晶体生长方式热力学性质及反应物和生成物在液相中的扩散速度铸造合金及焊接熔池的精炼7.晶体:平移、对称性特征(长程有序)——原子以一定方式周期排列在三维空间的晶格结点上,同时原子以某种模式在平衡位置上作热振动气体:完全无序为特征——分子不停地作无规律运动Array液体:长程无序——不具备平移、对称性;近程有序——相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团,液体结构表现出局域范围的有序性8.物质熔化时体积变化﹑熵变(及焓变)一般均不大(见表1-1),金属熔化时典型的体积变化V m/V S(V m为熔化时的体积增量)为3~5%左右,表明液体的原子间距接近于固体,在熔点附近其混乱度只是稍大于固体而远小于气体的混乱度。
材料成形技术基础第一章 金属液态成形金属液态成形(铸造):将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。
液态成形的优点:(1)适应性广,工艺灵活性大(材料、大小、形状几乎不受限制)(2)最适合形状复杂的箱体、机架、阀体、泵体、缸体等(3)成本较低(铸件与最终零件的形状相似、尺寸相近)主要问题:组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。
分类:铸造从造型方法来分,可分为砂型铸造和特种铸造两大类。
其中砂型铸造工艺如图1-1所示。
图1-1 砂型铸造工艺流程图第一节金属液态成形工艺基础一、熔融合金的流动性及充型液态合金充满型腔是获得形状完整、轮廓清晰合格铸件的保证,铸件的很多缺陷都是在此阶段形成的。
(一)熔融合金的流动性1.流动性 液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力,称为液态合金的流动性。
流动性差:铸件易产生浇不到、冷隔、气孔和夹杂等缺陷。
流动性好:易于充满型腔,有利于气体和非金属夹杂物上浮和对铸件进行补缩。
螺旋形流动性试样衡量合金流动性,如图1-2所示。
在常用铸造合金中,灰铸铁、硅黄铜的流动性最好,铸钢的流动性最差。
常用合金的流动性数值见表1-1。
表1-1 常用合金的流动性(砂型,试样截面8㎜×8㎜)2. 影响合金流动性的因素(1) 化学成份 纯金属和共晶成分的合金,由于是在恒温下进行结晶,液态合金从表层逐渐向中心凝固,固液界面比较光滑,对液态合金的流动阻力较小,同时,共晶成分合金的凝固温度最低,可获得较大的过热度,推迟了合金的凝固,故流动性最好;其它成分的合金是在一定温度范围内结晶的,由于初生树枝状晶体与液体金属两相共存,粗糙的固液界面使合金的流动阻力加大,合金的流动性大大下降,合金的结晶温度区间越宽,流动性越差。
Fe-C合金的流动性与含碳量之间的关系如图1-3所示。
液态成形工艺技术液态成形工艺技术是一种将液体材料注入模具中,通过各种方式使其固化成形的技术。
液态成形工艺技术包括压铸、注塑、压力真空成型等。
这些技术广泛应用于工业生产中,能够生产高精度、高性能的零部件和产品。
液态成形工艺技术的基本原理是通过将液体材料注入模具中,并施加一定的压力,使其充满整个模腔。
在一定的温度和时间下,液体材料会逐渐固化,从而得到所需的成品。
压铸是一种常见的液态成形工艺技术。
在压铸中,液态金属被注入到模具中,并经过高压力的作用,使其充满整个模腔,然后在一定的时间内进行冷却固化。
最终,通过打开模具,可以得到精确的金属零部件。
注塑是另一种常见的液态成形工艺技术。
在注塑中,熔融的塑料被注入到模具中,并且根据模具的形状和尺寸,塑料材料会逐渐固化。
注塑工艺技术可以生产各种塑料制品,如塑料壳体、包装材料等。
注塑工艺技术具有生产效率高、成本低等优点,因此在工业生产中得到广泛应用。
压力真空成型是一种利用压力和真空力来注入液态材料进行成形的技术。
在压力真空成型中,将液态材料放入模具中,并在一定的压力和真空条件下,使其充满整个模腔,并在固化过程中保持形状。
压力真空成型技术适用于各种不同材料的成形,如橡胶、塑料、陶瓷等。
液态成形工艺技术具有许多优点。
首先,液态成形工艺技术可以生产高精度的零部件和产品,尺寸和形状的精准度较高。
其次,液态成形工艺技术可以实现大规模的生产,生产效率较高。
此外,液态成形工艺技术具有良好的表面质量和产品性能,可以生产出高质量的产品。
然而,液态成形工艺技术也存在一些局限性。
首先,液态成形工艺技术对模具的要求较高,模具制造成本较高。
其次,对液态材料的选择和控制有一定的技术要求,不同的液态材料需要不同的成形工艺。
此外,液态成形工艺技术在处理高温材料和特殊材料时存在一定的困难。
总之,液态成形工艺技术是一种重要的加工技术,能够生产出高精度、高性能的零部件和产品。
随着材料和工艺的不断创新,液态成形工艺技术将在工业生产中发挥越来越重要的作用。
一、名词解释。
过冷度:金属的理论结晶温度和实际结晶温度的差值均质形核:在没有任何外来的均匀熔体中的形核过程异质形核:在不均匀的熔体中依靠外来杂质或者型壁面提供的衬底进行形核的过程异质形核速率的大小和两方面有关,一方面是过冷度的大小,过冷度越大形核速率越快。
二是和界面有关界面和夹杂物的特性形态和数量来决定,如果夹杂物的基底和晶核润湿,那么形核速率大。
形核速率:在单位时间单位体积内生成固相核心的数目液态成型:将液态金属浇入铸型之,凝固后获得具有一定形状和性能的铸件或者铸锭的方法复合材料:有两种或者两种以上物理和化学性质不同的物质复合组成一种多相固体定向凝固:使金属或者合金在熔体中定向生长晶体的方法溶质再分配系数:凝固过程当中,固相侧溶质质量分数和液相侧溶质质量分数的比值流动性是确定条件下的充型能力,液态金属本身的流动能力叫做流动性液态金属的充型能力是指液态金属充满铸型型腔获得完整轮廓清晰的铸件能力影响充型能力的因素:(1)金属本身的因素包括金属的密度、金属的比热容、金属的结晶潜热、金属的粘度、金属的表面张力、金属的热导率金属的结晶特点。
(2)铸型方面的因素包括铸型的蓄热系数、铸型的温度、铸型的密度、铸型的比热容、铸型的涂料层、铸型的透气性和发气性、铸件的折算厚度(3)浇注方面的因素包括液态金属的浇注温度、液态金属的静压头、浇注系统中的压头总损失和影响液态金属凝固过程的因素:主要因素是化学成分冷却速度是影响凝固过程的主要工艺因素液态合金的结构和性质以及冶金处理(孕育处理、变质处理、微合金化)等对液态金属的凝固也有重要影响液态金属凝固过程当中的液体流动主要包括自然对流和强迫对流,自然对流是由于密度差和凝固收缩引起的流动,由密度差引起的对流成为浮力流。
凝固过程中由传热。
传质和溶质再分配引起液态合金密度的不均匀,密度小的液相上浮,密度大的下沉,称为双扩散对流,凝固以及收缩引起的对流主要主要产生在枝晶之间,强迫对流是由液体受到各种方式的驱动力产生的对流,例如压力头。
湖南大学课程考试试卷
以通过哪些工艺措施来改变或控制凝固速度?(10分)
2、论述缩孔的形成过程,并讨论分析缩孔与缩松的形成条件及形成原因的异
同点。
(12分)
四、计算题(共24分)
1、过共析钢液η=0.0049Pa﹒S,钢液的密度为7000kg/m3,表面张力为1500mN/m,
加铝脱氧,生成密度为5400 kg/m3 的Al
2O
3
,如能使Al
2
O
3
颗粒上浮到钢液表面
就能获得质量较好的钢。
假如脱氧产物在1524mm 深处生成,试确定钢液脱氧后
2min上浮到钢液表面的Al
2O
3
最小颗粒的尺寸。
(10分)
2、某二元合金相图如下所示。
合金液成分为C
B
=40%,置于长瓷舟中并从左端开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:
①α相与液相之间的平衡分配系数K0;
②凝固后共晶体的数量占试棒长度的百分之几?
③画出凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线,并注明各特征成分及其位置。
(14分)。