九年级数学上第一章特殊的平行四边形专项测试题(北师大版带答案和解释5份)
- 格式:doc
- 大小:19.87 KB
- 文档页数:6
九年级数学上册第一章《特殊平行四边形》测试卷-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.在矩形A BCD中,对角线AC、BD相交于点O,则下列结论不正确的是()A. BO = DO B. AC = BDC. AC平分∠BA DD. BO =CO2.在平行四边形、矩形、菱形、正方形中是轴对称图形的有()A.1个B.2个C.3个D.4个3. 如图,在矩形A BCD中,对角线AC,BD相交于点O,E,F分别是A0,A D 的中点,若AB=6c m,BC =8c m,则EF=()A. 3c m,B. 2c m,C.2.5c m,D.4c m,4. 如图,在菱形A BCD中,延长AB于E并且CE⊥A E,AC=2CE,则∠CBE 的度数为()A.50°B.40°C.30°D.60°5.已知四边形A BCD是平行四边形,下列结论①AB//CD;②AC=BD;③当AC=BD时,它是菱形;④当∠ABC=90°时,它是矩形.其中正确的是()A. ①②B.①④C.②③D.③④6.如图,在矩形A BCD中,AC交BD于点O,∠AOD =60°,OE⊥AC.若A D3,则A E的长为()A.1B.2C.3D.47.如图,正方形A BCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC =2:1,则线段CH的长是()A.3B.4C.5D.68.如图,在△A BC中,A B > A C,D、E分别是边A B,A C上的点,将△A D E沿线段DE翻折,使点A落在边BC上,记为点A'.若四边形A D A'E是菱形,则下列说法正确的是()A.DE是AABC的中位线B.AA'是BC边上的中线C.AA'是BC边上的高D.AA'是△ABC的角平分线9.如图,四边形A BCD、A E FG都是正方形,点E、C分别在AB、A D上,连接FC,过点E作EH//FC交BC于点.若AB=4,A E=1,则BH的长为()A.1B.2C.3D.3210.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1,+S2。
第一章:特殊的平行四边形单元测试卷(典型题汇总)(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
第一章特殊平行四边形评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直2.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.73.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是( )A.2B.C.D.【变式训练】如图,在矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则矩形ABCD的面积为.5.如图,已知菱形ABCD与△ABE,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.126.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )A.15B.20C.25D.307.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC的中点;②FG=FC;③S△FGC=.其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题(每小题5分,共25分)8.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是.【易错提醒】平行四边形是中心对称图形,但不是轴对称图形,本题易误认为平行四边形既是轴对称图形又是中心对称图形.【知识归纳】特殊平行四边形的对称性(1)矩形、菱形、正方形既是轴对称图形又是中心对称图形.(2)矩形与菱形有两条对称轴,正方形有四条对称轴.(3)对角线的交点是它们的对称中心,过对称中心的任一条直线均把原图形分成面积相等的两部分.9.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,试添加一个条件: ,使得平行四边形ABCD是菱形.【解析】添加AC⊥BD,则对角线互相垂直的平行四边形是菱形;添加AD=DC,则一组邻边相等的平行四边形是菱形.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= .【变式训练】如图,顺次连接菱形ABCD的各边中点E,F,G,H.若AC=a,BD=b,则四边形EFGH的面积是.11.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,连接GH,当AD,AB满足时,四边形EFGH为矩形.12.如图,四边形ABCD与AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则= .三、解答题(共47分)13.(10分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形.(2)若四边形BECF为正方形,求∠A的度数.【互动探究】四边形BECF的面积与△ABC的面积有什么关系?为什么?14.(12分)如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)证明:四边形AECF是矩形.(2)若AB=8,求菱形的面积.15.(12分)(2014·新民市一模)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF.(2)若点O为CD的中点,求证:四边形DECF是矩形.16.(13分)(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.明)。
九年级数学上册第一章特殊的平行四边形单元测试题班级:姓名:成绩:一.选择题(共10小题,每小题3分,共30分)1.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角2.如图,AC=AD,BC=BD,则正确的结论是()A.AB 垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.四边形ABCD是菱形3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.154.如图,O为矩形ABCD的对角线AC的中点,过点O作AC的垂线EF分别交AD、BC于点E、F,连结CE.若该矩形的周长为20,则△CDE的周长为()A.10 B.9 C.8 D.55.如图,在▱ABCD中,对角线AC与BD 交于点O,添加下列条件不能判定▱ABCD为矩形的只有()A.AC=BD B.AB=6,BC=8,AC=10 C.AC⊥BD D.∠1=∠26.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°7.如图,在正方形ABCD中,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点E,连接AE,BE得到△ABE,则△ABE与正方形ABCD的面积比为()A.1:2 B.1:3 C.1:4 D.8.已知四边形ABCD中,∠A=∠B=∠C=90°,如添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD9.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)二.填空题(共8小题,每小题3分,共24分)10.矩形(非正方形)四个内角的平分线围成的四边形是形.(填特殊四边形)11.如图,E是菱形ABCD的对角线BD上一点,过点E作EF⊥BC于点F.若EF =4,则点E到边AB的距离为.12.在菱形ABCD中,AC=12cm,若菱形ABCD的面积是96cm2,则AB=.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F 分别为AO、AD的中点,则EF的长是.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.15.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为.16.已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.17.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF 的中点,那么CH的长是.三.解答题(共7小题,共66分)18.已知:如图所示,菱形ABCD中,DE⊥AB于点E,且E为AB的中点,已知BD=4,求菱形ABCD的周长和面积.19.如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE =DF.求证;四边形ABCD是菱形.20.如图,在矩形ABCD中,AE⊥BD于点E,∠DAE=2∠BAE,求∠EAC的度数.21.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,22.如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC =,则点E到边AB 的距离为.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题1.解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.2.解:∵AC=AD,BC=BD,∴AB垂直平分CD,故选:A.3.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO =BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD 的面积=×6×8=24,故选:B.4.解:∵O为矩形ABCD的对角线AC的中点,∴AO=OC,∵过点O作AC的垂线EF分别交AD、BC于点E、F,∴AE=CE,∵矩形的周长为20,∴AD+DC=AB+BC=10,∴△CDE的周长为CD+DE+CE=CD+DE+AE=CD+AD=10,故选:A.5.解:A、正确.对角线相等的平行四边形是矩形.B、正确.∵AB=6,BC=8,AC=10,∴AB2+BC2=62+82=102,∴∠ABC=90°,∴平行四边形ABCD为矩形.C、错误.对角线垂直的平行四边形是菱形,D、正确,∵∠1=∠2,∴AO=BO,∴AC=BD,∴平行四边形ABCD是矩形.故选:C.6.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°故选:A.7.解:过E作EF⊥AB于F,由题意得,△BCE是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=30°,∴EF =BE,设正方形的边长为a,则AB=BE=BC=a,∴EF =a,∴S△ABE =AB•EF =•a a =a,S正方形ABCD=a2,∴△ABE与正方形ABCD的面积比为1:4,故选:C.8.解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.10.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO ==3∴点C坐标(6,3)故选:D.二.填空题11.解:∵AF,BE是矩形的内角平分线.∴∠ABF=∠BAF﹣90°.故∠1=∠2=90°.同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.∴OD=OC,△AMD≌△BNC,∴NC=DM,∴NC﹣OC=DM﹣OD,即OM=ON,∴矩形GMON为正方形,故答案为:正方.12.解:∵四边形ABCD为菱形,∴BD平分∠ABC,∵E为BD上的一点,EF=4,∴点E到AB的距离=EF=4,故答案为:4.13.解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD ∵S菱形ABCD =×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB ==10cm故答案为:10cm14.解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF =DO ==5,故答案为:5.15.解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.16.解:∵菱形ABCD的周长是20,∴AB=5,AC⊥BD,AO=CO,BO=DO=3,∴AO ==4∴AC=8,BD=6∴菱形ABCD 的面积=AC×BD=24,故答案为:2417.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.18.解:∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC =BC =,CF =CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,由勾股定理得:AF ===2,∵H是AF的中点,∴CH =AF =.故答案为:.三.解答题19.解:∵DE⊥AB于E,且E为AB的中点,∴AD=BD,∵四边形ABCD是菱形,∴AD=BA,∴AB=AD=BD,∴△ABD是等边三角形,∴∠DAB=60°;∵BD=4,∴DO=2,AD=4,∴AO ==2,∴AC=4;∴AB ===4,∴菱形ABCD的周长为4×4=16;菱形ABCD 的面积为:BD•AC =×4×4=8.20.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°.又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形.21.解:∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∠BAD=90°,∴OA=OB,∵∠BAD=90°,∠DAE=2∠BAE,∴∠BAE=30°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣30°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠EAC=∠BAO﹣∠BAE=60°﹣30°=30°.22.解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE ===4.23.解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.∵点E是CD的中点,∴DE=CE =CD=6.∵AF=3DF,∴DF =AD=3.∴AF=3DF=9.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2.∴△BEF是直角三角形.24.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC =,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH =CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.25.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。
九年级数学上第一章特殊的平行四边形专项测试题(北师大
版带答案和解释5份)
第一特殊的平行四边形专项测试题(二)
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、在菱形中,对角线,相交于点,则图中全等的直角三角形共有( )
A 对
B 对
c 对
D 对
2、下列四个命题中,真命题是().
A 四边都相等的四边形是正方形
B 对角线相等且互相平分的四边形是矩形
c 对角线互相垂直且相等的四边形是菱形
D 对角线互相垂直平分的四边形是正方形
3、如果要证明平行四边形为正方形,那么我们需要在四边形是平行四边形的基础上,进一步证明().
A 与互相垂直平分
B 且
c 且
D 且
4、下列说法中错误的是()
A 对角线垂直的矩形是正方形
B 对角线相等的菱形是正方形
c 四条边相等的四边形是正方形
D 四个角相等的四边形是矩形
5、如图,在矩形中,为的中点,连接并延长交的延长线于点,则图中的全等三角形共有()。
一、选择题1.如图,矩形ABCD 被两条对角线分成4个小三角形OAB ∆、OAD ∆、OBC ∆和OCD ∆,若这4个小三角形的周长之和为68,对角线10AC =,则矩形ABCD 的周长是( )A .14B .18C .21D .282.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小3.如图所示,在菱形ABCD 中,5AC =,120BCD ∠=︒,则菱形ABC 的周长是( ).A .20B .15C .10D .54.如图,在矩形ABCD 中,点E 是AD 的中点,EBC ∠的平分线交CD 于点F ,将DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC 、EF 交于点N .有下列四个结论:① DF CF =;②BF EN ⊥;③BEN 是等边三角形;④3BEF DEF S S =△△. 其中,将正确结论的序号全部选对的是( )A .①②③B .①②④C .②③④D .①②③④5.以下命题,正确的是( ).A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,延长CB 至E 使BE=CB ,连续AE .下列结论①AE=2OE ;②90EAC ∠=︒;③四边形ADBE 为平行四边形;④34AEBO ABCD S S =四边形菱形中,正确的个数有( )A .1个B .2个C .3个D .4个 7.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等 8.如图,在矩形ABCD 中,两条对角线AC 与BD 相交于点O ,3AB =,2OA =,则AD 的长为( )A .5B .13C .10D .7 9.四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A .AB =CD B .AD =BC C .AB =BC D .AC =BD 10.如图,矩形纸片ABCD 中,6AB =,12BC =.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点K ,FG 交CD 于点H .给出以下结论:①EF BG ⊥;②GE GF =;③GDK △和GKH △的面积相等;④当点F 与点C 重合时,75DEF ∠=︒,其中正确的结论共有( ).A .1个B .2个C .3个D .4个11.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒12.如图,矩形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把B 沿AE 折叠,使点B 落在点'B 处,当'CEB ∆为直角三角形时,BE 的长为( )A .3B .32C .2或3D .3或32二、填空题13.如图,在矩形ABCD 中,AB=3,BC=4,点,,,E F G H 分别是边,,,AB BC CD AD 的中点,连接,,,AF BG CH DE ,得到一个新的四边形,MNPQ 则四边形MNPQ 的面积为 _____________.14.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若∠DHO=20°,则∠HDB 的度数是________.15.如图,在菱形ABCD 中,AB=18cm ,∠A=60°,点E 以2cm/s 的速度沿AB 边由A 向B 匀速运动,同时点F 以4cm/s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.当点E 运动_______秒时,△DEF 为等边三角形.16.如图,四边形ABCD 是一张长方形纸片,将该纸片对折,使顶点B 与顶点D 重合,EF 为折痕,若6AB =、8BC =,则图中阴影部分的面积为______.17.如图,长方形台球桌面ABCD 上有两个球P 、Q .//PQ AB ,球P 连续撞击台球桌边AB ,BC 反射后,撞到球Q .已知点M 、N 是球在AB ,BC 边的撞击点,4PQ =,30MPQ ∠=︒,且点P 到AB 边的距离为3,则MP 的长为__________,四边形PMNQ 的周长为________18.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,正方形ADOF 的面积为4, CF =6,则BD 的长是_______.19.如图,在矩形ABCD 中,4cm AB =,3cm BC =,点P 为AD 上一点,将ABP 沿着BP 翻折至EBP ,PE 与CD 交于点O ,且OE OD ,则DP 的长度为______cm .20.如图,将一个长方形纸片ABCD 沿EF 折叠,使C 点与A 点重合,若2,4AB AD ==,则线段DF 的长是_________.三、解答题21.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =(2)当ABC 满足什么条件时,四边形ADCE 是矩形?并说明理由.22.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且BE CF =,AE 与BF 相交于点O .(1)求证:ABE BCF △△≌;(2)求证:AE BF ⊥;(3)若2BE =,30BAE ∠=︒,求线段AO 的长.23.已知点(0,4)A 、(4,0)B -分别为面直角坐标中y 、x 轴上一点,将线段OA 绕O 点顺时针旋转至OC ,连接AC 、BC .(1)如图1,若60AOC ∠=︒,求ACB ∠的度数;(2)若60AOC ∠=︒,AOB ∠的平分线OD 交BC 于D ,如图2,求证:OD BD CD +=;(3)若30AOC ∠=︒,过A 作AE AC ⊥交BC 于E ,如图3,求BE 的长. 24.如图所示,平行四边形,ABCD 对角线BD 平分ABC ∠;()1求证:四边形ABCD 为菱形;()2已知AE BC ⊥于E ,若24CE BE ==,求BD .25.若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图1,在四边形ABCD 中,AB AD CB CD ==,,判断四边形ABCD 是否为垂美四边形,并说明理由;(2)性质探究:如图2,试在垂美四边形ABCD 中探究2AB 、2BC 、2CD 、2AD 之间的数量关系;(3)解决问题:如图3,分别以Rt △ABC 的直角边AC 和斜边AB 为边向外作正方形ACFD 和正方形ABGE ,连接BD 、CE 、DE ,CE 分别交AB 、BD 于点M 、N ,若AB =2,AC =3,求线段DE 的长.26.如图,点O 是线段AB 上的一点,OA =OC ,OD 平分∠AOC 交AC 于点D ,OF 平分∠COB ,CF ⊥OF 于点F .求证:四边形CDOF 是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】四个小三角形的周长是两条对角线长的2倍与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD,四个小三角形的周长=2AC+2BD+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为28.故选:D.【点睛】本题考查了矩形的性质和矩形的周长,抓住矩形的对角线相等和四个小三角形的周长=4倍的对角线长+矩形的周长是解决本题的关键.2.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D、平移和旋转都不改变图形的形状和大小,正确,故选:D.【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.A解析:A【分析】根据题意可得出∠B=60︒,结合菱形的性质可得BA=BC,判断出△ABC是等边三角形即可得出菱形的周长.【详解】解:∵四边形ABCD是菱形,BA CD,∴//又∵∠BCD=120︒,∴∠B=180︒-∠BCD= 60︒,又∵四边形ABCD是菱形,∴BA=BC,∴△ABC是等边三角形,∴BA=BC=AC=5,故可得菱形的周长=4AB=20.故选:A .【点睛】本题考查了菱形的性质及等边三角形的判定与性质,根据菱形的性质判断出△ABC 是等边三角形是解答本题的关键,难度一般.4.B解析:B【分析】由折叠的性质、矩形的性质与角平分线的性质,可证得CF =FM =DF ,即可判断①; 易求得∠BFE =∠BFN ,则可得BF ⊥EN ,即可判断②;易证得△BEN 是等腰三角形,但无法判定是等边三角形,即可判断③;易求得BM =2EM =2DE ,即可得EB =3EM ,根据等高三角形的面积比等于对应底的比,即可判断④.【详解】∵四边形ABCD 是矩形,∴∠D =∠BCD =90°,DF =MF ,由折叠的性质可得:∠EMF =∠D =90°,即FM ⊥BE ,CF ⊥BC ,∵BF 平分∠EBC ,∴CF =MF ,∴DF =CF ;故①正确;∵∠BFM =90°−∠EBF ,∠BFC =90°−∠CBF ,∴∠BFM =∠BFC ,∵∠MFE =∠DFE =∠CFN ,∴∠BFE =∠BFN ,∵∠BFE +∠BFN =180°,∴∠BFE =90°,即BF ⊥EN ,故②正确;∵在△DEF 和△CNF 中,90D FCN DF CFDFE CFN ∠∠︒⎧⎪⎨⎪∠∠⎩==== ∴△DEF ≌△CNF (ASA ),∴EF =FN ,∴BF 垂直平分EN ,∴BE =BN ,假设△BEN 是等边三角形,则∠EBN =60°,∠EBA =30°,则AE =12BE ,又∵AE =12AD ,则AD =BC =BE , 而明显BE =BN >BC ,∴△BEN 不是等边三角形;故③错误;∵∠BFM =∠BFC ,BM ⊥FM ,BC ⊥CF ,∴BM =BC =AD =2DE =2EM ,∴BE =3EM ,∴S △BEF =3S △EMF =3S △DEF ;故④正确.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.5.A解析:A【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.6.D解析:D【分析】先判定四边形AEBD 是平行四边形,再根据平行四边形的性质以及菱形的性质,即可得出结论.【详解】 解:四边形ABCD 是菱形,AD BC ∴=,//AD BC ,2BD DO =,又BC BE =,AD BE ∴=,∴四边形AEBD 是平行四边形,故③正确,AE BD ∴=,2AE DO ,故①正确;四边形AEBD 是平行四边形,四边形ABCD 是菱形,//AE BD ∴,AC BD ⊥,AE AC ∴⊥,即90CAE ∠=︒,故②正确;四边形AEBD 是平行四边形, 12ABE ABD ABCD S S S 菱形, 四边形ABCD 是菱形,14ABO ABCDS S 菱形, 34ABE ABO AEBO ABCDS S S S 四边形菱形,故④正确; 故选:D .【点睛】本题主要考查了菱形的性质以及平行四边形的判定与性质,熟悉相关性质是解题的关键. 7.B解析:B【分析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.【详解】A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .【点睛】此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.8.D解析:D【分析】根据矩形的性质求得BD=4,利用勾股定理求出AD 即可.【详解】∵四边形ABCD 是矩形,∴OB=OD=OA=OC ,∠BAD=90,∴BD=2OA=4,在Rt △ABD 中,AD=2222437BD AB -=-=,故选:D.【点睛】此题考查矩形的性质,勾股定理,熟记矩形的性质是解题的关键.9.D解析:D【分析】由四边形ABCD 的对角线互相平分,可得四边形ABCD 是平行四边形,再添加AC=BD ,可根据对角线相等的平行四边形是矩形证明四边形ABCD 是矩形.【详解】∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形,A 、AB=CD 是平行四边形的性质,并不能得出四边形ABCD 是矩形;B 、AD=BC 是平行四边形的性质,不能推出四边形ABCD 是矩形;C 、AB=BC 时,四边形ABCD 是菱形,而不是矩形;D 、AC=BD 时,由对角线相等的平行四边形是矩形.故选:D .【点睛】本题主要考查了矩形的判定,解题的关键是掌握矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.10.C解析:C【分析】由折叠的性质可得四边形EBFG 是菱形,从而可判断①②正确;由角平分线定理可判断DK KH ≠,即可推导出③错误;根据点F 、C 重合时的性质可得30AEB ∠=︒,进而算出④正确.【详解】解:连接BE ,如图:由折叠可知:BE GE =,BF GF =,BEF GEF ∠=∠∵//AD BC∴GEF BFE ∠=∠∴BEF BFE ∠=∠∴BE BF GE GF ===∴四边形EBFG 是菱形∴EF BG ⊥∴①②正确∵GK 平分DGH ∠,DG GH ≠∴DK KH ≠∴GDK GKH S S ≠△△∴③错误∵当点F 与点C 重合∴122BE BF BC AB ====∴30AEB ∠=︒ ∴180752AEB GEF ︒-∠∠==︒ ∴④正确.故选:C【点睛】 本题考查了矩形的性质、菱形的判定和性质、折叠的性质、角平分线的性质、三角形内角和定理、等腰三角形的判定和性质以及平行线的性质等,关键在于结合图形对线段、角进行转化.11.D解析:D【分析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,∠BEF=∠DEF ,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,这样可得出∠BEF 的度数,进而可求得∠AEB 的度数,则∠ABE 可在Rt △ABE 中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF ,∠EBC′、∠BC′F 都是直角,∴BE ∥C′F ,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt △ABE 中,∠ABE=90°-∠AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.12.D解析:D【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴5∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A. B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5−3=2,设BE=x,则EB′=x,CE=4−x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4−x)2,解得x=32,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故选D.【点睛】此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.二、填空题13.【分析】根据题意采取割补法将图中梯形补成与中间的平行四边形一样大小的平行四边形并找到矩形ABCD与5个小平行四边形的面积关系即可得出结论【详解】解:如图所示过A作AK∥DE交CH的延长线于K过B作B解析:12 5【分析】根据题意,采取割补法,将图中梯形补成与中间的平行四边形一样大小的平行四边形,并找到矩形ABCD与5个小平行四边形的面积关系,即可得出结论.【详解】解:如图所示,过A作AK∥DE,交CH的延长线于K,过B作BR∥AF,交DE的延长线于R,过C作CS∥BG,交AF的延长线于S,过D作DT∥CH,交BG的延长线于T,∵H是AD的中点,∴AH=DH,∵AK∥DP,∴∠K=∠DPH,又∵∠AHK=∠DHP,∴△AKH≌△DPH(AAS),∴S△AKH=S△DPH,同理可得,S△BRE=S△AQE,S△CSF=S△BMF,S△DTG=S△CNG,∵AH∥CF,AH=CF,∴四边形AFCH是平行四边形,同理可得,四边形BGDE是平行四边形,∴QM∥PN,QP∥MN,∴四边形MNPQ是平行四边形,∵AK∥QP,AQ∥KP,∴四边形AQPK是平行四边形,又∵E是AB的中点,EQ∥BM,∴Q是AM的中点,∴AQ=MQ,∴S四边形AQPK=S四边形MNPQ,同理可得,S四边形BMQR=S四边形MNPQ,S四边形MNCS=S四边形MNPQ,S四边形DTNP=S四边形MNPQ,∴S四边形BMQR=S四边形MNCS=S四边形DTNP=S四边形AQPK=S四边形MNPQ,∴S四边形MNPQ=15S四边形ABCD=15×3×4=125故答案为:12 5【点睛】本题主要考查了矩形的性质,平行四边形的判定与性质,解决本题的关键是要利用矩形的性质,作出图形中的辅助线构造全等三角形,并找出矩形和平行四边形的面积之间的关系.14.20°【分析】根据菱形的性质得出OB=OD根据直角三角形斜边的一半等于斜边的一半得出OH=OD即可得出∠HDB=∠DHO=20°【详解】解:∵四边形ABCD是菱形∴OB=OD∵DH⊥AB于点H∴OH解析:20°【分析】根据菱形的性质得出OB=OD,根据直角三角形斜边的一半等于斜边的一半,得出OH=OD,即可得出∠HDB=∠DHO=20°.【详解】解:∵四边形ABCD是菱形,∴OB=OD,∵ DH⊥AB于点H,∴OH=12BD=OD,∴∠HDB=∠DHO=20°.故答案为:20°.【分析】此题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质.注意证得△OBH是等腰三角形是关键.15.3s【分析】连接BD易证△ADE≌△BDF即可推出AE=BF列出方程即可解决问题【详解】连接BD 如图:∵四边形ABCD 是菱形∠A =60°∴AD =CD =BC =AB =18△ADB △BDC 都是等边三角形∴解析:3s【分析】连接BD .易证△ADE ≌△BDF ,即可推出AE =BF ,列出方程即可解决问题.【详解】连接BD .如图:∵四边形ABCD 是菱形,∠A =60°,∴AD =CD =BC =AB =18,△ADB ,△BDC 都是等边三角形,∴AD =BD ,∠ADB =∠DBF =60°,∵△DEF 是等边三角形,∴∠EDF =60°,∴∠ADB =∠EDF ,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,60A DBF AD BDADE BDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△BDF (ASA ),∴AE =BF ,∴2t =18−4t ,∴t =3,故答案为:3s .【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定与性质、一元一次方程等知识,解题的关键是利用全等三角形解决问题,属于中考常考题型.16.【分析】先根据矩形的性质可得设从而可得再根据折叠的性质然后在中利用勾股定理可求出DE 的长最后利用三角形的面积公式即可得【详解】四边形ABCD 是长方形且点F 到AD 的距离等于AB 的长的边DE 上的高为6设 解析:754【分析】先根据矩形的性质可得8,90AD BC A ==∠=︒,设DE x =,从而可得8AE x =-,再根据折叠的性质8,6,90A E AE x A D AB A A '''==-==∠=∠=︒,然后在Rt A DE '中,利用勾股定理可求出DE 的长,最后利用三角形的面积公式即可得.【详解】四边形ABCD 是长方形,6AB =,8BC =,8,90AD BC A ∴==∠=︒,且点F 到AD 的距离等于AB 的长,DEF ∴的边DE 上的高为6,设DE x =,则8AE AD DE x =-=-,由折叠的性质得:8,6,90A E AE x A D AB A A '''==-==∠=∠=︒,在Rt A DE '中,222A E A D DE ''+=,即()22286x x -+=, 解得254x =, 即254DE =, 则阴影部分的面积为125756244⨯⨯=, 故答案为:754. 【点睛】 本题考查了矩形与折叠问题、勾股定理等知识点,熟练掌握矩形与折叠的性质是解题关键.17.16【分析】作PE ⊥AB 于E 则PE=3延长PQMN 交于点Q 证出Q 与Q 关于BC 对称MP=2PE=6由轴对称的性质得出NQ=NQ 证出∠Q=30°=∠MPQ 得出MQ=MP=6即可得出答案【详解】解:作PE解析:16【分析】作PE ⊥AB 于E ,则PE=3,延长PQ 、MN 交于点Q ,证出Q 与Q'关于BC 对称,MP=2PE=6,由轴对称的性质得出NQ'=NQ ,证出∠Q'=30°=∠MPQ ,得出MQ'=MP=6,即可得出答案.【详解】解:作PE ⊥AB 于E ,则PE=3,延长PQ 、MN 交于点Q ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AB ⊥BC ,∵PQ//AB ,∴PQ ⊥BC ,∠EMP=∠MPQ=30°,∠Q'=∠BMN ,∴Q 与Q'关于BC 对称,MP=2PE=6,∴NQ'=NQ ,由题意得:∠BMN=∠EMP=30°,∴∠Q'=30°=∠MPQ ,∴MQ'=MP=6,∴四边形PMNQ的周长=MP+PQ+NQ+MN=MP+PQ+NQ'+MN=MP+PQ+MQ'=6+4+6=16;故答案为:6,16.【点睛】本题考查了矩形的性质、轴对称的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握矩形的性质和轴对称的性质是解题的关键.18.4【分析】根据正方形的性质可得AD=AF=2设BD=x由全等三角形的性质可得CE=6BC=6+x然后根据勾股定理可以求得BD的长【详解】解:∵正方形ADOF的面积为4∴AD=AF=2设BD=x则AB解析:4【分析】根据正方形的性质可得AD=AF=2,设BD=x,由全等三角形的性质可得CE=6,BC=6+x,然后根据勾股定理可以求得BD的长.【详解】解:∵正方形ADOF的面积为4,∴AD=AF=2,设BD=x,则AB=x+2,∵△BDO≌△BEO,△CEO≌△CFO,∴BD=BE,CF=CE,∴CE=6,BC=6+x,∵∠A=90°,∴AB2+AC2=BC2,∴ (x+2)2+82=(x+6)2,解得,x=4,即BD=4,故答案为:4.【点睛】本题考查正方形的性质、全等三角形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】设CD与BE交于点GAP=x证明△ODP≌△OEG(ASA)根据全等三角形的性质得到OP=OGPD=GE根据翻折变换的性质用x表示出PDOP根据勾股定理列出方程解方程即可【详解】解:设CD与解析:35.【分析】设CD 与BE 交于点G ,AP =x ,证明△ODP ≌△OEG (ASA ),根据全等三角形的性质得到OP =OG ,PD =GE ,根据翻折变换的性质用x 表示出PD 、OP ,根据勾股定理列出方程,解方程即可.【详解】解:设CD 与BE 交于点G ,∵四边形ABCD 是矩形,∴∠D =∠A =∠C =90°,AD =BC =3cm ,CD =AB =4cm ,由折叠的性质可知△ABP ≌△EBP ,∴EP =AP ,∠E =∠A =90°,BE =AB =4cm ,在△ODP 和△OEG 中,DOP EOG OD OED E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEG (ASA ),∴OP =OG ,PD =GE ,∴DG =EP ,设AP =EP =x ,则PD =GE =3﹣x ,DG =x ,∴CG =4﹣x ,BG =4﹣(3﹣x )=1+x ,根据勾股定理得:BC 2+CG 2=BG 2,即32+(4﹣x )2=(x +1)2,解得:x 125=, ∴AP 125=(cm ), ∴DP 35=(cm ). 故答案为:35. 【点睛】本题考查的是翻折变换的性质,矩形的性质,全等三角形的判定与性质和勾股定理的应用,熟练掌握翻折变换的性质是解题的关键.20.【分析】根据折叠的性质和勾股定理即可求得【详解】解:∵长方形纸片∴根据折叠的性质可得设根据勾股定理即解得故答案为:【点睛】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键 解析:32【分析】根据折叠的性质和勾股定理即可求得DF .【详解】解:∵长方形纸片ABCD ,∴2CD AB ==,90C ∠=︒,根据折叠的性质可得'2AD CD AB ===,90AD F C '∠=∠=︒,D F DF '=, 设D F DF x '==,4AF AD DF x =-=-,根据勾股定理D F AD AF ''+=,即()2224x x +=-, 解得32x =, 故答案为:32. 【点睛】 本题考查折叠与勾股定理.能正确表示直角三角形的三边是解题关键.三、解答题21.(1)证明见解析;(2)当ABC 满足AB AC =时,四边形ADCE 是矩形,证明见解析【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可;(2)根据矩形的判定解答即可.【详解】(1)AD 是ABC 的中线12BD CD BC ∴== 12AE BC = AE BD ∴=又AE BC∴四边形ABDE 是平行四边形AB DE ∴=(2)当ABC 满足AB AC =时,四边形ADCE 是矩形 12AE BC =,12BD CD BC ==AE CD ∴=又AE BC ∥∴四边形ADCE 是平行四边形AB DE =∴当AB AC =时,AC DE =∴四边形ADCE 是矩形【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.22.(1)证明见解析;(2)证明见解析;(3)3AO =.【分析】(1)由正方形的性质可得AB =BC ,∠ABE =∠BCF ,然后利用“边角边”证明△ABE 和△BCF 全等;(2)由全等三角形对应角相等可得∠BAE =∠CBF ,然后求出∠BAE +∠ABF =∠ABC =90°,判断出AE ⊥BF ;(3)由30度角所对的直角边是斜边的一半,可得AE=2BE=4,同理可得OE=1,即可求得AO 的长.【详解】(1)证明:∵ABCD 是正方形,∴AB BC =,且90ABE BCF ∠=∠=︒,∵BE CF =,∴ABE BCF △△≌(SAS );(2)证明:由(1)知∠BAE =∠CBF ,∵90CBF ABF ABC ∠+∠=∠=︒∴90BAE ABF ∠+∠=︒,∴∠AOB=90︒,∴AE BF ⊥;(3)∵2BE =,30BAE ∠=︒,∴24AE BE ==,由(1)知,BAE CBF ∠=∠,且30BAE ∠=︒,∴30CBF ∠=︒, ∴112EO BE ==, ∴3AO AE EO =-=.【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,证明△ABE ≌△BCF 是解题的关键. 23.(1)45︒;(2)见解析;(3)4.【分析】(1)将线段OA 绕O 点顺时针旋转至OC ,60AOC ∠=︒,OA=OC=4,可证△AOC 为等边三角形,由OB=OC=4,可求∠OBC=∠BCO=15°,可求∠ACB=∠ACO-∠BCO=45°即可; (2)在BC 上取点H 使45COH ∠=︒,由AOB ∠的平分线OD ,可得∠BOD=∠DOA=45°,可求∠DOH=60°,OB=OC=4,利用等边对等角∠DBO=∠HCO ,又∠BOD=∠HOC=45°,可证△BOD ≌△COH(ASA),由性质OD=OH ,BD CH =,可证△DOH 等边三角形即可退出结论 ;(3)以AE 为边作AEF ACO △≌△,连FB 由OC EF =;=4AF OA OB ==,90FAO BOA ∠=∠=︒,可得正方形AFBO ,由30AFE AOC OBE ∠=∠=∠=︒,可求60EFB EBF ∠=∠=︒可证EFB △是等边三角形即可.【详解】(1)∵将线段OA 绕O 点顺时针旋转至OC ,60AOC ∠=︒,(0,4)A ,∴OA=OC=4,∴△AOC 为等边三角形,∴∠ACO=60°,∵(4,0)B -,∴OB=OC=4,∴∠OBC=∠BCO=12(180°-90°-60°)=15°, ∴∠ACB=∠ACO-∠BCO=60°-15°=45°,∴∠ACB =45︒;(2)在BC 上取点H 使45COH ∠=︒,∵AOB ∠的平分线OD 交BC 于D ,∴∠BOD=∠DOA=45°,∵∠AOC=60°,∴∠BOC=90°+60°=150°,∴∠DOH=150°-∠BOD -∠COD=90°-45°-45°=60°,∵OB=OC=4,∴∠DBO=∠HCO ,∠BOD=∠HOC=45°,∴△BOD ≌△COH(ASA),∴OD=OH ,BD CH =,∴DOH 是等边三角形,OD DH ∴=,OD BD CD ∴+=;(3)以AE 为边作AEF ACO △≌△,连FB ,OC EF ∴=;=4AF OA OB ==,90FAO BOA ∠=∠=︒,∴正方形AFBO ,30AFE AOC OBE ∴∠=∠=∠=︒,60EFB EBF ∴∠=∠=︒,EFB ∴△是等边三角形,∴4BE BF OB ===.【点睛】本题考查旋转,等边三角形的判定与性质,等腰三角形的判定与性质,角平分线的性质,三角形全等,正方形判定与性质,掌握旋转的性质,会利用旋转和夹角60°证等边三角形,等边三角形的判定方法与性质,等腰三角形的判定方法与性质,角平分线的性质,三角形全等判断方法与性质,正方形判定与性质是解题关键.24.(1)证明见解析;(2)46BD =【分析】(1)由角平分线的定义得ABD CBD ∠=∠,再证明CDB CBD ∠=∠,从而得BC DC =,即可利用一组邻边相等的平行四边形是菱形证明出四边形ABCD 是菱形; (2)分别求出BE EC BC AB AE AC 、、、、、,再根据菱形的面积等于平行四边形的面积求解即可.【详解】解:(1)∵BD 平分ABC ∠∴ABD CBD ∠=∠∵四边形ABCD 是平行四边形∴//AB CD∴CDB ABD ∠=∠∴CDB CBD ∠=∠∴BC DC =∴四边形ABCD 是菱形;(2)连接AC ,如图,∵ABCD 是菱形∴3BC AB BE EC BE ==+=又∵24BE EC ==∴2BE =∴246BC BE EC AB =+=+==又AE BC ⊥ ∴22226242AE AB BE =-=-=2222(42)443AC AE EC =+=+= ∴642242ABCD S BC AE =⨯=⨯= 而242ABCD ABCD S S==菱形 ∴114324222BD AC BD ⨯=⨯= ∴6BD =【点睛】此题主要考查了菱形的性质与判定,关键是掌握菱形的判定定理.25.(1)是,见解析;(2)2222AB CD BC AD +=+;(3)13DE =【分析】(1)证法一:证明△ABC ≌△ADC ,即可得解;证法二:根据垂直平分线的性质证明即可;(2)根据勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理计算即可;【详解】解:(1)如图1,四边形ABCD 是垂美四边形.理由如下:证法一:∵AB AD CB CD ==,,AC =AC ,∴△ABC ≌△ADC .∴∠BAC =∠DAC .∴AC 是等腰三角形ABD 顶角∠BAD 的平分线.∴AC BD ⊥.∴四边形ABCD 是垂美四边形.证法二:连结AC 、BD 交于点E .∵AB AD =,∴点A 在线段BD 的垂直平分线上.∵CB CD =,∴点C 在线段BD 的垂直平分线上.∴直线AC 是线段BD 的垂直平分线.∴AC BD ⊥.∴四边形ABCD 是垂美四边形.(2)如图2,在垂美四边形ABCD 中,∵AC BD ⊥于点O ,∴∠AOB =∠BOC =∠COD =∠AOD =90°.∴222AB AO BO =+.222BC BO CO =+.222CD CO DO =+.222AD AO DO =+.∴222222AB CD AO BO CO DO +=+++.222222BC AD BO CO AO DO +=+++.∴2222AB CD BC AD +=+.(3)分别连结CD 、BE ,如图3,∵∠CAD =∠BAE =90°,∴CAD BAC BAE BAC ∠+∠=∠+∠.即DAB CAE ∠=∠.在DAB ∆和CAE ∆中,AD AC DAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴DAB CAE ∆≅∆.∴ABD AEC ∠=∠.∵∠BAE =90°,∴90AEC AME ∠+∠=︒.∴90ABD BMN ∠+∠=︒.∴90BNM ∠=︒,即BD CE ⊥.∴四边形CDEB 是垂美四边形.由(2)得:2222DE BC CD BE +=+.∵AB =AE =2,AC =AD 3, ∴22222(3)(3)6CD AC AD =+=+=.22222228BE AB AE =+=+=.2222223)1BC AB AC =-=-=.∴222268113DE CD BE BC =+-=+-=. ∴13DE =【点睛】本题主要考查了四边形综合,结合勾股定理、垂直平分线的性质计算是解题的关键. 26.见解析.【分析】利用角平分线的性质、平角的定义可以求得∠DOF=90°;由等腰三角形的“三合一”的性质可推知OD ⊥AC ,即∠CDO=90°;根据已知条件“CF ⊥OF”知∠CFO=90°;则三个角都是直角的四边形是矩形.【详解】证明:∵OD 平分∠AOC ,OF 平分∠COB ,∴∠AOC=2∠COD ,∠COB=2∠COF ,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC,∴OD⊥AC,AD=DC,∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形【点睛】本题考查了矩形的判定、角平分线的定义、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.。
九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。
北师大版九年级数学上册单元测试卷第一章 特殊平行四边形1.下列说法正确的是A .对角线垂直的四边形是菱形B .对角线互相平分的四边形是菱形C .菱形的对角线相等且互相平分D .菱形的对角线互相垂直且平分 2.下列说法中,你认为正确的是( )A .四边形具有稳定性B .等边三角形是中心对称图形C .任意多边形的外角和是360D .矩形的对角线一定互相垂直 3.已知下列命题:①矩形是轴对称图形,且有两条对称轴;①两条对角线相等的四边形是矩形;①有两个角相等的平行四边形是矩形;①两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A .4个B .3个C .2个D .1个 4.如图,下列条件中①AC BD ⊥①BAD 90∠=①AB BC =①AC BD =,能使平行四边形ABCD 是菱形的是( )A .①①B .①①C .①①D .①①① 5.已知菱形ABCD ,对角线5AC =,12BD =,则菱形的面积为( )A .60B .50C .40D .30 6.在数学活动课上,为探究四边形瓷砖是否为菱形,以下拟定的测量方案,正确的是( )A .测量一组对边是否平行且相等B .测量四个内角是否相等C .测量两条对角线是否互相垂直D .测量四条边是否相等一、单选题(共30分,每小题3分)7.如图,把长方形ABCD 沿对角线BD 折叠,下列结论:①①ABD 与△EDB 全等;①①ABF 与△EDF 全等;①AF EF =;①①BDF 是等腰三角形.其中正确的有( )A .1个B .2个C .3个D .4个 8.如图,在正方形ABCD 中,E 为对角线BD 上一点,CE 交AD 于点F ,连接AE .若①AEC=140︒,则①DFC 等于( )A .55°B .60°C .65°D .70°9.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,,AO CO BO DO ==.添加下列条件,可以判定四边形ABCD 是矩形的是( )A .AB AD =B .AC BD =C .AC BD ⊥ D .ABO CBO ∠=∠ 10.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形 B .当AC BD ⊥时,它是菱形C .当90ABC ∠=︒时,它是矩形D .当AC BD =时,它是正方形二、填空题(共30分,每小题3分) 11.矩形的两条对角线的夹角为60,较短的边长为12cm ,则对角线长为________cm . 12.已知菱形的周长为20,一条对角线长为8,则菱形的面积为________.13.如图所示,已知ABCD 中,下列条件:①AC =BD ;①AB =AD ;①①1=①2;①AB ①BC 中,能说明ABCD 是矩形的有______________(填写序号)14.如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,4,则AB 长为__.15.如图,平行四边形ABCD 是对角线互相垂直的四边形,请你添加一个适当的条件________,使ABCD 成为正方形(只需添加一个即可).16.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF =AE +FC ,则边BC 的长为____________.17.如图,将两张长为16cm ,宽为4cm 的矩形纸条交叉,使重叠部分是一个菱形,那么菱形周长的最大值与最小值的和是________.18.如图,矩形ABCD 的对角线相交于点O ,DE ①AC ,CE ①BD ,已知AB =6cm ,BC =8cm ,则四边形ODEC 的周长为______cm .19.如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF ,若EF =4BD =,则菱形ABCD 的面积为________.20.如图,将平行四边形ABCD 的边DC 延长到E ,使CE CD =,连接AE 交BC 于F ,AFC n D ∠∠=,当n =______时,四边形ABEC 是矩形.三、解答题(共60分) 21.矩形ABCD 中68AB cm BC cm AE ==,,平分BAC ∠交BC 于E CF ,平分ACD ∠交AD 于F .(共8分)(1)说明四边形AECF 为平行四边形;(2)求四边形AECF 的面积.22.如图,在矩形ABCD中,对角线AC与BD交于点O,且①ADO为等边三角形,过点A 作AE①BD于点E.(共8分)(1)求①ABD的度数;(2)若BD=10,求AE的长.23.已知如图,两个长为8,宽为2的矩形纸条倾斜地重叠着.(共10分)()1求证:两矩形重叠部分为菱形;()2求菱形面积最大和最小值.24.如图,在ABC 中,5AB AC ==,6BC =,AD 为BC 边上的高,过点A 作//AE BC ,过点D 作//DE AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .(共10分)()1求证:四边形AEBD 是矩形;()2求四边形AEBD 的面积.25.如图,正方形ABCD中,E、F分别在BC、DC上,且45.∠=试说明:EAF+=.(共12分)BE DF EF26.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA 上,连接CF.(共12分)()1求证:HEA CGF∠=∠;()2当AH DG=时,求证:菱形EFGH为正方形.参考答案:1.D 2.C 3.C 4.A 5.D 6.D 7.D 8.C 9.B 10.D11.24 12.24 13.①① 1415.90ABC∠=16.17.4018.20 19.20.221.(1)见解析;(2)30cm2(1)①四边形ABCD是矩形,①AD①BC(即AF①CE),AB①CD,①①BAC=①ACD,又①AE平分①BAC,CF平分①ACD,①①EAC=①FCA,①AE①CF,①四边形AECF是平行四边形;(2)过点E作EO①AC于点O,①①B=90°,AE平分①BAC,①EO=BO,①AE=AE,①Rt①ABE①Rt①AOE,①AO=AB=6,①在Rt①ABC,10,①OC=AC-AO=4(cm),设CE=x,则EO=BE=BC-CE=8-x,①在Rt①OEC中由勾股定理可得:222-+=,解得:58(x x4)x=,①EC=5,①S四边形AECF=CE·AB=5×6=30(cm2).22.(1)①ABD=30°;(2)AE(1)①四边形ABCD是矩形,①①DAB=90°,①①ADO为等边三角形,①①ADB=60°,①①ABD=180°-①DAB-①ADB=30°;(2)①BD=10,①BAD=90°,①ABD=30°,①AD=12BD=5,①①ADO为等边三角形,①AD=AO=DO=5,①AE①DO,①DE=EO=12DO=2.5,在Rt①AED中,由勾股定理得AE23.(1)详见解析;(2)菱形面积最大和最小值分别是172、4.()1根据题意得:AD//BC,AB//CD,①四边形ABCD是平行四边形.如图1,分别作CD,BC边上的高为AE,AF,①两纸条宽度相同,①AE AF=.①平行四边形ABCD的面积为AE CD BC AF⨯=⨯,①CD BC=.①平行四边形ABCD为菱形;()2如图2,此时菱形ABCD的面积最大.设AB x =,EB 8x =-,AE 2=,则由勾股定理得到:2222(8x)x +-=, 解得 17x 4=, 1717S 242=⨯=最大; 如图3,此时菱形ABCD 的面积最小.S 224=⨯=最小. 综上所述,菱形面积最大和最小值分别是172、4. 24.(1)详见解析;(2)12. ()1①AE //BC ,BE //AC ,①四边形AEDC 是平行四边形. ①AE CD =.在ABC 中,AB AC =,AD 为BC 边上的高, ①ADB 90∠=,BD CD =.①BD AE =.①四边形AEBD 是矩形.()2在Rt ADC 中,ADB 90∠=,AC 5=,1BD CD BC 32===,①AD 4=.①四边形AEBD 的面积BD AD 3412=⋅=⨯=. 25.证明见解析.①四边形ABCD 为正方形①AB=AD,①BAD=①B=①ADF=90°如图,把△ABE 逆时针旋转90°得到△ADG ,①BE =GD ,AE =AG .①ADG=①ABE=90°,①GAD=①BAE ①①ADG+①ADF=180°①G 、D 、F 在同一条直线上.①①EAF =45°,①①F AG =①GAD+①DAF=①BAE+①DAF=①BAD-①EAF=90°﹣45°=45°, ①①EAF =①F AG .在△AEF 和△AGF 中,①AE AG EAF FAG AF AF =⎧⎪∠=∠⎨⎪=⎩,①①AEF ①①AGF (SAS ),①EF =GF ,即EF =GD +DF ,①BE +DF =EF .26.(1)详见解析;(2)详见解析.(1)连接GE ,①AB//CD ,①AEG CGE ∠∠=,①GF//HE ,①HEG FGE ∠∠=,①HEA CGF ∠∠=;()2①四边形ABCD 是正方形, ①D A 90∠∠==, ①四边形EFGH 是菱形, ①HG HE =,在Rt HAE 和Rt GDH 中, AH DG HE HG =⎧⎨=⎩, ①()Rt HAE Rt GDH HL ≅, ①AHE DGH ∠∠=,又DHG DGH 90∠∠+=, ①DHG AHE 90∠∠+=, ①GHE 90∠=, ①菱形EFGH 为正方形;。
《特殊的平行四边形》单元测试卷一.选择题1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.93.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠25.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A .1B .C .D .6.矩形具有而平行四边形不一定具有的性质是( ) A .对边相等 B .对角相等C .对角线相等D .对角线互相平分7.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE =EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A .∠A =∠BB .∠A =∠CC .AC =BDD .AB ⊥BC9.在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD ⊥BC ,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD =CD ,则四边形AE DF 是菱形 D .若AD 平分∠BAC ,则四边形AEDF 是菱形10.如图,平行四边形ABCD 中,∠B =60°.G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF ,下列说法不正确的是( )A .四边形CEDF 是平行四边形B .当CE ⊥AD 时,四边形CEDF 是矩形C .当∠AEC =120°时,四边形CEDF 是菱形D .当AE =ED 时,四边形CEDF 是菱形11.如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .则图中阴影部分的面积等于 ( )A .1B .C .D .12.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若=,则3S △EDH =13S △DHC ,其中结论正确的有( )A .1个B .2个C .3个D .4个13.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()201414.关于▱ABCD 的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF16.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断二.填空题17.如图,四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于H,则DH等于.18.在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.19.顺次连接四边形ABCD各边中点形成一个菱形,则原四边形对角线AC、BD的关系是.20.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.21.如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.22.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若BD=5,则四边形DOCE的周长为.23.如图,矩形ABCD中, AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE =S△COE,其中正确的结论的序号是.24.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.25.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,连接EF,则EF的最小值为cm.26.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.27.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=.28.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为.29.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:,使得▱ABCD 为正方形.30.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.31.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.三.解答题32.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.33.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.34.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.35.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE 是矩形.36.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.37.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.38.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)39.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?40.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AG与BC满足条件时,四边形EFHI是菱形.参考答案1.解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.2.解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.3.解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.4.解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.5.解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵C G=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.6.解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.7.解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE =S△COF,∵S△COF =2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选:B.8.解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.9.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.10.解:A、∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形,正确;B、∵四边形CEDF是平行四边形,∵CE⊥AD,∴四边形CEDF是矩形,正确;C 、∵四边形CEDF 是平行四边形,∵∠AEC =120°,∴∠CED =60°,∴△CDE 是等边三角形,∴CE =DE ,∵四边形CEDF 是平行四边形,∴四边形CEDF 是菱形,正确;D 、当AE =ED 时,不能得出四边形CEDF 是菱形,错误;故选:D .11.解:∵四边形ABCD 是正方形,∴直线AC 是正方形ABCD 的对称轴,∵EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .∴根据对称性可知:四边形EFHG 的面积与四边形EFJI 的面积相等,△AIE 的面积=△AEG 的面积,∴S 阴=S 正方形ABCD =,故选:B .12.解:①∵四边形ABCD 为正方形,EF ∥AD ,∴EF =AD =CD ,∠ACD =45°,∠GFC =90°,∴△CFG 为等腰直角三角形,∴GF =FC ,∵EG =EF ﹣GF ,DF =CD ﹣FC ,∴EG =DF ,故①正确;②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),∴∠HEF =∠HDC , ∴∠AEH +∠ADH =∠AEF +∠HEF +∠ADF ﹣∠HDC =∠AEF +∠ADF =180°,故②正确;③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),故③正确;④∵=, ∴AE =2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =GH ,∠FHG =90°,∵∠EGH =∠FHG +∠HFG =90°+∠HFG =∠HFD ,在△EGH 和△DFH 中,, ∴△EGH ≌△DFH (SAS ),∴∠EHG =∠DHF ,EH =DH ,∠DHE =∠EHG +∠DHG =∠DHF +∠DHG =∠FHG =90°, ∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM =x ,则DM =5x ,DH =x ,CD =6x ,则S △DHC =×HM ×CD =3x 2,S △EDH =×DH 2=13x 2,∴3S △EDH =13S △DHC ,故④正确;故选:D .13.方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3… ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n ∁n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=,同理:B 3C 3=×=…∴a 1=1,q =,∴正方形A 2015B 2015C 2015D 2015的边长=1×. 14.解:∵▱ABCD 中,AB ⊥BC ,∴四边形ABCD 是矩形,不一定是菱形,选项A 错误;∵▱ABCD 中,AC ⊥BD ,∴四边形ABCD 是菱形,不一定是正方形,选项B 错误;∵▱ABCD 中,AC =BD ,∴四边形ABCD 是矩形,选项C 正确;∵▱ABCD 中,AB =AD ,∴四边形ABCD 是菱形,不一定是正方形,选项D 错误.故选:C .15.解:∵EF 垂直平分BC ,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.16.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.二.填空题(共15小题)17.解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD=6,AC⊥BD,在Rt△AOB中,AB==10,=•AC•BD,∵S菱形ABCDS=DH•AB,菱形ABCD∴DH•10=×12×16,∴DH=.故答案为:.18.解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.19.解:∵EFGH为菱形∴EH=EF又∵E、F、G、H为四边中点∴AC=2EH,BD=2FE∴AC=BD.故答案为AC=BD.20.解:根据作图,AC =BC =OA , ∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2,∴AB •OC =×2×OC =4,解得OC =4cm .故答案为:4.21.解:连接OP ,∵四边形ABCD 是矩形,∴∠BAD =90°,AC =BD ,OA =OC ,OB =OD ,∴OA =OD =BD ,S △AOD =S △AOB ,∵AB =3,AD =4,∴S 矩形ABCD =3×4=12,BD =5,∴S △AOD =S 矩形ABCD =3,OA =OC =,∵S △AOD =S △AOP +S △DOP =OA •PE +OD •PF =××PE +××PF =(PE +PF )=3, ∴PE +PF =.故答案为.22.解:∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OC=OD=BD=,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×=10.故答案为:10.23.解:∵矩形ABCD中,AE平分∠BAD,∴∠BAE=45°,∵∠CAE=15°,∴∠BAO=∠BAE+∠CAE=45°+15°=60°,又∵矩形中OA=OB=OC=OD,∴△AOB是等边三角形,∴∠AOB=∠COD=60°,∴△ODC是等边三角形,故①正确;由等边三角形的性质,AB=OA,∴AC=2AB,由垂线段最短BC<AC,∴BC<2AB,故②错误;∵∠BAE=45°,∠ABE=90°,∴△ABE是等腰直角三角形,∴AB=BE,∴BO=BE,∵∠COB=180°﹣60°=120°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故③正确;∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,∴S△AOE =S△COE,故④正确;综上所述,正确的结论是①③④.故答案为:①③④.24.解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.25.解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最,此时AP==,∴EF的最小值为.故答案为.26.解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.27.解:连接BD、BF,∵四边形ABCD,BEFG是正方形,且边长分别为3和4,∴∠DBC=∠GBF=45°,BD=3,BF=4,∴∠DBF=90°,由勾股定理得:DF==5,∵H为线段DF的中点,∴BH=DF=.故答案为:.28.解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.29.解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形.故答案为:∠BAD=90°.30.解:过点B作BF⊥AD于点F,延长DF使FG=EC,∵AD∥BC,∠D=90°,∴∠C=∠D=90°,BF⊥AD∴四边形CDFB是矩形∵BC=CD∴四边形CDFB是正方形∴CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,∵BC=BF,∠BFG=∠C=90°,CE=FG∴△BCE≌△BFG(SAS)∴BE=BG,∠CBE=∠FBG∵∠ABE=45°,∴∠CBE+∠ABF=45°,∴∠ABF+∠FBG=45°=∠ABG∴∠ABG=∠ABE,且AB=AB,BE=BG∴△ABE≌△ABG(SAS)∴AE=AG=5,∴A F=AG﹣FG=5﹣2=3在Rt△ADE中,AE2=AD2+DE2,∴25=(DF﹣3)2+(DF﹣2)2,∴DF=6∴BC=6故答案为:631.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.三.解答题(共9小题)32.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,=AC▪DF=×4×5=10.∴S菱形ADCF33.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.34.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为: AC•BD=×4×2=4.故答案是:4.35.证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.36.证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.37.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.38.解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.39.解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,(1分)∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,(1分)又∵正方形ABCD,∴∠B=∠C,(1分)∴△BPE≌△CQP(1分)②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t(2分)∴点P,点Q运动的时间秒,(1分)∴厘米/秒.(1分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,(1分)解得秒.(1分)∴点P共运动了厘米(1分)∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.(1分)40.(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点.,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI.∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为:AD⊥BC;②当AG=BC时,四边形DEFI是菱形.理由:∵△ABC的两条中线BE与CF交于点G、H、I分别是BG、CG的中点,∴FH=AG,∵EF=BC,∴当AG=BC时,FH=EF,∵四边形EFHI为平行四边形,∴▱EFHI为菱形;故答案为:AG=BC.。
第1章特殊的平行四边形一.选择题(共15小题)1.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 2.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长约是()A.4cm B.1 cm C.cm D.2cm3.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.54.菱形的两条对角线分别为8和6,则菱形的周长和面积分别是()A.20,48 B.14,48 C.24,20 D.20,245.如图,菱形ABCD的顶点C在直线MN上,若∠1=50°,∠2=20°,则∠ABD的度数为()A.20°B.35°C.40°D.50°6.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连结OE.若OE=3,则菱形ABCD的周长是()A.6 B.12 C.18 D.247.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF的度数是()A.90°B.60°C.45°D.30°8.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=()A.50°B.40°C.30°D.15°9.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是()A.AC⊥BD B.AB=AD C.AC=BD D.AC平分∠BAD 10.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,﹣4),要使四边形AOBC是菱形,则满足条件的点C的坐标是()A.(﹣3,0)B.(3,0)C.(6,0)D.(5,0)11.如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是()A.①或②B.②或③C.③或④D.①或④12.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形13.如图,矩形ABCD的两条对角线相交于点O,AB=2,∠ACB=30°,则矩形的面积为()A.4B.2 C.4 D.214.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOD=120°,AC=4,则CD的长为()A.2 B.3 C.2D.215.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.4二.填空题(共9小题)16.工人师博常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师博此种检验方法依据的道理是.17.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.18.如图,平行四边形ABCD,添加一个条件使它成为一个矩形,你会加上.19.如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=.20.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.21.已知正方形的对角线长为2,则它的面积.22.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.23.如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,请你添加一个条件,使四边形BECF是正方形.24.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).三.解答题(共5小题)25.如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.26.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,27.如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.28.如图,在正方形ABCD中,对角线AC和BD相交于O,点E、F、G、H分别是OA、OB、OC、OD上,且AE=BF=CG=DH,求证:四边形EFGH是正方形.29.如图,在正方形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点,且AE=BF=CG=DH,试判定四边形EFGH的形状,并证明你的结论.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.2.【解答】解:如图,设AC=2cm,∵四边形ABCD是菱形,∴AO=CO=1cm,BO=DO,AC⊥BD,∵BO===cm,∴BD=2cm,故选:D.3.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=AC=6,BO=BD=8,AO⊥BO,∴BC==10,∴S菱形ABCD=AC•BD=×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH==故选:B.4.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24,故选:D.5.【解答】解:∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD,∵∠1=50°,∠2=20°,∴∠BCD=180°﹣50°﹣20°=110°,∴∠A=110°,∵AB=AD,∴∠ABD=∠ADB==35°,故选:B.6.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故选:D.7.【解答】解:连接AC,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°﹣180°﹣120°=60°.故选:B.8.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:C.9.【解答】解:A、对角线互相垂直的平行四边形是菱形,此选项不符合题意;B、邻边相等的平行四边形是菱形,此选项不符合题意;C、由对角线相等不能证明平行四边形ABCD是菱形,此选项符合题意;D、对角线平分对角的平行四边形是菱形,此选项不符合题意;故选:C.10.【解答】解:如图,连接AB交OC于D,∵四边形AOBC是菱形,∴AD⊥OC,OD=CD,∵点A的坐标是(3,4),点B的坐标是(3,﹣4),∴OD=3,∴OC=6,∴C(6,0),故选:C.11.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB=BC,∴平行四边形ABCD是菱形;故①④能判定.故选:D.12.【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B.13.【解答】解:∵四边形ABCD是矩形∴∠ABC=90°,且∠ACB=30°∴BC=AB=2,∴矩形ABCD的面积=AB×BC=2×2=4故选:A.14.【解答】解:∵∠AOD=120°,∴∠COD=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO=DO=2,∴△COD是等边三角形,∴CD=DO=2,故选:A.15.【解答】解:∵点A的坐标是(﹣1,0),点C的坐标是(2,4),∴线段AC==5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.二.填空题(共9小题)16.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为:对角线相等的平行四边形是矩形.17.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.18.【解答】解:答案不唯一,∵四边形ABCD是平行四边形,∴可添加:∠A=90°、AC=BD等.故答案为:∠A=90°.19.【解答】解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA==75°.∴∠PAD=15°,故答案为:15°.20.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm 向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2021.【解答】解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为422.【解答】解:∵四边形ABCD是菱形∴AB=BC,且∠B=60°,∴△ABC是等边三角形,∴AB=AC=3,∵四边形ACEF是正方形,∴AC=EF=3故答案为:323.【解答】解:添加条件:AC=BC.理由如下:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故答案为AC=BC.24.【解答】解:∵四边形ABCD为菱形,∴当∠BAD=90°时,四边形ABCD为正方形.故答案为∠BAD=90°.三.解答题(共5小题)25.【解答】解:(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵四边形AEBO是矩形∴EO=AB,在菱形ABCD中,AB=DC.∴EO=DC.26.【解答】解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE===4.27.【解答】解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.28.【解答】证明:∵四边形ABCD是正方形,∴OA=OB=OC=OD,AC⊥BD,∵AE=BF=CG=DH,∴OE=OF=OG=OH,EG⊥FH,∴四边形EFGH是正方形.29.【解答】答:四边形EFGH的形状是正方形,证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AE=BF=CG=DH,∴BE=CF=DG=AH,∴△EBF≌△FCG≌△GDH≌△HAB,∴EF=FG=GH=HE,∠AEH=∠EFB,∵∠B=90°,∴∠EFB+∠FEB=90°,∴∠AEH+∠FEB=90°,∴∠HEF=90°,∵EF=FG=GH=HE,∴四边形EFGH的形状是正方形.。
一、选择题1.在一个四边形ABCD 中依次连接各边的中点得到的四边形是矩形,则对角线AC 与BD 需要满足的条件是( )A .垂直B .相等C .垂直且相等D .不再需要条件 2.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小3.如图,在四边形ABCD 中,BD 平分ABC ∠,//AD BC ,90C ∠=︒,5AB =,4CD =,则四边形ABCD 的周长是( ).A .18B .20C .22D .244.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个5.如图,已知正方形ABCD 与正方形AEFG 的边长分别为4和1,若将正方形AEFG 绕点A 旋转,则在旋转过程中,点,C E 之间的最小距离为 ( )A .3B .421C .321D .426.如图,正方形ABCD 的边长为3,点P 为对角线AC 上任意一点,PE BC ⊥,PQ AB ⊥,垂足分别是E ,Q ,则PE PQ +的值是( )A .32B .3C .322D .327.下列命题正确的是( )A .有一个角是直角的四边形是矩形;B .有三个角是直角的四边形是矩形;C .对角线相等的四边形是矩形;D .对角线互相平分的四边形是矩形;8.给出下列命题,其中错误命题的个数是( ) ①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .49.如图,矩形ABCD 中,22BC =,42AB =,点P 是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A 810B 85C .25D .21010.如图,在矩形ABCD 中,两条对角线AC 与BD 相交于点O ,3AB =,2OA =,则AD 的长为( )A .5B .13C .10D .7 11.四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A .AB =CD B .AD =BC C .AB =BC D .AC =BD 12.如图所示,正方形ABCD 中,E ,F 是对角线AC 上两点,连接BE ,BF ,DE ,DF ,则添加下列哪一个条件可以判定四边形BEDF 是菱形( )A .∠1=∠2B .BE =DFC .∠EDF =60°D .AB =AF二、填空题13.已知,在△ABC 中,∠BAC =45°,AB =1,AC =8,以AC 为一边作等腰直角△ACD ,使∠CAD =90°,连接BD ,则线段BD 的长度为________.14.如图,正方形AOBC 的两边分别在x 轴、y 轴上,点()4,3D -在边AC 上,以点B 为中心,把△BCD 旋转90︒,则旋转后点D 的对应点1D 的坐标是________.15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,AC =6,BD =8,则线段OH 的长为_____.16.如图,在ABC 中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .若13AG =,6CF =,则四边形BDFG 的周长为______.17.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,正方形ADOF 的面积为4, CF =6,则BD 的长是_______.18.如图,在平面直角坐标系中,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (4,1)在AB 边上,把△CDB 绕点C 旋转90°,点D 的对应点为点D ′,则OD ′的长为_________.19.如图,点H 在菱形ABCD 的边BC 上,连结AH ,把菱形ABCD 沿AH 折叠,使B 点落在边BC 上的点E 处,若∠B=70°,则∠AED 的度数为_____.20.如图,平面内直线1234//////l l l l ,且相邻两条平行线间隔均为1,正方形ABCD 四个顶点分别在四条平行线上,则正方形的面积为________.三、解答题21.已知矩形ABCD 中,点F 在AD 边上,四边形EDCF 是平行四边形,请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹,不必写画法).(1)在图1画出BCD △中DC 边上的中线BG ;(2)在图2中画出线段AF 的垂直平分线.22.如图,E 是正方形ABCD 中CD 边上一点,以点A 为中心把ADE ∆顺时针旋转90︒.(1)在图中画出旋转后的图形;(2)若旋转后E 点的对应点记为M ,点F 在BC 上,且45EAF ︒∠=,连接EF . ①求证:AMF AEF ∆≅∆;②若正方形的边长为6,35AE =EF .23.如图,以锐角△ABC 的边AC 、AB 为边向外作正方形ACDE 和正方形ABGF ,连结BE 、CF .(1)求证:△FAC ≌△BAE ;(2)图中可以通过旋转△BAE 而得到△FAC ,请你说出旋转中心、旋转方向和旋转角的度数.24.如图,在直角坐标系中,3,4OA OC ==,点B 是y 轴上一动点,以AC 为对角线作平行四边形ABCD .(1)求直线AC 的函数解析式;(2)设点(0)B m ,,记平行四边形ABCD 的面积为S ,求S 与m 的函数关系式; (3)当点B 在y 轴上运动,能否使得平行四边形ABCD 是菱形?若能,求出点B 的坐标;若不能,说明理由.25.在四边形ABCD 中,AD//BC .∠B =90°,AB =8cm ,AD =24cm .BC =26cm .点P 从点A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 同时出发,以2cm/s 的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.求:从运动开始,使PQ =CD ,需要经过的时间是多少?26.已知:如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、AB 上的点,且CE BF =,连接DE 、CF ,两线相交于点P ,过点E 作EG DE ⊥,且EG DE =,连接FG .DE ,求FG的长.(1)若5(2)若点E、F分别是BC、AB延长线上的点,其它条件不变,试判断FG与CE的关系,并予以证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC 平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】解:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:A.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.2.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D、平移和旋转都不改变图形的形状和大小,正确,故选:D.【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C解析:C【分析】过点A 做AE BC ⊥交BC 于点E ,根据角平分线和平行线性质,推导得5AD AB ==;通过判定四边形AECD 为矩形,得5EC AD ==,4AE CD ==;再根据勾股定理计算,得BE ,从而得到四边形ABCD 的周长.【详解】如图,过点A 做AE BC ⊥交BC 于点E∵BD 平分ABC ∠∴ABD CBD ∠=∠∵//AD BC∴ADB CBD ∠=∠∴ABD ADB ∠=∠∴5AD AB ==∵AE BC ⊥,90C ∠=︒∴//AE DC∴四边形AECD 为矩形∴5EC AD ==,4AE CD ==又∵AE BC ⊥,即90AEB =︒∠ ∴223BE AB AE =-=∴四边形ABCD 的周长22AB BE EC CD AD =++++=故选:C .【点睛】本题考查了平行线、角平分线、等腰三角形、矩形、勾股定理的知识;解题的关键是熟练掌握平行线、角平分线、矩形、勾股定理、等腰三角形的性质,从而完成求解. 4.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 5.B解析:B【分析】连接CE 、AC ,根据正方形ABCD 与正方形AEFG 的边长分别为4和1,可以求出AC 的长,又因为CE≥AC -AE ,所以当A 、E 、C 三点共线时取等号,即可求值;【详解】如图,连接CE 、AC ,已知正方形ABCD 与正方形AEFG 的边长分别为4和1,∴ AB=BC=4,AE=1,由勾股定理得:222AC AB BC =+ , ∴AC ==∵ CE≥AC -AE ,∴CE≥1,∴CE 的最小值为1,故选:B .【点睛】本题考查了正方形的性质、勾股定理、以及三角形的三边关系,正确掌握知识点是解题的关键.6.B解析:B【分析】证明四边形PQBE是矩形得PE=QB,证明△PEC是等腰直角三角形得PQ=BE便可求得结果【详解】解:∵四边形ABCD是正方形,∠BCD=45°∴∠ABC=90°,∠ACB=12∵PE⊥BC,PQ⊥AB,∴四边形PQBE是矩形,∴PQ=BE∵AC是正方形ABCD的对角线,∴∠PCE=45°,又∠PEC=90°∴△PEC是等腰直角三角形∴PE=CE∴PE+PQ=CE+BE=BC=3.故选:B.【点睛】本题主要考查了正方形的性质,矩形的性质与判定,等腰直角三角形的判定,关键是证明PE=CE,PQ=BE.7.B解析:B【分析】根据矩形的判定定理逐一进行判定即可.【详解】A、有一个角是直角的平行四边形是矩形,故此选项不能判定是矩形;B、有三个角是直角的四边形是矩形,能判定是矩形;C、对角线相等的平行四边形是矩形,故此选项不能判定是矩形;D 、两条对角线互相平分四边形是平行四边形,故此选项不能判定是矩形.故选B .【点睛】此题考查矩形的判定与性质,解题关键在于掌握矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.8.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.9.B解析:B【分析】根据题意可得当BP 最短时,PQ 值最小,即BP ⊥AC 时,PQ 最小.利用面积法计算BP 长度,即可得PQ 长度.【详解】解:∵△BPQ 是等腰直角三角形,若PQ 最小,则BP 值最小即可.∵点P 是对角线AC 上的一动点,B 点是定点,∴当BP ⊥AC 时,BP 最短.在Rt △ABC 中,=,根据三角形的面积公式,1122BP ⨯=⨯,解得BP =,此时PQ 5=.故选B.【点睛】此题考查矩形的性质、勾股定理以及垂线段最短,解题的关键是根据图形特征转化最短线段.10.D解析:D【分析】根据矩形的性质求得BD=4,利用勾股定理求出AD即可.【详解】∵四边形ABCD是矩形,∴OB=OD=OA=OC,∠BAD=90,∴BD=2OA=4,在Rt△ABD中,2222--=437BD AB故选:D.【点睛】此题考查矩形的性质,勾股定理,熟记矩形的性质是解题的关键.11.D解析:D【分析】由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.【详解】∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,A、AB=CD是平行四边形的性质,并不能得出四边形ABCD是矩形;B、AD=BC是平行四边形的性质,不能推出四边形ABCD是矩形;C、AB=BC时,四边形ABCD是菱形,而不是矩形;D、AC=BD时,由对角线相等的平行四边形是矩形.故选:D.【点睛】本题主要考查了矩形的判定,解题的关键是掌握矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12.B解析:B【分析】由正方形的性质,可判定△CDF ≌△CBF ,则BF=FD=BE=ED ,故四边形BEDF 是菱形.【详解】由正方形的性质知,∠ACD=∠ACB=45°,BC=CD ,CF=CF ,∴△CDF ≌△CBF ,∴BF=FD ,同理,BE=ED ,∴当BE=DF ,有BF=FD=BE=ED ,四边形BEDF 是菱形.故选B .【点睛】考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.二、填空题13.或【分析】AC 作为直角边有两种情况需要分情况讨论画出图后进行计算【详解】解:情况一:延长AB 交CD 于E ∠BAC =45°∠CAD =90°所以AE 是等腰直角△ACD 的高线中线所以CE=DE 因为∠BAC = 解析:5或13【分析】AC 作为直角边,有两种情况,需要分情况讨论,画出图后进行计算.【详解】解:情况一:延长AB 交CD 于E∠BAC =45°,∠CAD =90°所以AE 是等腰直角△ACD 的高线,中线所以,AE CD ⊥,CE=DE因为8AC =,AE CD ⊥,∠BAC =45°所以△ACE 也是等腰直角三角形,根据勾股定理,AE=CE=2所以BE=AE-AB=2-1=1又因为DE=CE=2,AE CD ⊥所以,BD=22145BE DE +=+=情况二:延长直线AB ,分别过C 、D 作垂线,交直线AB 于F 、E .与情况一类似,可以证出CF=AF=2,BF=AF-AB=2-1=1所以,BE=EF-BF ;因为∠BAC =45°,CF AB ⊥所以,∠ACF =180°-∠BAC-∠F=45°因为△ACD 是等腰直角三角形,∠CAD =90°所以∠ACD =45°所以 ,∠FCD =∠ACD+∠ACF=45°+45°=90°又因为,DE AB CF AB ⊥⊥所以四边形DEFC 是矩形所以DE=CF=2,EF=DC ;因为在等腰直角△ACD 中,∠CAD =90°,8AC =所以,根据勾股定理,CD=4所以,BE=EF-BF=DC-BF=4-1=3 因此,22223213BD DE BE =+=+=513【点睛】这道题考察的是等腰直角三角形的性质,勾股定理,矩形的判定和性质.熟练掌握这些知识点,画出辅助线,是解题的关键.14.(10)或(-18)【分析】画出旋转后的图形根据旋转的性质可知OD1的长和C2D2C2O 的长由此判断点D1的坐标【详解】如图所示:根据旋转的性质旋转前后两个图形全等如果△BCD 绕点B 逆时针旋转90°解析:(1,0)或(-1,8)【分析】画出旋转后的图形,根据旋转的性质可知OD 1的长和C 2D 2,C 2O 的长,由此判断点D 1的坐标.【详解】如图所示:根据旋转的性质,旋转前后两个图形全等,如果△BCD绕点B逆时针旋转90°后得△BOD1,CD= OD1,BC =BO,∵四边形AOBC是正方形,D(-4,3),∴BC=4,CD =4-3=1,∴OD1=1∴D1(1,0)如果△BCD绕点B顺时针旋转90°后得△BC2D2C2O=BO+BC2=4+4=8,C2D2=CD=1,点D2的的坐标为D2(-1,8).故答案为:(1,0)或(-1,8).【点睛】本题主要考查图形的旋转及旋转的性质和正方形的性质,熟练掌握旋转的性质是解题的关键.15.5【分析】先根据菱形的性质得到AC⊥BDOB=OD=BD=4OC=OA=AC=3再利用勾股定理计算出BC然后根据直角三角形斜边上的中线性质得到OH的长【详解】∵四边形ABCD为菱形AC=6BD=8∴解析:5【分析】先根据菱形的性质得到AC⊥BD,OB=OD=12BD=4,OC=OA=12AC=3,再利用勾股定理计算出BC,然后根据直角三角形斜边上的中线性质得到OH的长.【详解】∵四边形ABCD为菱形,AC=6,BD=8,∴AC⊥BD,OB=OD=12BD=4,OC=OA=12AC=3,在Rt △BOC 中,BC 5,∵H 为BC 中点,∴OH =12BC =2.5. 故答案为:2.5.【点睛】本题考查菱形的性质、勾股定理及直角三角形斜边中线的性质,菱形的对角线互相垂直且平分;直角三角形斜边的中线等于斜边的一半;熟练掌握相关性质是解题关键. 16.20【分析】首先可判断四边形BGFD 是平行四边形再由直角三角形斜边中线等于斜边一半可得BD=FD 则可判断四边形BGFD 是菱形设GF=x 则AF=13-xAC=2x 在Rt △AFC 中利用勾股定理可求出x 的解析:20【分析】首先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD ,则可判断四边形BGFD 是菱形,设GF=x ,则AF=13-x ,AC=2x ,在Rt △AFC 中利用勾股定理可求出x 的值.【详解】∵AG ∥BD ,BD=FG ,∴四边形BGFD 是平行四边形,∵CF ⊥BD ,∴CF ⊥AG ,又∵点D 是AC 中点,∴BD=DF= 12AC , ∴四边形BGFD 是菱形,设GF=x ,则AF=13-x ,AC=2x ,在Rt △AFC 中,由勾股定理可得:()()2236132x x +-=解得:5x =即GF=5∴四边形BDFG 的周长=4GF=20.故答案为:20.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD 是菱形. 17.4【分析】根据正方形的性质可得AD=AF=2设BD=x 由全等三角形的性质可得CE=6BC=6+x 然后根据勾股定理可以求得BD 的长【详解】解:∵正方形ADOF 的面积为4∴AD=AF=2设BD=x 则AB解析:4【分析】根据正方形的性质可得AD=AF=2,设BD=x,由全等三角形的性质可得CE=6,BC=6+x,然后根据勾股定理可以求得BD的长.【详解】解:∵正方形ADOF的面积为4,∴AD=AF=2,设BD=x,则AB=x+2,∵△BDO≌△BEO,△CEO≌△CFO,∴BD=BE,CF=CE,∴CE=6,BC=6+x,∵∠A=90°,∴AB2+AC2=BC2,∴ (x+2)2+82=(x+6)2,解得,x=4,即BD=4,故答案为:4.【点睛】本题考查正方形的性质、全等三角形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.3或【分析】由题意可分为逆时针旋转和顺时针旋转进行分析分别求出点OD′的长即可得到答案【详解】解:因为点D(41)在边AB上所以AB=BC=4BD=4-1=3;(1)若把△CDB顺时针旋转90°则点解析:3或73【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,所以AB=BC=4,BD=4-1=3;(1)若把△CDB顺时针旋转90°,则点D′在x轴上,OD′=BD=3,所以D′(-3,0);∴3OD'=;(2)若把△CDB逆时针旋转90°,则点D′到x轴的距离为8,到y轴的距离为3,所以D′(3,8),∴OD'==故答案为:3【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.19.55°【分析】根据翻折变换的性质可得AB=AE然后根据等腰三角形两底角相等求出∠B=∠AEB=70°根据菱形的四条边都相等可得AB=AD菱形的对角相等求出∠ADC再求出∠DAE然后根据等腰三角形两底解析:55°【分析】根据翻折变换的性质可得AB=AE,然后根据等腰三角形两底角相等求出∠B=∠AEB=70°,根据菱形的四条边都相等可得AB=AD,菱形的对角相等求出∠ADC,再求出∠DAE,然后根据等腰三角形两底角相等求出∠AED.【详解】解:∵菱形ABCD沿AH折叠,B落在BC边上的点E处,∴AB=AE,∵∠B=70°,∴∠AEB=70°在菱形ABCD中,AB=AD,∠ADC=∠B=70°,AD∥BC,∴∠DAE=∠AEB=70°,∵AB=AE,AB=AD,∴AE=AD,∴∠AED=12(180°-∠DAE)=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查了翻折变换的性质,菱形的性质,等腰三角形两底角相等的性质,翻折前后对应边相等,菱形的四条边都相等,对角相等.20.5【分析】过C点作直线EF与平行线垂直与l交于点E与l交于点F易证△CDE≌△CBF得CF=1BF=2根据勾股定理可求BC得正方形的面积【详解】解:过C点作EF⊥l交l于E点交l于F点∵l∥l∥l∥解析:5【分析】过C点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△CDE≌△CBF,得CF=1,BF=2.根据勾股定理可求BC2得正方形的面积.【详解】解:过C点作EF⊥l1,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,90CED BFCCDE BCFBC CD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点睛】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.三、解答题21.(1)见解析(2)见解析【分析】(1)(1)延长EF 交BC 于H ,连结DH ,交CF 于N ,连结AH ,FB 交于M ,过M 、N 作直线交DC 于G,连结BG 即可;(2)连接AH ,BF ,相交于M ,连接BE 并交AD 于N ,由四边形EDCF 是平行四边形,矩形ABCD ,可得EF=CD=AB ,EF ∥CD ∥AB ,可证△ANB ≌△FNE (AAS ),可得AN=FN过M 、N 作直线l 即可.【详解】解:(1)如图,延长EF 交BC 于H ,连结DH ,交CF 于N ,连结AH ,FB 交于M 过M 、N 作直线交DC 于G连结BG如图1,线段BG 即为所求作;(2)如图,连接AH ,BF ,相交于M ,连接BE 并交AD 于N , ∵四边形EDCF 是平行四边形,矩形ABCD∴EF=CD=AB ,EF ∥CD ∥AB∴∠ABN=∠FEN ,∠ANB=∠FNE∴△ANB ≌△FNE (AAS )∴AN=FN过M 、N 作直线l如图2,直线l 即为所求作.【点睛】本题考查的是利用无刻度的直尺作图,平行四边形的性质,矩形的性质,三角形的中位线的性质,三角形的中线的概念,线段垂直平分线,掌握以上知识是解题的关键. 22.(1)作图见解析;(2)①证明见解析;②5EF =.【分析】(1)在CB 的延长线上截取BM=DE ,再连接AM 即可.(2)①由旋转性质可得90AM AE MAE ︒=∠=,.由45EAF ︒∠=,可证明MAF EAF ∠=∠,即可用“边角边”证明AMF AEF ≌.②由①得EF MF =,即可证明EF BF DE =+.在Rt ADE △中利用勾股定理可求出DE 长,即得到CE 长.设EF x =,则3BF x =-,9CF x =-.在Rt CEF 利用勾股定理可列出关于x 的方程,求出x 即可.【详解】(1)如图,ABM 为所作;(2)①如图,连接EF .∵四边形ABCD 是正方形,90BAD ︒∴∠=, ADE 点A 顺时针旋转90︒得到ABM ,90AM AE MAE ︒∴=∠=,,又45EAF ︒∠=,MAF EAF ∴∠=∠,在AMF 和AEF 中,AM AE MAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()AMF AEF SAS ∴≌.②AMF AEF ≌,EF MF ∴=,即EF MF BM BF ==+,而BM DE =,EF BF DE ∴=+, 在Rt ADE △中,()22223563DE AE AD =-=-=,633CE CD DE ∴===-=,设EF x =,则3BF x =-,()639CF x x ∴=--=-.在Rt CEF 中,222+=CF CE EF ,即()22293x x -+=,解得:5x =.即5EF =.【点睛】本题考查作图-旋转变换,三角形全等的判定和性质,正方形的性质以及勾股定理.掌握判断三角形全等的判定条件和利用勾股定理解三角形是解答本题的关键.23.(1)见解析;(2)以点A 为旋转中心,顺时针旋转90°得到△FAC .【分析】(1)由题意利用正方形的性质得出∠FAC=∠BAE ,AF=AB ,AC=AE ,即可得出△FAC ≌△BAE ;(2)由题意根据旋转前后图形的关系得出旋转中心和旋转角的度数即可.【详解】证明:(1)∵四边形ABGF 和四边形ACDE 是正方形,∴AF =AB ,AC =AE ,∵∠BAF =∠CAE =90°,∴∠BAF+∠BAC =∠CAE+∠BAC 即∠FAC =∠BAE , ∵在△FAC 和△BAE 中,AF AB FAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAC ≌△BAE (SAS ),(2)以点A 为旋转中心,顺时针旋转90°得到△FAC .【点睛】本题主要考查旋转的性质以及全等三角形的判定与性质和正方形的性质等知识,根据已知得出∠FAC=∠BAE 是解题的关键.24.(1)443y x =+;(2)()3+124S m m =-<;()3124S m m =->;(3)能,70,8B ⎛⎫ ⎪⎝⎭【分析】(1)根据OA 、OC 的长度结合图形可得出点A 、C 的坐标,再利用待定系数法即可求出直线AC 的解析式;(2)根据点B 的坐标可得出BC 的长度,结合平行四边形的面积公式即可得出S 关于m 的函数关系式;(3)根据菱形的性质,利用勾股定理构建方程即可解决问题;【详解】解:(1)∵OA =3,OC =4,∴A (﹣3,0)、C (0,4).设直线AC的函数解析式为y=kx+b,将点A(﹣3,0)、C(0,4)代入y=kx+b中,得:304k bb-+=⎧⎨=⎩,解得:4 34kb⎧=⎪⎨⎪=⎩,∴直线AC的函数解析式为y=43x+4.(2)∵C(0,4) B (0,m)当点B在C点下方时BC=4-m,∴S=BC•OA=3(4-m)=-3m+12(m<4).当B点在C点上方时BC=m-4,∴S=BC•OA=3(m-4)=3m-12(m>4).(3)能,当四边形ABCD是菱形时,AB=BC在RtΔAOB中 AB2=OA2+OB2=32+m2,∴32+m2=(4﹣m)2解得:m=78,∴B(0,78).【点睛】本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题.25.8s或283s【分析】设运动时间为t 秒,则有AP =t ,CQ =2t ,分PQ//CD 和PQ 与CD 不平行两种情况进行讨论,再根据平行四边形或梯形的性质建立方程即可求解.【详解】解:(1)当PQ//CD 时,∵AD//BC ,∴四边形PDCQ 是平行四边形,∴PD =CQ ,而AP =t ,CQ =2t ,PD =AD -AP =24-t ,即:2t =24-t解得: t =8.(2)当PQ 与CD 不平行时,而AD//BC ,PQ =CD ,∴四边形PDCQ 是等腰梯形,作PM ⊥BC 于M ,DN ⊥BC 于N ,则四边形ABND 、PMND 均是矩形,∴AD =BN =24,CN =BC -BN =2,QM =CN =2,PD =MN ,而CQ =QM +MN +NC ,∴ 2t =24-t +2+2,解得: t =283.【点睛】此题考查了平行四边形的性质及等腰梯形的判定与性质,属于动点型问题,关键是分类讨论点P 及点Q 位置,然后利用方程思想求解t 的值.26.(1)FG=3;(2)GF EC =,//GF EC ,理由见解析【分析】(1)首先证明四边形GECF 是平行四边形得FG=CE ,再依据勾股定理求出CE 的长即可得到结论;(2)证明四边形GECF 是平行四边形即可得到结论. 【详解】(1)解:四边形ABCD 是正方形BC CD ∴=90B BCD ∠=∠=︒BF CE =BCF CDE ∴∆≅∆DE CF ∴=,BCF CDE ∠=∠90BCF DCP ∠+∠=︒90CDF DCP ∴∠+∠=︒90CPD ︒∴∠=即DE CF ⊥DE EG ⊥//CF EG ∴EG DECF EG ∴=∴四边形GECF 是平行四边形FG EC ∴=5DE =4CD =90DCE ∠=︒3CE ∴=3FG ∴=(2)GF EC =,//GF EC理由:延长FC 交DE 于点M .四边形ABCD 是正方形BC CD ∴=90ABC DCB ∠=∠=︒90CBF DCE ∴∠=∠=︒BF CE =BCF CDE ∴∆≅∆CF DE ∴=BCF CDE ∠=∠90BCF DCM ∠+∠=︒90CDE DCM ∴∠+∠=︒CM DE ∴⊥DE EG ⊥EG DE =//∴CF EG=CF BG∴四边形EGFC是平行四边形∴=GF ECGF EC//【点睛】本题主要考查了全等三角形的判定与性质,平行四边形的判定与性质.解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
九年级上册数学第一章特殊平行四边形检测卷(北师大含答案)★精品文档★九年级上册数学第一章特殊平行四边形检测卷(北师大含答案)一、选择题(每小题3分,共45分)1.下列四边形中,对角线互相垂直平分的是()a.平行四边形、菱形b.矩形、菱形c.矩形、正方形d.菱形、正方形2.在四边形abcd中,ab=bc=cd=da,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.ac⊥bdb.ab∥cdc.∠a=90°d.∠a=∠c3.若矩形的一条对角线与一边的夹角就是40°,则两条对角线平行阿芒塔的锐角就是()a.20°b.40°c.80°d.100°4.如图,在矩形abcd中,对角线ac,bd交于点o,下列说法错误的是()a.ab∥dcb.ac=bdc.ac⊥bdd.oa=oc第4题图第5题图第6题图5.如图,点p是菱形abcd对角线bd上一点,pe⊥ab于点e,且pe=2.连接pc,若菱形的周长为24.则△bcp的面积为()2021全新精品资料-全新公文范文-全程指导文学创作c独家原创1/9★精品文档★a.4b.6c.8d.126.例如图,在△abc中,bc=12,ac=5,ab=13,点d就是ab的中点,则cd的短为()a.6.5b.6c.2.5d.无法确认7.如图,已知面积为1的正方形abcd的对角线相交于点o,过点o任意作一条直线分别交ad,bc于e,f,则阴影部分的面积是()a.1b.0.5c.0.25d.无法确认第7题图第8题图第9题图8.如图,在矩形abcd中,对角线ac、bd相交于点o.若∠acb=30°,ab=2,则bd的长为()a.4b.3c.2d.19.菱形oabc在平面直角坐标系则中的边线如图所示,∠aoc=45°,点a的座标为(2,0),则点b的座标为()a.(2,1)b.(1,2)c.(1,2+1)d.(2+1,1)10.例如图,四边形abcd就是正方形,点e在对角线bd上,且be=bc,则∠ace的度数等同于()a.20°b.22.5°c.25°d.30°第10题图第11题图2021全新精品资料-全新公文范文-全程指导写作c独家原创2/9★精品文档★第12题图11.如图,在菱形abcd中,对角线ac、bd相交于点o,作oe∥ab,交bc于点e,则oe的长一定等于()a.beb.aoc.add.ob12.例如图,四边形abcd就是正方形,be⊥ef,df⊥ef,be=2.5d,df=4d,那么ef的短为()a.6.5db.6dc.5.5dd.4d13.顺次连接对角线相等的四边形各边中点所得四边形是()a.矩形b.平行四边形c.菱形d.任一四边形14.如图,将边长为2c的菱形abcd沿边ab所在的直线l翻折得到四边形abef,若∠dab=30°,则四边形cdfe的面积为()a.2c2b.3c2c.4c2d.6c2第14题图第15题图15.如图,四边形abcd为矩形纸片,把纸片abcd折叠,使点b恰好落在cd边的中点e处,折痕为af.若cd=6,则af等于()a.43b.33c.42d.8二、填空题(每小题5分,共25分)2021全新精品资料-全新公文范文-全程指导文学创作c独家原创3/9★精品文档★16.rt△abc中,如果斜边上的中线cd=4c,那么斜边ab=c.17.例如图,一个平行四边形的活动框架,对角线就是两根橡皮筋.若发生改变框架的形状,则∠α也随之变化,两条对角线长度也在出现发生改变.当∠α为度时,两条对角线长度成正比.第17题图18.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为1c,则其对角线长为c,矩形的面积为c2.19.如图,在正方形abcd的外侧,作等边△ade,则∠bed的度数是.第19题图第20题图20.例如图,菱形abcd的边长为4,且ae⊥bc于e,af⊥cd于f,∠b=60°,则菱形abcd的面积为.三、答疑题(共80分后)21.(8分)如图,点o是菱形abcd对角线的交点,de∥ac,ce∥bd,连接oe.求证:oe=bc.22.(8分后)例如图,正方形abcd中,e为cd边上一点,f为bc延长线上一点,且ce=cf.澄清:△bce≌△dcf.2021全新精品资料-全新公文范文-全程指导写作c独家原创4/9★精品文档★23.(10分后)例如图,在矩形abcd中,对角线ac,bd平行于点o,ae⊥bd于点e,be∶ed=1∶3,ad=6c,谋ae的长.24.(12分)如图,等腰三角形abc中,ab=ac,ah⊥bc,点e是ah上一点,延长ah至点f,使fh=eh.(1)求证:四边形ebfc是菱形;(2)如果∠bac=∠ecf,求证:ac⊥cf.25.(12分后)例如图,在矩形abcd中,沿ef将矩形卷曲,并使a,c重合,点d落到点g处为,ac与ef处设点h.(1)澄清:△abe≌△agf;(2)若ab=6,bc=8,求△abe的面积.26.(14分后)未知梯形abcd中,ad∥bc,ab=ad(如图所示).(1)在右图中,用尺规并作∠bad的平分线ae交bc于点e,相连接de(留存作图痕迹,不文学创作法),并证明四边形abed就是菱形;(2)若∠abc=60°,ec=2be.求证:ed⊥dc.27.(16分后)例如图,未知△abc,直线pq垂直平分ac,与边ab处设点e,相连接ce,过点c作cf平行于ba交pq于点f,相连接af.(1)澄清:△aed≌△cfd;2021全新精品资料-全新公文范文-全程指导写作c独家原创5/9。
一、选择题1.菱形的一条对角线与它的边相等,则它的锐角等于( )A .30°B .45°C .60°D .75°2.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 点作OE AB ⊥,垂足为E .则下列说法错误的是( )A .点O 为菱形ABCD 的对称中心B .2OE =C .CDB ∆为等边三角形D .4BD =3.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则DE 的长为( )A .12B .53C .25D .134.如图,把矩形ABCD 沿EF 对折,若112,AEF ∠=︒则1∠等于( )A .43B .44C .45︒D .46︒5.如图,在平面直角坐标系中,将边长为a 的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式连续旋转2021次得到正方形202120212021OA B C ,那么点2021A 的坐标是( )A.22,22a a⎛⎫⎪⎝⎭B.22,22a a⎛⎫-⎪⎝⎭C.22,22a a⎛⎫--⎪⎝⎭D.22,22a a⎛⎫- ⎪⎝⎭6.如图,已知正方形ABCD的边长为4,E是边CB延长线上一点,F为AB边上一点,BE =BF,连接EF并延长交线段AD于点G,连接CF交BD于点M,连接CG交BD于点N.则下列结论:①AE=CF;②∠BFM=∠BMF;③∠CGF﹣∠BAE=45°;④当∠BAE=15°时,MN=433.其中正确的个数有()A.1 B.2 C.3 D.47.如图,正方形ABCD的边长为3,点P为对角线AC上任意一点,PE BC⊥,PQ AB⊥,垂足分别是E,Q,则PE PQ+的值是()A.32B.3 C.322D.328.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连结EG.若AE=1,AB=4,则EG=()A.210B.27C.33D.199.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A.1 B.2 C.3 D.4AB ,G是BC的中点.将ABG沿AG对折至AFG,10.如图,正方形ABCD中,6延长GF交DC于点E,则DE的长是()A.2 B.2.5 C.3.5 D.411.□ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出□ABCD是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD12.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.3C.3D.6二、填空题13.如图,在直角坐标系中,正方形ABCD的顶点坐标分别为A(1,﹣1),B(﹣1,﹣1),C(﹣1,1),D(1,1).曲线AA1A2A3…叫做“正方形的渐开线”,其中AA1、A1A2、A2A3、A3A4…的圆心依次是B、C、D、A循环,则点A18的坐标是______________.14.如图,点H 在菱形ABCD 的边BC 上,连结AH ,把菱形ABCD 沿AH 折叠,使B 点落在边BC 上的点E 处,若∠B=70°,则∠AED 的度数为_____.15.如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,点E 在DA 的延长线上,BE BF ⊥交CD 于点F ,连接EF .DEF ∠的角平分线与BD 交于点H ,连接FH .过点D 分别作DQ EH ⊥于点Q 、DP FH ⊥于点P ,连接PQ PQ .若1PQ CF ==,则DF =______.16.菱形ABCD 周长为52cm ,它的一条对角线长为10cm ,则另一条对角线长为__________cm .17.如图,在矩形ABCD 纸片中,点E 是BC 边的中点,沿直线AE 折叠,点B 落在矩形内部的点B '处,连接AB '并延长交CD 于点F .已知4CF =,5DF =,则AD 的长为__________.18.如图,把长方形纸片ABCD 沿折痕EF 折叠,使点B 与点D 重合,点A 落在点G 处,68DFG ∠=︒,则BEF ∠的度数为_________.19.如图,在矩形ABCD 中,AB =6,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,若BE =EO ,则AD 的长是____.20.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.三、解答题21.如图,点E 为边长为3的正方形ABCD 的边CB 延长线上一点,1BE =,连接AE ,将ABE △绕着正方形的顶点A 旋转得到ADF .(1)写出上述旋转的旋转方向和旋转角度数:(2)连接EF ,求AEF 的面积:(3)如图中,ADG 可以看作由BAE △先绕着正方形的顶点B 顺时针旋转90︒,再沿着BA 方向平移3个单位的二次基本运动所成,那么ADG 是否还可以看作由BAE △只通过一次旋转运动而成呢?如果可以,请写出(同时在图中画出)旋转中心、旋转方向和旋转角度数,如果不能,则说明理由.22.如图,点E 是正方形ABCD 的边DC 上一点,把ADE 顺时针旋转ABF 的位置.(1)旋转中心是点 ,旋转角度是 度:(2)若连结EF ,则AEF 是 三角形,并证明你的结论.23.如图,矩形ABCD 中,EF 垂直平分对角线BD ,垂足为O ,点E 和F 分别在边AD ,BC 上,连接BE ,DF .(1)求证:四边形BFDE 是菱形;(2)若AE =OF ,求∠BDC 的度数.24.如图,在直角坐标系中,3,4OA OC ==,点B 是y 轴上一动点,以AC 为对角线作平行四边形ABCD .(1)求直线AC 的函数解析式;(2)设点(0)B m ,,记平行四边形ABCD 的面积为S ,求S 与m 的函数关系式; (3)当点B 在y 轴上运动,能否使得平行四边形ABCD 是菱形?若能,求出点B 的坐标;若不能,说明理由.25.如图1、图2都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.已知点O,M,N,A,B均在格点上,请按要求完成下列问题:(1)在图①中,仅用无刻度直尺在网格中画出∠MON的平分线OP,并简要说明画图的依据;(2)在图②中,仅用无刻度直尺在网格中画一个Rt△ABC,使点C在格点上,并简要说明画图的依据.26.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.求证:四边形CDOF是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由菱形的性质可得这条对角线与菱形的两边组成等边三角形,从而求得锐角的度数等于60°.【详解】解:由菱形的性质得,菱形相邻的两边相等,则与这条对角线组成等边三角形,则它的锐角等于60°,故选C.【点睛】此题主要考查菱形的性质:四边相等.2.B解析:B【分析】根据菱形的性质,等边三角形的判定,含30度的直角三角形的性质,勾股定理即可判断得出答案.【详解】菱形对角线互相垂直平分,O为对角线BD的中点,也是菱形对角线的交点,所以点O为菱形ABCD的对称中心,故A选项正确;∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴∠A=∠C =60°,∴△ABD和△CBD是等边三角形,故C选项正确;∴BD=AB=4,故D选项正确;∠OBE=60°,∵OE⊥AB,∴∠BOE=30°,∵O为对角线BD的中点,∴OB=1BD=2,2∴BE=1OB =1,2∴==B选项错误;故选:B.【点睛】本题考查了菱形的性质以及等边三角形的判定与性质,含30度的直角三角形的性质,勾股定理等.注意证得△ABD是等边三角形是关键.3.B解析:B【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF =3﹣x ,然后在Rt △ECF 中根据勾股定理得到x 2+12=(3﹣x )2,解方程即可得到DE 的长.【详解】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF 4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x ,在Rt △ECF 中,CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43, ∴DE =3﹣x =53, 故选:B .【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.4.B解析:B【分析】根据矩形的对边平行,可得∠AEF+∠BFE=180°,继而求得∠BFE=68°,再利用折叠的性质和平角的定义求解即可.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEF+∠BFE=180°,∵112AEF ∠=︒,∴∠BFE=68°,∴∠1=180°-2∠BFE=44°,故选B .【点睛】本题考查了折叠问题,矩形的性质,平行线的性质,平角的定义,熟练掌握折叠的性质是解题的关键.5.C解析:C【分析】由正方形的性质和旋转的性质探究规律,利用规律解决问题即可.【详解】解:∵四边形OABC 是正方形,且OA=1,∴A (0,a ),∵将正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,∴A 122,)22a a ,A 2(a ,0),A 322,)22a a ,A 4(0,-a )…, 发现是8次一循环,∵2021÷8=252…5,∴点A 2021的坐标为22,⎛⎫ ⎪⎝⎭, 故选:C .【点睛】本题考查了正方形的性质、旋转的性质、坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.6.B解析:B【分析】①根据已知条件证明△ABE ≌△CBF ,即可判断;②由△ABE ≌△CBF 和已知条件证明四边形DGEB 是平行四边形,再证明△FBC ≌△GDC ,当且仅当∠FCG=45°时,∠BFM=∠BMF ,即可判断;③结合①②证明∠FMB=∠CGF ,进而可以判断;④当∠BAE=15°时,∠BCM=∠GCD=∠BAE=15°,可得△CMN 是等边三角形,作CH ⊥BD 于点H ,根据正方形边长为4,即可求出MN 的值,进而可以判断.【详解】解:①∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠CBF =90°,在△ABE 和△CBF 中,BE BF ABE CBF AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴AE =CF ,故①正确;②∵△ABE ≌△CBF ,∴∠BCF =∠BAE ,∵∠GEC =∠DBC =∠ADB =45°,∴∠BMF =∠FCB +∠DBC =∠FCB +45°,∵∠GEC =∠DBC ,∴EG ∥DB ,∵DG ∥BE ,∴四边形DGEB 是平行四边形,∴BE =DG ,在△FBC 和△GDC 中,BF DG FBC GDC BC DC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△GDC (SAS ),∴∠BCF =∠DCG ,∴∠BFM =∠FCD =∠DCG +∠FCG =∠BCF +∠FCG ,∴当且仅当∠FCG =45°时,∠BFM =∠BMF ,故②错误;③∵GE ∥BD ,∴∠FMB =∠GFC ,∵△FBC ≌△GDC ,∴CF =CG ,∴∠GFC =∠CGF ,∴∠FMB =∠CGF ,∴∠CGF ﹣∠BAE =∠FMB ﹣∠BCM =∠MBC =45°,故③正确;④当∠BAE =15°时,∠BCM =∠GCD =∠BAE =15°,∴∠FCG =90°﹣∠BCM ﹣∠GCD =60°,∵BD ∥EG ,∴∠GFC =∠NMC ,∠FGC =∠MNC ,∵∠GFC =∠FGC ,∴∠NMC =∠MNC ,∴CM =CN ,∠MCN =60°,∴△CMN 是等边三角形,作CH ⊥BD 于点H ,如图,∴CH=12BD=122244=2,∴CM223×246,∴MN=CM=63,故④错误.所以其中正确有①③,2个.故选:B.【点睛】本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质和判定,在有中点和直角三角形的前提条件下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.7.B解析:B【分析】证明四边形PQBE是矩形得PE=QB,证明△PEC是等腰直角三角形得PQ=BE便可求得结果【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∠ACB=12∠BCD=45°∵PE⊥BC,PQ⊥AB,∴四边形PQBE是矩形,∴PQ=BE∵AC是正方形ABCD的对角线,∴∠PCE=45°,又∠PEC=90°∴△PEC是等腰直角三角形∴PE=CE∴PE+PQ=CE+BE=BC=3.故选:B.【点睛】本题主要考查了正方形的性质,矩形的性质与判定,等腰直角三角形的判定,关键是证明PE=CE,PQ=BE.8.B【分析】连接FG ,根据菱形的性质和轴对称的性质可得∠A=60°,AE =AF ,BF =BG ,进而可证△AEF 是等边三角形及△BFG 是等腰三角形,根据等边三角形的性质和等腰三角形的性质可求得EF 和FG 的长,且∠EFG=90°,根据勾股定理即可求得EG 的长.【详解】解:连接FG ,过点B 作BH ⊥FG 于H ,如图,∵菱形ABCD ,∠ADC =120°,∴∠A =60°,∠ABC =120°,∵点E 关于∠A 的平分线的对称点为F ,点F 关于∠B 的平分线的对称点为G ,∴AE =AF=1,BF =BG ,∴△AEF 是等边三角形,∴∠AFE =60°,EF=AF=1∵BF =BG ,∴△BFG 是等腰三角形,∴∠GFB =1801202-=30°, ∴∠EFG =180°﹣60°﹣30°=90°,∵BF =4﹣1=3,∴BH=32,22223333()22BF BH -=-=, ∴FG =3∴EG 2221(33)27EF FG =+=+故选:B .【点睛】本题考查了菱形的性质、轴对称的性质、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的三边关系、勾股定理,属于常考基本题型,难度适中,充分利用轴对称的性质是解答的关键.9.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.10.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt△AFE≌Rt△ADE是解答本题的关键.11.C解析:C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD 是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.12.C解析:C【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=1AD=3,CM⊥AD,2∴,∴故选C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(-371)【分析】先求出A1(-1-3)A2(-51)A3(17)A4(9-1)再研究规律每四次变化回到相同的象限;一象限横坐标都为1二象限纵坐标都为1三象限横坐标都为-1四象限纵坐标都为-1;相解析:(-37,1)【分析】先求出A1(-1,-3),A2(-5,1),A3(1,7),A4(9,-1),再研究规律每四次变化回到相同的象限;一象限横坐标都为1,二象限纵坐标都为1,三象限横坐标都为-1,四象限纵坐标都为-1;相应变化的坐标一周差8;18÷4=4…2;四周差4×8=32,四周余2,A18在第二象限,横坐标为:-5-4×8计算即可写出A18的坐标.【详解】正方形ABCD的顶点坐标分别为A(1,﹣1),B(﹣1,﹣1),C(﹣1,1),D(1,1).AB=1-(-1)=2,A1与B平行y轴,A1的横坐标为-1,纵坐标为:-1-2=-3,A1(-1,-3)CA1=1-(-3)=4,A2与C平行x轴,A2的纵坐标为1,横坐标为:-1-4=-5,A2(-5,1)DA2=1-(-5)=6,A3与D平行y轴,A3的横坐标为1,纵坐标为:1+6=7,A3(1,7)AA3=7-(-1)=8,A4与A平行x轴,A4的纵坐标为-1,横坐标为:1+8=9,A4(9,-1)A(1,﹣1),A1(-1,-3),A2(-5,1),A3(1,7),A4(9,-1),A5(-1,-11,A6(-13,1),每四次变化回到相同的象限,第一象限横坐标都为1,第二象限纵坐标都为1,第三象限横坐标都为-1,第四象限纵坐标都为-1,相应变化的坐标一周差8,18÷4=4…2,A18在第二象限,4×8=32,四周差32,A18的横坐标为:-5-4×8=-37,A18(-37,1),故答案为:(-37,1).【点睛】本题考查正方形的渐开线点的规律探究问题,掌握渐开线呈周期性变化,每4次渐开线终点在相同象限,各象限都有一坐标不变,找到变化的坐标规律是解题关键.14.55°【分析】根据翻折变换的性质可得AB=AE然后根据等腰三角形两底角相等求出∠B=∠AEB=70°根据菱形的四条边都相等可得AB=AD菱形的对角相等求出∠ADC再求出∠DAE然后根据等腰三角形两底解析:55°【分析】根据翻折变换的性质可得AB=AE,然后根据等腰三角形两底角相等求出∠B=∠AEB=70°,根据菱形的四条边都相等可得AB=AD,菱形的对角相等求出∠ADC,再求出∠DAE,然后根据等腰三角形两底角相等求出∠AED.【详解】解:∵菱形ABCD沿AH折叠,B落在BC边上的点E处,∴AB=AE,∵∠B=70°,∴∠AEB=70°在菱形ABCD中,AB=AD,∠ADC=∠B=70°,AD∥BC,∴∠DAE=∠AEB=70°,∵AB=AE,AB=AD,∴AE=AD,∴∠AED=12(180°-∠DAE)=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查了翻折变换的性质,菱形的性质,等腰三角形两底角相等的性质,翻折前后对应边相等,菱形的四条边都相等,对角相等.15.1+【分析】延长DQ交EF于M延长DP交EF于N先证∆ABE≌∆CBF∆FPN≌∆FPD∆EQD≌∆EQM设CD=x则DF=x-1EF=BF=列方程求解即可【详解】解:延长DQ交EF于M延长DP交E解析:【分析】延长DQ交EF于M,延长DP交EF于N,先证∆ABE≌∆CBF,∆FPN≌∆FPD,∆EQD≌∆EQM,设CD=x,则DF=x-1,【详解】解:延长DQ交EF于M,延长DP交EF于N,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BAD=∠BCF=90°,BD平分∠ADC,∵BE⊥BF,∴∠EBF=90°,∴∠EBF=∠ABC ,∴∠EBF-∠ABF=∠ABC-∠ABF ,∴∠ABE=∠CBF ,在∆ABE 和∆CBF 中,BAE BCF AB CBABE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆ABE ≌∆CBF ,∴AE=CF ,BE=BF ,∵EQ 平分∠DEF ,OD 平分∠EDF ,EQ 与OD 交于H ,∴FH 平分∠EFD ,∴EP ⊥DP ,∴∠FPN=∠FPD ,在∆FPN 和∆FPD 中,NFP DFP PF PFFPN FPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆FPN ≌∆FPD ,∴PN=PD ,NF=DF ,∵EQ 平分∠DEF ,∴∠DEQ=∠MEQ ,∵EQ ⊥DQ ,∴∠EQD=∠EQM=90°,在∆EQD 和∆EQM 中,DEQ EQ EQ MQEQD EQM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆EQD ≌∆EQM ,∴DQ=MQ ,EM=ED ,∴PQ 是∆DMN 的中位线,∴PQ=12MN=1, ∴MN=2,∴EF+MN=EM+FN=DE+DF=AD+AE+CD-CF=2CD ,设CD=x ,则DF=x-1,∴∴,∴2x²+2=4x²-8x+4,∴2x²-8x+2=0,∴x²-4x+1=0,∴(x-2) ²=3,∴1232,32x x =+=-+(舍),∵CD=2+3,∴DF=1+3,故答案为:1+3【点睛】本题考查了正方形的性质,全等三角形的判定与性质及三角形的中位线定理,解题的关键是熟练掌握有关性质及正确添加辅助线.16.24【分析】根据菱形的性质先求菱形的边长利用勾股定理求另一条对角线的长度【详解】如图菱形ABCD 中BD=10∴AC ⊥BD ∵菱形的周长为52BD=10∴AB=52÷4=13BO=5∴AO=∴AC=则这解析:24【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【详解】如图,菱形ABCD 中,BD=10,∴AC ⊥BD ,∵菱形的周长为52,BD=10,∴AB=52÷4=13,BO=5,∴AO=2213512∴AC=24.则这个菱形的另一条对角线长为24cm .故答案为:24.【点睛】本题考查了菱形对角线互相垂直平分、菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求AO 的值是解题的关键. 17.【分析】连接EF 根据矩形的性质可得AB=CD=9∠B=∠C=∠D=90°根据折叠的性质可得=∠B=90°利用HL 证出Rt △≌Rt △FCE 从而求出即可求出AF 最后利用勾股定理即可求出结论【详解】解:连解析:12【分析】连接EF ,根据矩形的性质可得AB=CD=9,∠B=∠C=∠D=90°,根据折叠的性质可得9AB AB '==,B E BE '=,AB E '∠=∠B=90°,利用HL 证出Rt △FB E '≌Rt △FCE ,从而求出B F ',即可求出AF ,最后利用勾股定理即可求出结论.【详解】解:连接EF ,∵4CF =,5DF =,∴CD=CF +DF=9∵四边形ABCD 为矩形,∴AB=CD=9,∠B=∠C=∠D=90°由折叠的性质可得9AB AB '==,B E BE '=,AB E '∠=∠B=90°∴FB E '∠=90°=∠C∵点E 为BC 的中点∴BE=CE∴B E CE '=在Rt △FB E '和Rt △FCE 中B E CE EF EF '=⎧⎨=⎩∴Rt △FB E '≌Rt △FCE∴4B F CF '==∴AF=AB '+B F '=13在Rt △AFD 中,故答案为:12.【点睛】此题考查的是矩形与折叠问题,掌握矩形的性质、折叠的性质、利用HL 判定两个三角形全等和勾股定理是解题关键. 18.56【分析】根据折叠的性质和长方形的性质以及三角形内角和解答即可【详解】解:∵把长方形纸片ABCD 沿折痕EF 折叠使点B 与点D 重合点A 落在点G 处∴∠G=∠A=90°∠GDE=∠B=90°∵∠DFG=6解析:56【分析】根据折叠的性质和长方形的性质以及三角形内角和解答即可.【详解】解:∵把长方形纸片ABCD 沿折痕EF 折叠,使点B 与点D 重合,点A 落在点G 处, ∴∠G=∠A=90°,∠GDE=∠B=90°,∵∠DFG=68°,∴∠GDF=∠G-∠DFG=90°-68°=22°,∴∠ADE=∠GDE-∠GDF=90°-22°=68°,∴∠EDC=∠ADC-∠ADE=90°-68°=22°,∴∠DEC=90°-∠EDC=90°-22°=68°,由折叠可得:∠FEB=∠FED , ∴180180685622DEC BEF -∠-=︒︒︒∠==︒, 故答案为:56.【点睛】 此题考查翻折问题,关键是根据折叠前后图形全等和长方形性质解答.19.【分析】由矩形的性质可得OB=OD=OA=OCAC=BD 由线段垂直平分线的性质可得OA=AB=OB 可证△OAB 是等边三角形可得∠ABD=60°由直角三角形的性质可求解【详解】解:∵四边形ABCD 是矩解析:【分析】由矩形的性质可得OB=OD=OA=OC,AC=BD,由线段垂直平分线的性质可得OA=AB=OB,可证△OAB是等边三角形,可得∠ABD=60°,由直角三角形的性质可求解.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE=EO,AE⊥BD,∴AB=AO,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∴∠ADE=90°-∠ABD=30°,∴故答案为:【点睛】本题考查了矩形的性质,等边三角形的判定与性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°再根据折叠的性质可得答案【详解】∵四边形ABCD是矩形∴AD∥BC∴∠B′FC=∠2=70°∴∠1+∠B′FE=180°-∠B解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.三、解答题21.(1)旋转方向:逆时针旋转,旋转角:90°;(2)5;(3)可以,图见解析,△绕点O顺时针旋转90°得到ADGBAE(1)根据图形和正方形的性质即可得出结论;(2)根据正方形的性质和旋转的性质可得AD=DC=BC=3,DF=BE=1,从而求出EC和CF,最后利用AEFS=S梯形AECD-S△ADF-S△ECF即可求出结论;(3)根据旋转中心、旋转方向和旋转角的定义即可得出结论.【详解】解:(1)由图易知:由ABE△到ADF的旋转方向为逆时针旋转,∵四边形ABCD为正方形∴∠BAD=90°即旋转角为90°综上:旋转方向:逆时针旋转,旋转角:90°;(2)∵正方形ABCD的边长为3,1BE=∴AD=DC=BC=3,DF=BE=1∴EC=BE+BC=4,CF=DC-DF=2∴AEFS=S梯形AECD-S△ADF-S△ECF=12DC(AD+EC)-12AD·DF-12EC·CF=12×3×(3+4)-12×3×1-12×4×2=10.5 1.54--=5;(3)可以,∵在BAE△和ADG中,点A的对应点是点D,点B的对应点是点A,点E的对称点是点G∴作线段AD的对称轴和线段BA的对称轴交于点O,根据旋转中心的定义,由BAE△到ADG,点O即为旋转中心,由图易知旋转方向为顺时针旋转连接OA、OB,则∠BOA=90°即旋转角为90°综上:BAE△绕点O顺时针旋转90°得到ADG.此题考查的是图形的旋转,掌握旋转的性质、旋转中心、旋转方向和旋转角的定义是解题关键.22.(1)A,90;(2)等腰直角,证明过程见解析.【分析】(1)根据旋转中心及旋转角的定义,即可得出结论;(2)利用旋转的性质与正方形的性质,并结合等腰直角三角形的判定方法,即可判断出△AEF的形状.【详解】(1)解:∵四边形ABCD是正方形,∴∠BAD=90°,∵△ADE顺时针旋转到△ABF的位置,∴旋转中心是点A,旋转角是∠BAD=90°.故答案为A,90.(2)△AEF等腰直角三角形.证明:∵△ADE顺时针旋转到△ABF的位置,∴AF=AE,∠FAE=∠BAD,∵四边形ABCD是正方形∴∠FAE=∠BAD=90°∴△AEF是等腰直角三角形故答案为:等腰直角.【点睛】本题主要考查了旋转变换的性质、正方形的性质等知识,解题的关键是掌握旋转变换及正方形的性质.23.(1)见解析;(2)60°.【分析】(1)首先判定平行四边形,然后根据对角线互相垂直的平行四边形是菱形进行判定即可;(2)AE=OF,四边形BFDE是菱形,BE=BF,可证△ABF≌△OBF, ∠ABF=∠OBF,∠FBO=∠OBF, ∠OBF=30°,即可求解.【详解】证明:(1)∵四边形ABCD是矩形,∴ AD∥BC,AD=BC,∴∠EDO=∠OBF,∵EF垂直平分BD,∴BO=DO,∠EOD=∠BOF=90°,∴△DEO=△BFO(ASA)∴OE=OF,∴四边形EBFD是平行四边形,又EF⊥BD,∴四边形EBFD 是菱形;(2)∵四边形EBFD 是菱形,∴ED=EB又 AE =OF ,∠A=∠BOF∴△ABF ≌△OBF∴∠ABF=∠OBF,∵∠FBO=∠OBF,∴∠ABF =∠FBO=∠OBF,∴ ∠OBF=30°∴∠BDC=60°.【点睛】本题考查了菱形的性质和判定,掌握菱形的性质和判定是解题的关键.24.(1)443y x =+;(2)()3+124S m m =-<;()3124S m m =->;(3)能,70,8B ⎛⎫ ⎪⎝⎭【分析】(1)根据OA 、OC 的长度结合图形可得出点A 、C 的坐标,再利用待定系数法即可求出直线AC 的解析式;(2)根据点B 的坐标可得出BC 的长度,结合平行四边形的面积公式即可得出S 关于m 的函数关系式;(3)根据菱形的性质,利用勾股定理构建方程即可解决问题;【详解】解:(1)∵OA =3,OC =4,∴A (﹣3,0)、C (0,4).设直线AC 的函数解析式为y =kx+b ,将点A (﹣3,0)、C (0,4)代入y =kx+b 中,得:304k b b -+=⎧⎨=⎩, 解得:434k b ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为y =43x+4. (2)∵C(0,4) B (0,m)当点B 在C 点下方时BC=4-m,∴S=BC•OA=3(4-m)=-3m+12(m<4).当B点在C点上方时BC=m-4,∴S=BC•OA=3(m-4)=3m-12(m>4).(3)能,当四边形ABCD是菱形时,AB=BC 在RtΔAOB中 AB2=OA2+OB2=32+m2,∴32+m2=(4﹣m)2解得:m=78,∴B(0,78).【点睛】本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题.25.(1)见解析;(2)见解析【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题.【详解】解:(1)如图1,射线OP即为所求的∠MON的平分线.作图依据是:可判定△MOP≌△NOP,于是有∠MOP=∠NOP.(2)如图2,△ABC即为所求作的直角三角形,其中∠ACB=90°.作图依据是:①菱形的对角线互相垂直,即BC⊥EF;②可判定AC∥EF,则AC⊥BC,所以∠ACB=90°.【点睛】本题考查作图−应用与设计、菱形的性质等知识,解题的关键是掌握菱形的性质并灵活运用所学知识解决问题.26.见解析.【分析】利用角平分线的性质、平角的定义可以求得∠DOF=90°;由等腰三角形的“三合一”的性质可推知OD⊥AC,即∠CDO=90°;根据已知条件“CF⊥OF”知∠CFO=90°;则三个角都是直角的四边形是矩形.【详解】证明:∵OD平分∠AOC,OF平分∠COB,∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC,∴OD⊥AC,AD=DC,∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形【点睛】本题考查了矩形的判定、角平分线的定义、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.。
第一章特殊的平行四边形一.选择题(共10小题)1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20 B.24 C.40 D.482.如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.5B.2C.D.3.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.284.如图,在四边形ABCD中,AC与BD相交于点O,∠OAB=∠OAD,BO=DO,那么下列条件中不能判定四边形ABCD是菱形的为()A.OA=OC B.BC=DC C.AD=BC D.AD=DC5.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④6.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN,CN⊥AN,MN为垂足若AB=a,则DM+CN的值为()A.a B.a C.D.7.如图,矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BD交AD于点E.已知AB=2,△DOE的面积为,则AE的长为()A.B.2 C.1.5 D.8.在平行四边形ABCD中添加下列条件,不能判定四边形ABCD是矩形的是()A.∠ABC=90°B.AC⊥BD C.AC=BD D.∠ACD=∠CDB 9.正方形ABCD的一条对角线长为8,则这个正方形的面积是()A.4B.32 C.64 D.12810.在正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF二.填空题(共10小题)11.已知,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,∠BAE=23°.则∠FEC=度.12.在菱形ABCD中,AD=10,AC=12,则菱形ABCD的面积是.13.如图在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=时,平行四边形CDEB为菱形.14.如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD是菱形,所添条件为(写出一个即可)15.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为.16.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=.17.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).18.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.19.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.20.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.三.解答题(共7小题)21.如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.22.如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE ∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形;(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是.23.已知:AC,BD为菱形ABCD的对角线,∠BAD=60°,点EF分别在AD,CD边上,且∠EBF=60°.(1)求证:△BEF是等边三角形;(2)当∠ABE=15°时,AB=1+,求BE.24.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.25.(1)如图1,已知正方形ABCD,点E在BC上,点F在DC上,且∠EAF=45°,则有BE+DF =.若AB=4,则△CEF的周长为.(2)如图2,四边形ABCD中,∠BAD=∠C=90°,AB=AD,点E,F分别在BC,CD上,且∠EAF=45°,试判断BE,EF,DF之间的数量关系,并说明理由.26.在正方形ABCD的外侧作等腰△ABE,已知∠EAB=a,连接ED交等腰△ABE底边上的高AF所在的直线于点G.(1)如图1,若a=30°,求∠AGD的度数;(2)如图2,若90°<a<180°,BE=8,DE=14,则此时AE的长为.27.如图,在矩形ABCD中,AB=4cm,AD=12cm;P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,两点同时出发,待P点到达D点为止,求经过多长时间四边形ABQP为矩形?参考答案与试题解析一.选择题(共10小题)1.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.【解答】解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AO=CO=3cm,BO=DO=4cm,∠BOC=90°,∴BC==5(cm),∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.3.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA,∵菱形ABCD的周长为24,∴AD=AB=6,∵AC+BD=16,∴AO+BO=8,∴AO2+BO2+2AO•BO=64,∵AO2+BO2=AB2,∴AO•BO=14,∴菱形的面积=4×三角形AOD的面积=4××14=28,故选:D.4.【解答】解:A、若AO=OC,且BO=DO,∴四边形ABCD是平行四边形,∴AB∥CD∴∠BAO=∠OCD,且∠OAB=∠OAD∴∠OAD=∠OCD∴AD=CD,∴四边形ABCD是菱形故A选项不符合题意B、若BC=DC,BO=DO∴AC是BD的垂直平分线∴AB=AD则不能判断四边形ABCD是菱形故B选项符合题意,C、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=BC∴AB=AD=BC=CD∴四边形ABCD是菱形故C选项不符合题意D、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=CD∴AB=AD=BC=CD∴四边形ABCD是菱形故D选项不符合题意故选:B.5.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.6.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,CD=AB=a,∴AN平分∠DAB,∴∠DAM=45°,∴∠CEN=∠DEM=45°,∵DM⊥AN,CN⊥AN,∴△DME和△CNE是等腰直角三角形,∴DM=DE,CN=CE,∴DM+CN=(DE+CE)=CD=a;故选:C.7.【解答】解:连接BE,如图所示:由题意可得,OE为对角线BD的垂直平分线,∴BE=DE,S△BOE=S△DOE=,∴S△BDE=2S△BOE=.∴DE•AB=,又∵AB=2,∴DE=,∴BE=在Rt△ABE中,由勾股定理得:AE===1.5.故选:C.8.【解答】解:A、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵∠ACD=∠CDB,∴OD=OC,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.9.【解答】解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为8,∵正方形又是菱形,菱形的面积计算公式是S=ab(a、b是正方形对角线长度)∴S=×8×8=32,故选:B.10.【解答】解:由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF(SAS),∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选:B.二.填空题(共10小题)11.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=∠EAF=60°,∴△ABC是等边三角形,∠BCD=120°,∴AB=AC,∠B=∠ACF=60°,∵∠BAE+∠EAC=∠FAC+∠EAC,∴∠BAE=∠FAC,且AB=AC,∠B=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,又∵∠EAF=∠D=60°,∴△AEF是等边三角形,∴∠AEF=60°,又∠AEC=∠B+∠BAE=83°,∴∠CEF=83°﹣60°=23°.故答案为:2312.【解答】解:如图,连接AC,BD交于点O.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=6,∴∠AOD=90°,∴OD==8,∴BD=2OD=16,∴S菱形ABCD=×AC×BD=×12×16=96,故答案为96.13.【解答】解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==10若平行四边形CDEB为菱形时,CE⊥BD,OD=OB,CD=CB.∵AB•OC=AC•BC,∴OC=.∴OB==∴AD=AB﹣2OB=故答案为:14.【解答】解:根据一组邻边相等的平行四边形是菱形,则可添加条件为:AB=AD(AD=CD,BC=CD,AB=BC)也可添加∠1=∠2,根据平行四边形的性质,可求AD=CD.根据对角线互相垂直的平行四边形是菱形,则可添加条件为:AC⊥BD.故答案为:AB=AD(答案不唯一)15.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.16.【解答】解:如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:a•a=a2,∴菱形形变前的面积与形变后的面积之比:a2:a2=2:,∵这个菱形的“形变度”为2:.∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,S△AEF=×2×2+×2×2=4,∵若这个菱形的“形变度”k=,∴=,即=,∴S△A′E′F′=.故答案为:.17.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.18.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2019.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.20.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵BF⊥a,DE⊥a,∴∠AED=∠AFB=90°∴∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:8三.解答题(共7小题)21.【解答】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=9,∴a+b=3,∴=.22.【解答】(1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:连接EF交BC于O,如图所示:∵AD=7,AB=DC=2.5,∴BC=AD﹣AB﹣DC=2,∵四边形BFCE是菱形,∠EBD=60°,EF⊥BC,OB=BC=1,OE=OF,∴△CBE是等边三角形,∠BEO=30°,∴BC=EC=2,∴OE=OB=,∴EF=2,∴菱形BFCE的面积=BC×EF=×2×2=2;故答案为:2.23.【解答】证明:(1)∵四边形ABCD是菱形∴AB=AD=BC=CD,且∠BAD=60°∴△ABD是等边三角形,∠ADC=120°∴AB=AD=BD,∠ABD=∠ADB=60°∴∠ABD=∠EBF=60°=∠BDC,∴∠ABE=∠DBF,∠BAD=∠BDF=60°,且AB=BD∴△ABE≌△DBF(ASA)∴BE=BF,且∠EBF=60°.∴△BEF是等边三角形(2)如图,过点E作EH⊥AB于H,作∠GEB=∠ABE=15°,∴∠EGH=30°,GE=GB,设HE=x,在Rt△GHE中,∠EGH=30°∴GE=2x=BG,HG=x,在Rt△AHE中,∠BAD=60°∴AH=x,∵AB=AH+HG+BG=1+∴x+x+2x=1+∴x=∴HE=∴BH=∵BE2=HE2+BH2,∴BE2=()2+()2,∴BE=24.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=156cm2.25.【解答】解:(1)延长EB至H,使BH=DF,连接AH,如图1,∵在正方形ABCD中,∴∠ADF=∠ABH,AD=AB,在△ADF和△ABH中,,∴△ADF≌△ABH(SAS),∴∠BAH=∠DAF,AF=AH,∴∠FAH=90°,∴∠EAF=∠EAH=45°,在△FAE和△HAE中,,∴△FAE≌△HAE(SAS),∴EF=HE=BE+HB,∴EF=BE+DF,∴△CEF的周长=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=8.故答案为:EF;8.(2)EF=BE+DF,理由如下:延长CB至M,使BM=DF,连接AM,如图2,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=∠C=90°,∠EAF=45°,即∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.26.【解答】解:(1)∵AE=AB,AF⊥BE,∠EAB=30°∴∠FAE=15°∵∠EAB=30°,∠BAD=90°∴∠EAD=120°,且AE=AD∴∠AED=∠ADE=30°∴∠AGD=∠AED+∠EAF=45°(2)如图,连接AC,BD交于点O,连接FO,∵四边形ABCD是正方形∴BO=DO,BD=AB,∠ABD=∠ADB=45°∵AE=AB,AF⊥BE∴∠AEB=∠ABE,EF=BF=4,且BO=DO∴FO=DE=7,FO∥DE∵AE=AD∴∠AED=∠ADE∵∠ABD+∠ADB+∠AED+∠ADE+∠AEB+∠ABE=180°∴2(∠AEB+∠AED)=90°∴∠DEB=45°∵FO∥DE∴∠BFO=45°,且BM⊥FO∴FM=BM,∴BF=BM=4∴BM=FM=4∴MO=3∴BO==5∴BD=2BO=10∴AB=5=AE故答案为:527.【解答】解:∵在矩形ABCD中,AD=12cm,∴AD=BC=12cm.当四边形ABQP为矩形时,AP=BQ.①当0<t<3时,t=12﹣4t,解得,t=;②当3≤t<6时,t=4t﹣12,解得t=4;③当6≤t<9时,t=36﹣4t,解得t=;④当9≤t≤12时,t=4t﹣36,解得,t=12.综上所述,当t为或4或或12时,四边形ABQP为矩形.。
九年级数学上第一章特殊的平行四边形专项测试题(北师大版带答案和解释5份)第一章特殊的平行四边形专项测试题(二) 一、单项选择题(本大题共有15小题,每小题3分,共45分) 1、在菱形中,对角线,相交于点,则图中全等的直角三角形共有( ) A. 对 B. 对 C. 对 D. 对 2、下列四个命题中,真命题是(). A. 四边都相等的四边形是正方形 B. 对角线相等且互相平分的四边形是矩形 C. 对角线互相垂直且相等的四边形是菱形 D. 对角线互相垂直平分的四边形是正方形 3、如果要证明平行四边形为正方形,那么我们需要在四边形是平行四边形的基础上,进一步证明(). A. 与互相垂直平分 B. 且C. 且 D. 且 4、下列说法中错误的是(). A. 对角线垂直的矩形是正方形 B. 对角线相等的菱形是正方形 C. 四条边相等的四边形是正方形 D. 四个角相等的四边形是矩形 5、如图,在矩形中,为的中点,连接并延长交的延长线于点,则图中的全等三角形共有(). A. 对 B. 对 C. 对 D. 对 6、在中,,是边上一点,交于点,交于点,若要使四边形是菱形,只需添加条件( ). A. B.C. D. 7、过矩形的四个顶点作对角线、的平行线分�e交于、、、四点,则四边形是( ). A. 平行四边形 B. 矩形 C. 菱形 D. 正方形 8、下列命题中,真命题是() A. 两条对角线互相平分的四边形是平行四边形 B. 两条对角线互相垂直且相等的四边形是正方形 C. 两条对角线互相垂直的四边形是菱形 D. 两条对角线相等的四边形是矩形 9、用两个完全相同的直角三角形拼下列图形:①平行四边形②矩形③菱形④等腰三角形⑤等边三角形,一定能拼成的图形是A. ①②④ B. ①②③ C. ①②⑤ D. ①④⑤ 10、设、表示两个集合,我们规定“ ”表示与的公共部分,并称之为与的交集.例如:若正数,整数,则正整数.若矩形,菱形,则所对应的集合是() A. 正方形 B. 菱形 C. 矩形 D. 平行四边形 11、如图所示,已知四边形的对角线、相交于点,则下列能判断它是正方形的条件是() 12、如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为()13、如图,四边形的对角线互相平分,要使它成为矩形,那么需要添加的条件是() 14、如图,已知四边形的四边都相等,等边的顶点、分别在、上,且,则() 15、如图所示,设表示平行四边形,表示矩形,表示菱形,表示正方形,则下列四个图形中,能表示它们之间关系的是()二、填空题(本大题共有5小题,每小题5分,共25分) 16、边长为的正方形,对角线的长为______ . 17、有一组相等的四边形是菱形. 18、1.正方形的定义有一组邻边且一个角是的平行四边形叫做正方形。
19、如果菱形的两对角线分别为和,则它的面积是. 20、如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快后,四边形成为矩形.三、解答题(本大题共有3小题,每小题10分,共30分) 21、如图,在正方形中,已知是对角线上一点,连接、,延长到,使 .求证: .22、在平行四边形中,过点作于点,点在边上,,连接. (1) 求证:四边形是矩形; (2) 若,求证:平分.23、如图,在中,,的垂直平分线交于,交于,在上,并且. (1) 求证:四边形是平行四边形. (2) 求证:四边形是平行四边形. (3) 当满足什么条件时,四边形是菱形?请回答并证明你的结论.第一章特殊的平行四边形专项测试题(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分) 1、在菱形中,对角线,相交于点,则图中全等的直角三角形共有( ) A. 对 B. 对C. 对 D. 对【答案】D 【解析】解:四边形是菱形即图中全等的直角三角形共有对. 2、下列四个命题中,真命题是(). A. 四边都相等的四边形是正方形 B. 对角线相等且互相平分的四边形是矩形 C. 对角线互相垂直且相等的四边形是菱形 D. 对角线互相垂直平分的四边形是正方形【答案】B 【解析】解:对角线互相垂直平分的四边形可能是菱形也可能是正方形,不是真命题,对角线互相垂直且相等的四边形可能是菱形也可能是正方形,不是真命题,对角线相等且互相平分的四边形是矩形,是真命题,四边都相等的四边形可能是是菱形也可能是正方形,不是真命题,故答案为:对角线相等且互相平分的四边形是矩形. 3、如果要证明平行四边形为正方形,那么我们需要在四边形是平行四边形的基础上,进一步证明(). A. 与互相垂直平分 B. 且 C. 且 D. 且【答案】C 【解析】解:且,只能证明四边形是菱形,且错误,且,能证明四边形是正方形,且正确,且,只能证明四边形是矩形,且错误,与互相垂直平分,只能证明四边形是菱形,与互相垂直平分错误,故答案为:且. 4、下列说法中错误的是(). A. 对角线垂直的矩形是正方形 B. 对角线相等的菱形是正方形 C. 四条边相等的四边形是正方形 D. 四个角相等的四边形是矩形【答案】C 【解析】解:四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;对角线相等的菱形是正方形,该说法正确,不符合题意;对角线垂直的矩形是正方形,该说法正确,不符合题意.故正确答案选:四条边相等的四边形是正方形. 5、如图,在矩形中,为的中点,连接并延长交的延长线于点,则图中的全等三角形共有(). A. 对 B. 对 C. 对 D. 对【答案】A 【解析】解:由矩形可知 , 为的中点,,在和中, , ,,,,由矩形得,,由,,可得:,由矩形得:,,在和中,,,,,综上可知图中全等的三角形共有对. 故正确答案是:对.6、在中,,是边上一点,交于点,交于点,若要使四边形是菱形,只需添加条件( ). A. B. C. D. 【答案】C 【解析】解:只需添加,四边形是平行四边形四边形是菱形故正确答案是:7、过矩形的四个顶点作对角线、的平行线分�e交于、、、四点,则四边形是( ). A. 平行四边形 B. 矩形 C. 菱形 D. 正方形【答案】C 【解析】解:由题意知,,,四边形是平行四边形, . 四边形为矩形,矩形的对角线相等,,,平行四边形是菱形. 故答案为:菱形.8、下列命题中,真命题是() A. 两条对角线互相平分的四边形是平行四边形 B. 两条对角线互相垂直且相等的四边形是正方形 C. 两条对角线互相垂直的四边形是菱形 D. 两条对角线相等的四边形是矩形【答案】A 【解析】解:两条对角线相等且互相平分的四边形才是矩形,该选项命题错误;两条对角线互相垂直且平分的四边形才是菱形,该选项命题错误;两条对角线互相垂直且相等且互相平分的四边形是才正方形,该选项命题错误;两条对角线互相平分的四边形是平行四边形,该命题正确. 故答案为:两条对角线互相平分的四边形是平行四边形. 9、用两个完全相同的直角三角形拼下列图形:①平行四边形②矩形③菱形④等腰三角形⑤等边三角形,一定能拼成的图形是 A. ①②④ B. ①②③ C.①②⑤ D. ①④⑤ 【答案】A 【解析】如图,用两个完全相同的直角三角形首先可以拼成平行四边形、矩形和等腰三角形因为该直角三角形不一定有60°内角,所以不一定能拼成等边三角形,因为该直角三角形不一定有两条边相等,所以不一定能拼成菱形,故一定能拼成的只有平行四边形、矩形和等腰三角形故①②④正确 10、设、表示两个集合,我们规定“ ”表示与的公共部分,并称之为与的交集.例如:若正数,整数,则正整数.若矩形,菱形,则所对应的集合是() A. 正方形 B. 菱形 C. 矩形 D. 平行四边形【答案】A 【解析】解:“ ”表示与的公共部分,矩形,菱形,则既是矩形又是菱形的为正方形,则正方形. 11、如图所示,已知四边形的对角线、相交于点,则下列能判断它是正方形的条件是() A. , B. ,, C. D. ,【答案】D 【解析】解:且AC、BD互相平分可判定为菱形,再由AC=BD判定为正方形. 12、如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为() A. B. C. D. 【答案】D 【解析】解:连结,如图所示:,,,,,,四边形是矩形,.是的中点,,根据直线外一点到直线上任一点的距离,垂线段最短,即时,最短,同样也最短,当时,,最短时,,当最短时,. 13、如图,四边形的对角线互相平分,要使它成为矩形,那么需要添加的条件是() A. B. C. D. 【答案】D 【解析】解:可添加,四边形的对角线互相平分,四边形是平行四边形,,根据矩形判定定理对角线相等的平行四边形是矩形,四边形是矩形, 14、如图,已知四边形的四边都相等,等边的顶点、分别在、上,且,则() A. B. C. D. 【答案】D 【解析】解:四边形的四边都相等,四边形是菱形,,,,,是等边三角形,,,,,,由三角形的内角和定理得:,设,则,,,解得:,. 15、如图所示,设表示平行四边形,表示矩形,表示菱形,表示正方形,则下列四个图形中,能表示它们之间关系的是() A. B. C.D. 【答案】D 【解析】解:四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形,正方形应是N的一部分,也是的一部分,矩形形、正方形、菱形都属于平行四边形,它们之间的关系是:.二、填空题(本大题共有5小题,每小题5分,共25分) 16、边长为的正方形,对角线的长为______ . 【答案】【解析】解:如图所示:四边形是正方形,, . 在直角中,,由勾股定理得: . 故答案为: . 17、有一组相等的四边形是菱形. 【答案】邻边;平行【解析】解:有一组邻边相等的平行四边形是菱形. 故正确答案是:邻边;平行. 18、1.正方形的定义有一组邻边且一个角是的平行四边形叫做正方形。
【答案】相等,直角【解析】解:有一组邻边相等且一个角是直角的平行四边形叫做正方形。
故答案是,相等,直角. 19、如果菱形的两对角线分别为和,则它的面积是.【答案】10 【解析】解:棱形的对角线互相垂直,则它的面积 20、如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快后,四边形成为矩形.【答案】4 【解析】解:设最快秒,是矩形,,要使是矩形,则,得.解得.三、解答题(本大题共有3小题,每小题10分,共30分) 21、如图,在正方形中,已知是对角线上一点,连接、,延长到,使 .求证: . 【解析】证明:正方形中,, . , . 22、在平行四边形中,过点作于点,点在边上,,连接. (1) 求证:四边形是矩形;【解析】证明:四边形是平行四边形,.,四边形是平行四边形.,,四边形是矩形.(2) 若,求证:平分.【解析】解:四边形是平行四边形,,.在中,由勾股定理,得,,,,即平分. 23、如图,在中,,的垂直平分线交于,交于,在上,并且. (1) 求证:四边形是平行四边形.【解析】解:是的垂直平分线,,,,与互余,与互余,,又,和都是等腰三角形,,,在和中,(),四边形是平行四边形.(2) 求证:四边形是平行四边形.【解析】解:是的垂直平分线,,,,,,,与互余,与互余,,又,和都是等腰三角形,,,在和中,(),四边形是平行四边形. (3) 当满足什么条件时,四边形是菱形?请回答并证明你的结论.【解析】解:当时,四边形是菱形.证明如下:,,,平行四边形是菱形.。