分频器的使用问题
- 格式:pdf
- 大小:394.97 KB
- 文档页数:5
预分频和后分频分频器一般都是跟计数单元一起结合使用。
预分频比是在计数单元值发生变化之前起作用(假如不用预分频时,计数器在每个上升沿到来时加1,而现在使用分频比为1:2的预分频器的话,那么必须等到两个上升沿的到来,计数器才会加1)后分频器与预分频器功能一样,只不过是在计数器值发生改变后起作用。
像TMR2的后分频器,如果不使用,计数器一但发生溢出,将立即置位标志为TMR2IF,但是如果有1:2的后分频器的话,必须两次溢出后才会置位。
定时器的“预分频”就是把CPU的时钟信号分频以后作为定时器的计时信号。
不同的分频比例,当然定时器计时的快慢就不一样了。
《简爱》是一本具有多年历史的文学着作。
至今已152年的历史了。
它的成功在于它详细的内容,精彩的片段。
在译序中,它还详细地介绍了《简爱》的作者一些背景故事。
从中我了解到了作者夏洛蒂.勃郎特的许多事。
她出生在一个年经济困顿、多灾多难的家庭;居住在一个远离尘器的穷乡僻壤;生活在革命势头正健,国家由农民向工业国过渡,新兴资产阶级日益壮大的时代,这些都给她的小说创作上打上了可见的烙印。
可惜,上帝似乎毫不吝啬的塑造了这个天才们。
有似乎急不可耐伸出了毁灭之手。
这些才华横溢的儿女,都无一例外的先于父亲再人生的黄金时间离开了人间。
惜乎,勃郎特姐妹!《简爱》这本小说,主要通过简。
爱与罗切斯特之间一波三折的爱情故事,塑造了一个出生低微、生活道路曲折,却始终坚持维护独立人格、追求个性自由、主张人生平等、不向人生低头的坚强女性。
简。
爱生存在一个父母双亡,寄人篱下的环境。
从小就承受着与同龄人不一样的待遇:姨妈的嫌弃,表姐的蔑视,表哥的侮辱和毒打。
然而,她并没有绝望,她并没有自我摧毁,并没有在侮辱中沉沦。
所带来的种种不幸的一切,相反,换回的却是简。
爱的无限信心,却是简。
爱的坚强不屈的精神,一种可战胜的内在人格力量。
不幸,在学习生活中,简。
爱仍然是承受着肉体上的受罚和心灵上的催残。
学校的施主罗可赫斯特不但当着全校师生的面诋毁她,而且把她置于耻辱台上示众。
fpga 分频时钟的使用方法
FPGA(现场可编程门阵列)的分频时钟使用方法可以根据具体
的应用和FPGA型号而有所不同,但一般的步骤如下:
1. 确定分频比,首先要确定需要的分频比,即输入时钟频率与
输出时钟频率的比值。
这决定了分频器的工作方式和参数设置。
2. 实例化分频器,在FPGA的设计工具中,需要实例化一个分
频器模块。
具体的名称和参数设置取决于所使用的FPGA型号和设计
工具。
3. 设置分频参数,根据所需的分频比,设置分频器模块的参数。
这通常包括输入时钟频率、输出时钟频率、分频比等。
4. 连接时钟信号,将输入时钟信号和分频器模块连接起来,确
保输入时钟信号正确地输入到分频器模块中。
5. 生成输出时钟,根据FPGA的时钟管理资源,将分频后的时
钟信号连接到需要的逻辑模块或输出引脚上,以供其他电路使用。
在实际应用中,还需要考虑时钟的相位对齐、时序约束等问题,以确保分频后的时钟信号能够满足设计的时序要求。
此外,不同的FPGA厂家和型号可能有特定的时钟分频器资源和设置方法,因此在
具体设计时需要参考相应的FPGA手册和设计工具文档。
总的来说,FPGA的分频时钟使用方法包括确定分频比、实例化
分频器、设置分频参数、连接时钟信号和生成输出时钟等步骤,需
要根据具体情况进行详细的设置和调整。
高级pwm分频输出频率不准确的原因高级PWM分频输出频率不准确的原因引言:高级PWM(Pulse Width Modulation,脉宽调制)技术在现代电子设备中广泛应用,用于控制电机转速、调节电压等。
然而,有时候我们会发现高级PWM分频输出的频率并不准确,出现了一定的误差。
本文将探讨这个问题的原因,并提出一些解决方法。
一、高级PWM技术简介高级PWM技术是一种通过改变脉冲的占空比来调节输出电压或电流的技术。
它可以实现精确的电压或电流控制,具有调节范围广、效率高等优点。
高级PWM技术通常通过分频器来控制输出频率,从而满足不同应用的需求。
二、高级PWM分频输出频率不准确的原因1. 系统时钟精度不足:高级PWM技术通常需要使用系统时钟来进行频率计算和控制。
如果系统时钟的精度不足,就会导致PWM分频输出的频率不准确。
2. 分频器的误差:分频器是高级PWM技术中的关键组件,用于将系统时钟的频率降低到所需的输出频率。
然而,分频器本身存在一定的误差,特别是在高分频比的情况下,误差可能会进一步放大,导致输出频率不准确。
3. 温度变化:温度的变化会对电子元件的性能产生影响,包括分频器。
当环境温度发生变化时,分频器的工作频率可能会发生偏移,导致PWM输出频率不准确。
4. 器件老化:随着使用时间的增加,电子器件会逐渐老化,性能可能会发生变化。
分频器作为一个电子元件,也会受到老化的影响,从而导致PWM输出频率不准确。
三、解决高级PWM分频输出频率不准确的方法1. 使用更精确的系统时钟:通过使用更精确的系统时钟,可以提高PWM分频输出频率的准确性。
可以选择使用高精度的晶振或者外部时钟源,来替代系统原有的时钟。
2. 校准分频器误差:通过对分频器进行校准,可以减小误差,提高PWM输出频率的准确性。
可以通过软件或硬件方式进行校准,根据实际情况选择合适的方法。
3. 温度补偿:对于受温度影响较大的分频器,在设计时可以考虑加入温度补偿电路,通过监测环境温度来调整分频器的工作频率,从而保持PWM输出频率的稳定性。
均衡器参数详解1、均衡器的调整方法:超低..均衡器参数详解1、均衡器的调整方法:超低音: 20Hz-40Hz,适当时声音强而有力。
能控制雷声、低音鼓、管风琴和贝司的声音。
过度提升会使音乐变得混浊不清。
低音: 40Hz-150Hz,是声音的基础部份,其能量占整个音频能量的70%,是表现音乐风格的重要成份。
适当时,低音张弛得宜,声音丰满柔和,不足时声音单薄,150Hz,过度提升时会使声音发闷,明亮度下降,鼻音增强。
中低音: 150Hz-500Hz,是声音的结构部分,人声位于这个位置,不足时,演唱声会被音乐淹没,声音软而无力,适当提升时会感到浑厚有力,提高声音的力度和响度。
提升过度时会使低音变得生硬,300Hz处过度提升3-6dB,如再加上混响,则会严重影响声音的清晰度。
中音: 500Hz-2KHz,包含大多数乐器的低次谐波和泛音,是小军鼓和打击乐器的特征音。
适当时声音透彻明亮,不足时声音朦胧。
过度提升时会产生类似电话的声音。
中高音: 2KHz-5KHz,是弦乐的特征音(拉弦乐的弓与弦的摩搡声,弹拔乐的手指触弦的声音某)。
不足时声音的穿透力下降,过强时会掩蔽语言音节的识别。
高音: 7KHz-8KHz,是影响声音层次感的频率。
过度提升会使短笛、长笛声音突出,语言的齿音加重和音色发毛。
极高音: 8KHz-10KHz合适时,三角铁和立*的金属感通透率高,沙钟的节奏清晰可辨。
过度提升会使声音不自然,易烧毁高频单元。
2、平衡悦耳的声音应是:150Hz以下(低音)应是丰满、柔和而富有弹性;150Hz-500Hz(中低音)应是浑厚有力百不混浊;500Hz-5KHz(中高音)应是明亮透彻而不生硬;5KHz以上(高音)应是纤细,园顺而不尖锐刺耳。
整个频响特性平直时:声音自然丰满而有弹性,层次清晰园顺悦耳。
频响多峰谷时:声音粗糙混浊,高音刺耳发毛,无层次感扩声易发生反馈啸叫。
3、频率的音感特征:30~60Hz 沉闷如没有相当大的响度,人耳很难感觉。
HT49 MCU的可编程分频器(PFD)使用介绍文件编码:HA0039s本文主要介绍HT49单片机可编程分频器(PFD)的使用及注意事项。
介绍HT49提供了一个与PA3共用引脚的PFD(Programmable Frequency Divider)输出,可以由掩膜选择来决定PFD的输出允许/禁止。
当选择PFD功能后,置位PA3为“0”(CLR PA.3)可以打开PFD输出,置位PA3为“1”(SET PA.3)则关闭PFD输出并且PA3口输出为低电平。
PFD的时钟来源是定时/计数器的溢出信号。
PA3 功能PA3=PFD输出端(CLR PA.3)1PA3=0(SET PA.3)PFD输出频率=(1/2)×(1/定时器溢出周期)由以上计算公式,我们可以得到PFD的最大输出频率:定时/计数器计数初值为0FFH,假设时钟来源为系统时钟(1000kHz),此时PFD输出频率为500kHz。
可编程分频器(PFD)使用本例中采用定时器1作为PFD的输出掩膜选项设定:output设定为PA3 PFD output enablePFD输出允许: PFD时钟来源选择石英振荡: RC/XTAL 设为 Crystal系统频率选择: 2000kHzOUTPUT 设为 ENABLE 定时器1PFD输出: TMR1 PFD软件部分:PFD的输出频率是通过设置定时/计数器的溢出周期来实现的,因此设置不同的定时/计数器初始值就能得到不同的PFD输出频率。
例如:我们想要得到一个10kHz的方波信号,由PFD频率计算公式得:10000 =(1/2)×(1/定时器溢出周期)求得:定时器溢出周期=0.05ms定时/计数器初值 = 256-(0.00005×2000000/4)= 231 (这里除以4是因为定时器的时钟来源为指令时钟)程序清单:include ht49r50a-1.inc;-------------------------------------------code .section at 0 'code'00horgjmpstart;-------------------------------------------start:clrintc0intc1clr定时/计数器时钟来源为系统时钟/4;mova,0a0h设置定时/计数器为时间模式movtmr1c,a ;a,(256-25) ;设置定时器的初值movtmr1,amov打开PFD输出pa.3 ;clrtmr1c.4 ;打开定时/计数器set$jmp;-------------------------------------------该程序执行结果,在PA.3引脚上用示波器测量可得到10kHz的方波。
电子分频器如何使用
在一套音响系统中提到分频器一般来说是指能将:20Hz--20000Hz频段的音频信号分成合适的、不同的几个频率段,然后分别送给相应功放,用来推动相应音箱的一种音响周边设备。
下面介绍一下分频器的调节方法。
电子分频器中各功能旋钮的介绍
不同的电子分频器会有不同的调整旋钮和参数,下面以:RANE(莱恩)AC22电子分频器为例作下简单介绍:
RANE(莱恩)AC22电子分频器是一台立体声分频器,每单通道从左到右有6个按钮或旋钮,依次为:
1、MASTER-LEVEL:通道信号输入电平。
可以调节输入信号的电平大小。
2、LOW-LEVEL:低音输出的音量调整旋钮。
可以调节低音输出信号电平的大小。
Xilinx中DCM的问题解决方案标题:Xilinx中DCM的问题解决方案
引言概述:
Xilinx是一家领先的可编程逻辑器件制造商,其数字时钟管理器(DCM)是一种常用的时钟管理器。
然而,在使用Xilinx中的DCM时,用户可能会遇到一些问题。
本文将为您介绍Xilinx中DCM的问题解决方案。
一、时钟频率不准确的解决方案
1.1 使用精确的输入时钟源
1.2 调整DCM的时钟分频器
1.3 校准DCM的相位偏移
二、时钟抖动问题的解决方案
2.1 降低输入时钟的噪声
2.2 使用低抖动的时钟源
2.3 调整DCM的锁相环参数
三、时钟干扰问题的解决方案
3.1 使用适当的电源和地线布局
3.2 使用抗干扰滤波器
3.3 调整DCM的时钟延迟
四、时钟漂移问题的解决方案
4.1 使用温度稳定的时钟源
4.2 定期校准DCM的时钟频率
4.3 调整DCM的自动校准参数
五、时钟相位问题的解决方案
5.1 使用相位锁定环(PLL)来处理相位问题
5.2 调整DCM的相位校准参数
5.3 使用外部时钟触发器来同步时钟信号
总结:
Xilinx中的DCM是一种强大的时钟管理器,但在使用过程中可能会遇到一些问题。
通过使用精确的输入时钟源、调整DCM的参数以及采取适当的电路设计措施,可以解决时钟频率、抖动、干扰、漂移和相位等问题。
通过掌握这些问题的解决方案,用户可以更好地应对Xilinx中DCM的挑战,并确保系统的时钟管理工作正常运行。
电子技术应用实验2(数字电路综合实验)_电子科技大学中国大学mooc课后章节答案期末考试题库2023年1.用数字示波器双踪测量不同频率的相关信号时,应选哪个信号为触发源?参考答案:频率低的信号2.约束文件中“set_property PULLDOWN true [get_ports {col[3]}]”是?参考答案:将第3列下拉至低电平3.若工程中只使用矩阵键盘中的一个按键,则参考答案:可以不需要按键扫描4.在本次实验示例中,将行列式键盘的行值定义为参考答案:输出信号5.如果要求不仅能显示16进制数,还要包括"-",那么显示译码器接收的数据至少应为参考答案:5位6.实现6位数码管动态显示16进制数时,可以不改写哪部分的代码?参考答案:显示译码器部分7.如果你要在一个工程中添加自定义的IP核,首先应在Project manager中点击参考答案:Settings8.IP核的意思是参考答案:知识产权核9.如果实现5位数码管动态显示,则电路中计数器的位数至少为参考答案:310.所介绍的555多谐振荡器电路中,振荡周期的改变与()有关。
参考答案:电容C_电阻R2_电阻R111.所介绍的555多谐振荡器电路中,占空比的改变与()无关。
参考答案:电容C12.对于本次实验中的多谐振荡器电路,若要实现其输出矩形波的振荡频率约为160Hz,占空比约为89%。
所选择的电阻R1和R2的比值约为()。
参考答案:7:113.对于本次实验中的多谐振荡器电路,若要实现其输出矩形波的振荡频率约为4700Hz,可供选择的电阻R1和R2值约为10千欧姆,则电容C应选取()。
参考答案:0.01微法14.所介绍的555多谐振荡器电路中,当VCC(引脚8端)为9V,电压控制端(引脚5)悬空,则该多谐振荡器Vc(2、6脚)处三角波的幅度大约为()。
参考答案:3V15.用视频中介绍的方法产生占空比为50%的分频信号输出,将50MHz信号分频为2KHz,如果计数器计数值从0依次加一到999循环,那么输出频率为?参考答案:25KHz16.假如clr是清零端,通过语句always@(posedge CP or posedge clr),可以知道clr是哪一种清零?参考答案:异步清零17.在过程块中哪种赋值语句必须按照编写顺序依次执行?参考答案:阻塞式赋值18.非阻塞式赋值的赋值运算符是?参考答案:<=19.在always块中,应该采用哪种赋值?参考答案:过程赋值20.在verilog语言中,下面哪个符号不能用作设计源文件或约束文件里的注释符号?参考答案:*21.本实验中门电路构成的单稳触发器输出信号的脉冲幅度和以下哪些因素有关?参考答案:门电路的电源电压_最后一个与非门的器件类型22.根据实验电路中给出的参数,这个单稳触发器最大定时时间可能是?参考答案:约4uS23.本实验中门电路构成的单稳触发器电路对输入信号的触发条件为?参考答案:下降沿触发24.施密特触发器和单稳态触发器都可以对脉冲实现整形,这两种电路对脉冲整形后,那种电路可以得到相同的脉宽?参考答案:单稳态触发器25.在Verilog语言中关于if-else语句说法不正确的是?参考答案:有一条if语句就有一条对应的else语句26.实验开发板的时钟为50MHZ,实验中要求设计的计数器时钟为5HZ,则分频器的分频比应为多少?采用实验介绍的分频方法,verilog语句中的分频计数范围应设为多少?参考答案:10M, 0~499999927.在本实验内容一的顶层模块连接图中,对应模块u2正确的例化语句应该是?参考答案:counter10 u2(。
电子分频器的使用技巧在一套音响系统中提到分频器一般来说是指能将:20Hz--20000Hz频段的音频信号分成合适的、不同的几个频率段,然后分别送给相应功放,用来推动相应音箱的一种音响周边设备。
下面简单介绍一下分频器在音响系统中的应用。
一、我们为什么要使用电子分频器大家知道,声音的频率范围是在20Hz—20000Hz之间,现在大多数前级音频处理设备的频率范围是可以达到这样宽度的,但目前的扬声器却成了一个瓶颈部分,我们奢想使用一种或简单几只扬声器就能放送出接近20Hz--20000Hz这样宽频率的声音是很难做到的,因为现在单只喇叭的有效工作频率范围都不是很宽。
鉴于此电声工程师们就设计出了在不同频率段内工作的音箱,如:1、重低音音箱:让它在大约30-200Hz的频率范围内工作。
2、低中音音箱:让它在大约200-2000Hz的频率范围内工作。
3、高音音箱:让它在大约2000-20000Hz的频率范围内工作。
如此以来我们就可以利用在不同频率段工作的不同种类的音箱配置一套能最大限度接近声音真实频率(20Hz--20000Hz)的音响系统了。
当然不同音箱设备的构成和参数是不同的,我上面说的是以一个三分频的系统为例,实际使用上还有其它诸如:2分频或4分频等系统,而且不同音响系统中由于采用的音箱会有区别,因此这些音箱的工作频率也不可能是固定相同的,但大体的原理和思路是一样的。
那么有一个问题就是:我们如何给这些在不同频率段工作的、不同种类的音箱灵活分配音频频率呢?为了解决这个问题,电子分频器就应运而生了,它可以根据不同音箱工作频率的需要提供合适的频率段,例如:1、我们可以用电子分频器将高频信号通过功放送到高音扬声器中。
2、可以用电子分频器将中频信号通过功放送到中音扬声器中。
3、可以用电子分频器将低频信号通过功放送到低音扬声器中。
这样高、中、低频信号独立输出、互不干涉,因此可以尽可能发挥不同扬声器的工作频段优势,使音响系统中各频段声音重放显得更加均衡一些,使声音更具层次感,使音色更加完美。
台式机分频器怎么样使用
买了个台式机分频器但不会使用,怎么办呢?下面由店铺给你做出详细的台式机分频器使用方法介绍!希望对你有帮助!
台式机分频器使用方法一:
分屏需要使用到HDMI接口,准备一个HDMI分配器。
1、将显示器用hdmi线和hdmi分配器连接,如果显示器没有hdmi接口,则需要使用HDMI转VGA或者是HDMI转DGI。
2、连接好以后,电脑桌面右击点击显示设置。
3、点击检测,这是其余显示器会显示出1~N的数字,然后分配每个显示器显示内容就可以了。
台式机分频器使用方法二:
分屏器使用方法:
设备位置:电脑主机机箱上方
功能:通过控制功能键,可输出到不同电脑屏幕,以下是功能键组合
A. 1&1 灯亮:桌面显示器/投影机显示FLM 主机内容
B. 2&2 灯亮:桌面显示器/投影机显示客户主机内容
C. 1&2 灯亮:桌面显示FLM 主机内容,投影机显示客户机内容
D. 2&1 灯亮:桌面显示客户机内容,投影机显示内容FLM 主机
客户 VGA 接线位置:位于桌面上
客户机(笔记本电脑)投影功能键:按fn + F5按键:功能键灯1 灯2
台式机分频器使用方法三:
遇到需要多个显示器来处理多个运用程序烦扰,但由于设备的短缺
无法增加另外一个显示器来扩展显示屏。
为了不浪费现有的大屏显示器,只有通过分屏方法来进行电脑的多屏操作。
1、通过ie浏览器搜素分屏软件,找到后点击下载。
2、安装后打开设置。
向左转|向右转。
分频器原理
分频器是一种电子设备,它的作用是将输入的信号分成两个或多个具有不同频率的输出信号。
它常被用于音频设备、通信设备和电子音乐器材等领域。
分频器的原理是基于滤波器和振荡器的组合。
具体而言,分频器采用滤波器将输入信号中的特定频率分离出来,然后通过振荡器产生具有该特定频率的信号。
这样就可以实现对输入信号的频率分割。
一种常见的分频器类型是低通滤波器(LPF)和高通滤波器(HPF)的组合。
低通滤波器能够传递低频信号而阻断高频信号,而高通滤波器则相反。
通过将输入信号分别输入低通滤波器和高通滤波器,我们就可以得到两个频率范围不同的输出信号。
除了滤波器,分频器还需要振荡器来产生所需的输出频率。
振荡器是一种能够产生稳定的周期性信号的电路。
通过设置振荡器的参数,我们可以使其输出具有特定频率的信号。
常见的振荡器类型包括LC振荡器、RC振荡器和晶体管振荡器等。
总体上,分频器通过结合滤波器和振荡器的功能,能够将输入信号按照不同的频率进行分割。
这在许多电子设备中很有用,例如将音频信号分成低音和高音等。
分频器的设计和性能取决于所使用的滤波器和振荡器的特性,因此在实际应用中需要根据需求进行选择。
分频器工作原理分频器是一种电子器件,它可以将输入信号按照一定的频率范围分成若干个子频率信号。
在很多电子设备中,我们都会用到分频器,比如无线电、通信设备、雷达系统等。
那么,分频器是如何工作的呢?接下来,我们将详细介绍分频器的工作原理。
首先,我们来看一下分频器的基本结构。
分频器通常由振荡器、计数器和控制逻辑电路组成。
振荡器产生一个稳定的基准频率信号,计数器用来对输入信号进行计数,控制逻辑电路则根据计数器的数值来控制输出信号的频率范围。
当输入信号进入分频器时,首先会经过振荡器产生的基准频率信号。
计数器会对输入信号进行计数,并将计数结果传递给控制逻辑电路。
控制逻辑电路根据计数器的数值来决定输出信号的频率范围。
例如,如果计数器的数值在一定范围内,控制逻辑电路会将输入信号分成高频和低频两部分,分别输出到不同的端口。
在分频器中,计数器起着至关重要的作用。
它可以根据输入信号的频率来进行计数,并将计数结果传递给控制逻辑电路。
通过调整计数器的计数范围,我们可以实现不同频率范围的分频。
这样,分频器就可以将输入信号按照一定的频率范围分成若干个子频率信号,从而实现信号的分频功能。
除了上述的基本工作原理外,分频器还有一些特殊的工作模式,比如分频倍频模式和分频相位锁定模式。
在分频倍频模式下,分频器可以将输入信号的频率放大或缩小,从而实现倍频或分频的功能。
在分频相位锁定模式下,分频器可以将输入信号的相位锁定在某个特定的数值,这对于一些需要精确相位控制的应用非常重要。
总的来说,分频器是一种非常重要的电子器件,它可以将输入信号按照一定的频率范围分成若干个子频率信号。
通过振荡器、计数器和控制逻辑电路的协同工作,分频器可以实现信号的分频、倍频和相位锁定等功能。
在实际应用中,分频器被广泛应用于无线电、通信设备、雷达系统等领域,为这些设备的正常工作提供了重要的支持。
音箱分频器测试仪使用方法优选篇音箱分频器测试仪使用方法 1音箱分频器测试仪使用方法音箱分频器测试仪使用方法发表时间:2005-8-22一、慨述:传统音箱分频器的检测方法是用电脑、软件和硬件组成一个测试系统,这种检验方法是成本高、速度慢,一套的成本在1.5万元~2.6万元不等(根据你的参数要求不一样而价格不同);测试完一套三分频器需要10秒钟。
而我公司所生产的SF200F音箱分频器测试仪的价格极低不到电脑测试系统的七分之一;它测试完一套三分频器仅需要3秒钟(含QC人员线上取件、测试、贴QC—PASS纸和放回生产线上时间)。
下面介绍SF200F的测试原理和使用方法。
二、SF200F音箱分频器测试仪的测试原理:目前音箱分频器的组成元件是电感、电容和电阻,由它们组成的带通回路将20Hz~20KHz音频范围分为几段,如两分频器就将20Hz~20KHz 音频范围分为高、低两段(如A图所示)。
三分频器就将20Hz~20KHz音频范围分为高、中、低三段(如B图所示)。
分频器上的电感、电容、电阻元件都是无源元件,它们的参数发生变化都不会使频响中的某一频率点电压值发生突变,而是一个频段的电压值上升或下降。
例如一个三分频器的低频段对地的高频衰减电容比标准电容值大,结果是V01、V02的电压值都会同时比标准值降低;反之电容值减小,结果是V01、V02的电压值都会同时比标准值高。
SF200F音箱分频器测试仪内设计了五个存储器,它们的存储功能是等同的,一个存储器同时能存储你所设置的频率和电压值。
如果你当前要检验是一个三分频的分频器,你就用SF200F的存储器“用户1”储存F01频率值和V01电压值、“用户2” 储存F02频率值和V02电压值、“用户3” 储存F03频率值和V03电压值、“用户4” 储存F04频率值和V04电压值、“用户5” 储存F05频率值和V05电压值。
生产线的品管QC检验人员只需按SF200F仪器所配控制盒上的“用户1”、“用户2” 、“用户3” 、“用户4”、“用户5”按键,同时观察毫伏表指针是否偏离规定值,这样就能很方便地判断分频器是否合格。
分频器与喇叭怎么匹配,匹配原则是什么喇叭与分频器根据高音喇叭的频率范围和低音喇叭的频率范围来选择的,高低音喇叭单元组合时,为了使他们工作时各负其责;高音单元只发高音部分,低音单元只发低音部分,所以要加一个分频器、选择好分频点,使他们的交叉频率变得比较平坦,这样声音在重放时就变得更加完美,动听。
分频器的话你就直接把所有频率的声音都直接加在了所有的喇叭上,低音喇叭可以承受高音,但是高音喇叭就承受不了低音,声音稍微开大一点就直接烧高音,分频器的原理就是把输入的全频声音分成三段频率:高音、中音和低音,然后再各自接上喇叭,这样声音才会好听高中低音的喇叭特性都是不同的,如果把所有的声音都输到每个喇叭去播放势必会造成不良影响,导致了音质很差,因此需要分频器来对声音分成若干个频段输到各个频段的喇叭去播放,这带来了一个问题就是各频段衔接问题,倘若衔接不起来,就会有一部分声音听不到了,也就造成了失真。
分频器与喇叭怎么匹配一、额定阻抗。
音箱常见的额定阻抗有4欧、6欧、8欧、16欧等。
由于目前音箱使用晶体管或集成电路功率放大器驱动的占主导地位,而这类放大器一般都不用输出变压器,所以连接喇叭的阻抗大都也就在4-16欧的范围内,使用中应按功放要求选择喇叭的阻抗。
二、有效频率范围。
音箱声压频率范围越宽,则频率特性越好。
音箱有效频率范围在国际电工委员会标准中有严格规定,现在有些厂商虽然标出了音箱频率响应范围,但没有标出有效范围。
如一对音箱标明频率响应范围20Hz-20kHz,而另一对音箱标明为30Hz-17kHz ±3dB,两者相比后者似乎没有前者的频率响应宽,但事实上,后一对音箱的频率响应曲线标明了只在±3dB范围内变化,因此后者比前者好。
三、分频器。
三分频音箱的性能一般来说应比二分频音箱好。
因为三分频增加了一个中频扬声器单元,可使中音更加醇厚。
而且使三个扬声器各自分担的功率减少,因此整个音箱可以承担更大的功率和输出更大的音量。
处理器设置规则(什么是分频点?)Processor Setting Fundamentals-or- What Is the Crossover Point?内森.巴特尔曾山、骆明刚译自/APP/papers.htmlTechnical Papers-DSP Setting Fundamentals长期以来,人们对分频器有一些错误的认识,不知道分频器是什么?不知道分频器在多功放扩声系统中怎么使用?过去,只有专业设计人员才能更改处理器的设置,而今天,可设置的DSP处理器则允许普通用户调整其参数。
可不幸的是,在音响系统中,仅对厂家的推荐设置做微小的改变,就可能对其系统性能产生巨大的影响。
这篇文章试图解释一些分频器的细节并指出一些严重影响音质的常见操作错误。
一.什么是分频器?分频器可定义为:将输入的电信号分离成两路单独的信号,且使每一路信号的带宽均小于原始信号的带宽,这种由一对或多对滤波器构成的装置就称为分频器。
也可称为“频率分配网络”。
分频器通常由高通(低切)滤波器(简称为HPF)和低通(高切)滤波器(简称为LPF)组成。
滤波器是一种频率选择器件,可以通过被选择的频率而阻碍其他的频率通过。
滤波器通常有以下三个参数:截止频率,网络类型,斜率。
截止频率是指滤波器的响应在低于它的最大电平时跌落到某点的频率,通常为最大电平的0.707倍或0.5倍,或下降3dB或6dB时的频率。
网络类型是指滤波器的频率响应曲线在截止频率附近的形状,近些年来,人们设计了很多种类型的滤波器,常见的滤波器类型有:巴特沃夫,林克威兹,贝塞尔等,图一为各种滤波器的的频率响应曲线,斜率定义为滤波器的频率响应曲线中下降到截止频率时的倾斜程度,单位为dB/倍频程,通常斜率为每倍频程6,12,18和24dB。
也可以称为‘滤波器斜率’或‘滤波器阶数’,滤波器阶数每增加一阶,则其斜率增加6dB/倍频程,也就是,一阶滤波器有6dB/倍频程的斜率,二阶滤波器则有12dB/倍频程的斜率。
如何正确使用频率计频率计是一种仪器,用于测量信号的频率。
它在各种领域都有广泛的应用,包括电子工程、通信、计算机科学等。
正确使用频率计对于获得准确的测量结果至关重要。
本文将介绍如何正确使用频率计,以及一些常见的使用注意事项。
一、频率计的基本原理和功能频率计是一种测量信号频率的仪器。
它通过对输入信号进行计数,并与内部时钟频率进行比较,从而获得输入信号的频率。
频率计通常具有以下功能:1. 频率测量:频率计能够准确地测量输入信号的频率,并以数字形式显示。
2. 周期测量:除了频率测量外,频率计还可以通过测量信号的周期来计算频率。
3. 占空比测量:频率计还可以测量信号的占空比,即信号高电平占总周期的比例。
二、正确使用频率计的步骤使用频率计的步骤如下:1. 准备工作:确保频率计和待测信号源处于工作状态,并连接好输入信号。
2. 设置测量模式:根据需要,选择频率、周期或占空比等测量模式。
3. 范围选择:根据待测信号的频率范围,选择适当的测量范围,以保证测量结果的准确性。
4. 输入信号:将待测信号连接到频率计的输入端口,并确保信号的幅度和噪声水平符合频率计的工作要求。
5. 开始测量:按下“开始”或“测量”按钮,频率计将开始对输入信号进行计数,并显示测量结果。
6. 结束测量:测量完成后,及时停止测量,并复位频率计以进行下一次测量。
三、使用注意事项在正确使用频率计时,还需要注意以下事项:1. 信号稳定性:确保待测信号的频率稳定,以获得准确的测量结果。
如果信号不稳定,可以考虑使用平均测量或其他方法提高测量精度。
2. 干扰排除:避免将频率计放置在可能引入干扰的电磁场附近,以免对测量结果产生影响。
如果信号受到其他电磁干扰,可以考虑使用屏蔽设备或其他干扰消除方法。
3. 适当的测量范围:选择适当的测量范围可以提高测量的准确性。
如果待测信号的频率超出了测量范围,可以使用频率分频器或其他辅助设备。
4. 校准和校验:定期对频率计进行校准,以确保测量结果的准确性。
转. YAMAHA--- REV100简易使用说明转,百灵达DSP1100P反馈抑制器的使用技巧转.电子分频器的使用方法音。
响2008-10-1电子分频器悬赏分:10 |解决时间:2010-4-1 17:23 |提问者:EDIEWGNOIJ电子分频器一要放在功放前吗?放在功放后的再分频后直接送给音箱可以吗。
谢谢了。
最佳答案电子分频器必须装在功放前,分频后,每一部分的频率必须用一个功放来驱动扬声器。
一个声道的二分频电子分频电路,就要在后面接两个功率放大器,一个功放接高音扬声器,一个功放接低音扬声器。
所以一共要两个二分频器加四个功放,才能带动一对音箱。
2 20:38:52 阅读377 评论0 字号:大中小订阅1,介绍看过理论基础朋友都知道,人耳可听到频率范围在20HZ~20KHZ的声音。
由于频带宽阔,只用单个扬声器是不能重放整个音频频谱的,因此可声音分为低,中,高音频段.由多个扬声器来进行重放。
大多数扬声器系统都是二分频或三分频的系统。
二分频系统由高音和低音单元组成。
三分频系统由高、中、低单元组成这样基本上可得宽阔的重放频带,另外还有少数四分频系统,但较少应用。
分频器的作用就是阻止不需要的信号通过,而仅让适当频带的信号通过.例如一个三分频的分频器把输入信号划分成了低,中,高音区三部分:低音区使中音和高音被阻挡,而只允许低频信号输送到低音扬声器中音区阻挡低音和高音;高音区不让低音和中音频率信号进入高音扬声器。
最简单的分频器是二分频的分频器,它把一个全频带输入信号划分成一个低频输出和一个高频输出,并各自送到低音和高音单元中去。
2,调试Delay 延时旋钮,一般用于后场的延时时间。
GAIN 输入灵敏度,建议为0dB。
LOW OUTPUT (LOW LEVEL ) 低频输出MID OUTPUT (MID LEVEL) 中频输出HIGH OUTPUT (High LEVEL) 高频输出LO/MID FREQUENCYLOW/MID FREQ 中低音分频点一般不超过250HzMID/HI FREQUENCYMID/HI FREQ 中高音分频点一般不超过4000HzLOW/HIGH FREQUENCYLO/HI FREQ 高低音分频点一般不超过500HzMONO 单声道一般不使用(使用超重低音除外)分频器是一种可以将声音信号分成若干个频段的音响设备。
[转载]分频电路,⼆分频、三分频和四分频原⽂地址:分频电路,⼆分频、三分频和四分频作者:davis⾳箱的⾼中低频主要靠分频器来区分。
分频器按分频频段可分⼆分频、三分频和四分频。
⼆分频是将⾳频信号的整个频带划分为⾼频和低频两个频段;三分频是将整个频带划分成⾼频、中频和低频三个频段;四分频将三分频多划分出⼀个超低频段。
分频点与分频斜率是直接影响分频品质分频频率(交*频率)。
分频点是指两个相邻扬声器(如⼆分频中的⾼⾳与低⾳,三分频中的⾼⾳与中⾳,中⾳与低⾳)的频响曲线在某⼀频率上的相交点,通常为两个扬声器中功率输出的⼀半处(即-3dB点)的频率,要根据⾳箱和每个扬声器的频率特性和失真度等参数决定。
通常⼆分选购上,建议您在购买的时候⼀定要多加⼩⼼,不要盲⽬地听店主的推荐和介绍,买这种东西绝对不可以⼼急。
最好之前楼主多去⼀些⾳响论坛先去具体了解些⾳响知识。
个⼈建议楼主去⾼级别的钻⽯卖家购买,与卖家多聊聊,还可以通过聊天软件向曾经购买者在⼀个扬声器系统⾥,⼈们把箱体、分频电路、扬声器单元称为扬声器系统的三⼤件,⽽分频电路对扬声器系统能否⾼质量地还原电声信号起着极其重要的作⽤。
尤其在中、⾼频部分,分频电路所起到的作⽤就更为明显。
编辑摘要⽬录[隐藏 ]1 作⽤2 分频点3 分频⽅式4 优点5 挑选分频电路 - 作⽤分频电路作⽤如下:1、合理地分割各单元的⼯作频段;2、合理地进⾏各单元功率分配;3、使各单元之间具有恰当的相位关系以减少各单元在⼯作中出现的声⼲涉失真;4、利⽤分频电路的特性以弥补单元在某频段⾥的声缺陷;5、将各频段圆滑平顺地对接起来。
显然,分频电路的这些作⽤已被⼈们所认识和接受。
分频电路 - 分频点脉冲分频电路1·分频点指分频器⾼通、带通和低通滤波器之间的分界点,常⽤频率来表⽰,单位为赫兹。
分频点应根据各频段扬声器单元或⾳箱的频率特性和功率分配来具体确定。
2·分频点的选择:1)、考虑中低单元指向性实⽤边界频率f=345/d(d=单元振膜有效直径)。
vivado 分频器时序约束在数字电路设计中,分频器是一种常见的电路模块,用于将输入信号的频率降低到较低的频率。
在FPGA设计中,我们可以使用vivado工具来实现分频器的功能。
在进行分频器设计时,我们需要注意时序约束的设置,以确保设计的稳定性和正确性。
时序约束是指对于设计中的时序性能进行限制和规定,以确保电路能够在给定的时钟频率下正常工作。
在vivado中,我们可以通过设置不同的时序约束来控制分频器的时钟频率和延迟。
我们需要定义输入信号的时钟周期,即输入信号的频率。
在vivado 中,我们可以使用"create_clock"命令来定义时钟周期。
例如,如果输入信号的时钟周期为10ns,我们可以使用以下命令进行定义:create_clock -period 10 [get_pins clk]其中,"clk"为输入信号的时钟端口名称。
通过设置时钟周期,vivado可以根据该值进行时序分析和优化。
接下来,我们需要设置分频器的分频比。
分频比可以通过设置时钟分频因子来实现。
在vivado中,我们可以使用时钟分频因子来控制输出时钟的频率。
例如,如果我们想将输入时钟频率分频为原来的一半,我们可以将时钟分频因子设置为2。
可以使用以下命令进行设置:set_property -dict {PACKAGE_PIN H6 IOSTANDARD LVCMOS33} [get_ports clk_div]create_generated_clock -name clk_div -source [get_pins clk] -divide_by 2 [get_pins clk_div]其中,"clk_div"为输出时钟的端口名称。
通过设置时钟分频因子,vivado可以根据该值生成相应的分频器电路。
除了设置分频比,我们还需要设置时序约束来确保分频器的正确工作。
时序约束包括输入时钟的最小周期、输出时钟的最大延迟等。
为什么要使用电子分频器_电子分频器工作原理及调整方法在音响系统中,分频器是使扬声器正常而有效工作的重要部件,因为电动式扬声器在提高其放声功率过程中,由于其结构上的特点,导致其频率覆盖范围变窄,为了达到全频段大功率放声,必须分频段制作扬声器,再组合在一起放声,分频就是把信号分成两个或两个以上的频段,它能使扬声系统中的各种扬声器都工作于最佳的频率范围内,从而提高了功放的工作效率,降低了音箱的频率失真,实现了高保真重放声音信号的目的,按信号频段分,根据输出信号频段可分为二分频,三分频和四分频,用于实现分频任务的电路或音频设备称为分频器。
根据分频器所处的位置不同,可分为功率分频器和电子分频器两种,本文首先介绍了为什么要使用电子分频器,其次阐述了电子分频器工作原理及作用、特点,最后介绍了电子分频器的调整方法、使用注意事项及发展趋势。
为什么要使用电子分频器我们音响师研究电声和现在电声设备与技术的不断发展都是为了一个目的:就是要尽量忠实的再现各种音源,当然要把自然界里千奇百怪、各种各样的声音完全利用现在的电声技术再现是不太现实几乎做不到的。
大家知道,声音的频率范围是在20Hz20000Hz之间,现在大多数前级音频处理设备的频率范围是可以达到这样宽度的,但目前的扬声器却成了一个瓶颈部分,我们奢想使用一种或简单几只扬声器就能放送出接近20Hz--20000Hz这样宽频率的声音是很难做到的,因为现在单只喇叭的有效工作频率范围都不是很宽。
鉴于此电声工程师们就设计出了在不同频率段内工作的音箱,如:1、重低音音箱:让它在大约30-200Hz的频率范围内工作。
2、低中音音箱:让它在大约200-2000Hz的频率范围内工作。
3、高音音箱:让它在大约2000-20000Hz的频率范围内工作。
如此以来我们就可以利用在不同频率段工作的不同种类的音箱配置一套能最大限度接近声音真实频率(20Hz--20000Hz)的音响系统了。
当然不同音箱设备的构成和参数是不同的,我上面说的是以一个三分频的系统为例,实际使用上还有其它诸如:2分频或4分频等系统,而且不同音响系统中由于采用的音箱会有区别,因此这些音箱的工作频率也不可。