新北师大版数学七(下)教案第3章__三角形
- 格式:doc
- 大小:1.80 MB
- 文档页数:29
教学设计思想:本节内容需四课时讲授;三角形是学生在小学就已熟悉的图形,本节以观察房子的顶部框架中所包含的三角形出发,让学生经历从现实世界中抽象出几何模型的过程,复习三角形的有关概念,认识三角形的基本要素(边、角、顶点)及其表示方法,进一步展开对三角形性质的讨论。
首先结合生活实例引入三角形的概念、表示方法。
接着运用观察和测量等方法获得三角形的性质,同时运用已有的结论进行简单的推理,从而得到“三角形任意两边之和大于第三边”;对于“三角形任意两边之差小于第三边”的性质只须通过测量等活动归纳得出结论即可,无须用不等式证明。
在探索“三角形内角和为180°”这个结论时,学生在以前的学习中已经通过操作获得了这个结论,教师此时应引导学生在操作中进行自觉地思考,思考能否利用平行线的有关事实说明这个结论,将直观和说理结合起来。
教学目标(一)知识与技能1.熟记三角形的高线的定义.2.掌握三角形的高线的画法.(二)过程与方法1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力.2.认识三角形的高线,并能在具体的三角形中作出它们.(三)情感与价值观要求通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.教学重点三角形的高线的定义.教学难点直角三角形和钝角三角形的三条高的认识和理解,尤其是画出它们是本节课的难点.教学方法探求发现法让学生在现实情景中探求问题,在动手操作中发现规律,从而使他们掌握新的内容.教具准备上节课的电脑课件.电脑课件:直角三角形、钝角三角形的高.投影片.教学安排4课时.教学过程Ⅰ.巧设现实情景,引入新课[师]同学们好,大家来看大屏幕如图5-37,△ABC中,有一条红色线段,一端点在顶点A处,另一端点从点B沿着BC 边移动到点C,观察移动过程中形成的无数条线段(AD,AE,AF,AG……)中,有没有特殊位置的线段?你认为有哪些特殊位置?图5-37[生]老师,这个问题上节课已经解决了.这些线段中有三条线段的位置比较特殊,它们分别是三角形的角平分线、中线和高线.[师]对.上节课我们已探讨了三角形的中线和角平分线,这节课来研究三角形的高线.Ⅱ.讲授新课[师]从刚才移动的过程中,知道:AG⊥BC,这时我们说AG就是△ABC的高,那么三角形的高是如何定义的呢?从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.(height)图5-38如图5-38,线段AG是BC边上的高.注意:三角形的高是线段.由定义可知:AG是△ABC中BC边上的高,那么有∠AGB=90°,∠AGC=90°,∠AGB=∠AGC.教师演示视频——三角形的高三角形的高是从三角形的一个顶点向它的对边所在的直线作垂线,顶点与垂足之间的线段.那么如何过三角形的一个顶点,画出它的对边的垂线呢?我们先来回忆:过一点如何作一条直线的垂线?[生甲]可以利用折纸的方法,对折直线所在的纸片,使直线重合,折痕过已知点,这样折痕就是过已知点垂直于已知直线的垂线.(甲同学演示)[生乙]也可以用三角尺来画.把三角尺的一条直角边与已知直线重合,移动三角尺,使它的另一条直角边经过已知点,画直线,这样即可画出过一点并与已知直线垂直的直线.[生丙]也可以利用量角器来画.[师]很好,同学们利用几种方法,画出了过已知点并与已知直线垂直的直线,那能不能画出三角形的高呢?下面我们来做一做.每人准备一个锐角三角形纸片.(1)你能画出这个三角形的三条高吗?你能用折纸的方法得到它们吗?(2)这三条高之间有怎样的位置关系?将你的结果与同伴进行交流.[生甲]我能画出这个锐角三角形的三条高,用折纸的方法也能得到它们.这三条高相交于一点.如图5-39.图5-39线段AD、BE、CF是△ABC的三条高,它们相交于点O.[师]很好,大家能画出锐角三角形的三条高,并且知道这三条高都在三角形内,且相交于一点,那么直角三角形的三条高,你能画出来吗?钝角三角形呢?大家来议一议在纸上画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,它们有怎样的位置关系?(2)你能折出钝角三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?将你的结果与同伴进行交流.[生乙]直角三角形中,只有一条高,如图5-40,在Rt△ABC中,CD是直角三角形ABC的高.图5-40[生丙]不对,直角三角形的两边互相垂直.所以:直角边AC、BC也应该是Rt△ABC 的高,即:AC是BC边上的高,BC也是AC边上的高.Rt△ABC的三条高分别是AC、BC、CD,它们相交于一点,这个点是三角形的一个顶点.[师]丙同学说得对吗?[生齐声]对.[师]很好.直角三角形有一条高在三角形的内部,而另两条高恰是它的两条直角边.下面我们来看钝角三角形.即问题(2).[生丁]我画出钝角三角形后,只能折出它的一条高,而其他两条找不到.[生戊]其他的两条高在三角形的外边.如图5-41:图5-41线段AD、BE、CF是钝角三角形ABC的高.[师]对,下面我们看问题.如图5-42,△ABC的高AD.(1)当点C沿着CB向点B方向移动.当点C与点D重合时,此时AD是△ABC的高吗?由此你发现了什么?(2)将点C继续沿着CB向点B方向移动,当点C、点B不重合且在AD的同侧,此时AD是△ABC的高吗?由此你发现了什么?图5-42(一个问题解决完后,再解决第2个)[生甲]当点C沿着CB向点B方向移动,点C与点D重合时,这时∠ACB=90°,这时由原来的锐角三角形变为直角三角形,此时AD仍是△ABC的高,只是比较特殊,AC与AD 为同一条线段了.即:直角边也是直角三角形的高.[生乙]将点C继续沿着CB向点B方向移动,当点C、点B不重合且在AD的同侧,此时的三角形为钝角三角形.因为AD仍然垂直于BC所在的直线,所以AD是△ABC的高,只是它在三角形的外面.[师]同学们分析得很透彻,那你能画出或折出钝角三角形的高吗?[生]能.[师]很好,钝角三角形的高有什么特点呢?[生丙]钝角三角形有三条高,一条高在三角形内,另两条高在三角形外.[师]对,那钝角三角形的三条高交于一点吗?[生丁]不.[师]那么这三条高所在的直线交于一点吗?(学生讨论)[生]钝角三角形的三条高所在的直线交于一点.如图5-43.图5-43[师]很好,由此我们知道了:三角形的三条高所在的直线交于一点.接下来,同学们想一想:分别指出图5-44中△ABC的三条高.图5-44[生甲]图(1)中的三条高分别为:AB、BC、BD.[生乙]图(2)中的三条高分别为:BF、AD、CE.[师]好,接下来我们做一练习来熟悉掌握三角形的三条重要线段.Ⅲ.课堂练习(一)补充1.分别画出图5-45中一组直角三角形的所有高.图5-452.分别画出图5-46中一组钝角三角形的所有高.图5-463.分别画出图5-47中各个三角形的所有角平分线.图5-474.分别画出图5-48各个三角形的所有的中线.图5-485.从上面画直角三角形、钝角三角形的高、角平分线、中线,你发现了什么?以下有三种情况,根据你画图的实践,用序号字母填写下表(有几种可能情况填写几个字母).A.在三角形的内部B.在三角形的边上C.在三角形的外部锐角三角形直角三角形钝角三角形角平分线中线高线答案:1.如图5-49.图5-492.如图5-50.图5-503.如图5-51.图5-51 4.略5.如下表:锐角三角形直角三角形钝角三角形角平分线A A A中线A A A高线A A、B A、C(二)看课本P126~127,然后小结.Ⅳ.课时小结这节课我们重点探讨了三角形的高.三角形的高不一定都在三角形的内部.锐角三角形的三条高都在三角形的内部;直角三角形中,有两条高恰好是它的两条直角边;钝角三角形中,两锐角所对边上的高都在三角形的外部.三角形的三条高所在的直线相交于一点.到现在为止,我们学习了三角形的三种重要线段:角平分线、中线和高线.这三种重要线段都是用连结顶点——对边(或对边所在直线)上一个特殊点的方法来定义的.大家要掌握它们的定义,并且会在图形中准确地作出这些线段.Ⅴ.课后作业.(一)课本P127习题5.4 1、2、3(二)1.预习内容 P128~1302.预习提纲(1)什么是全等图形?(2)全等图形有什么性质.板书设计§5.1.4 认识三角形一、三角形的高线从三角形的一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段.注意:三角形的高是线段,与垂线有区别.。
周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。
1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
七年级数学周周清一、填空题1、若△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm ,则AB =_____ cm ,BC =_____ cm,AC =_____ cm.2、若△ABC ≌△DEF ,AB =DE ,AC =DF ,∠A =80°,BC =9 cm,则∠D =_____,∠D 的对边是_____=_____ cm.3、已知如图1,在△ABF 和△DEC 中,∠A =∠D ,AB =DE ,若再添加条件_____=_____,则可根据边角边公理证得△ABF ≌△DEC .4、如图2,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CE=_____cm 。
图1图2 图35、如图3,△ABC ≌△ADE ,延长BC 交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=____________。
6、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。
二、选择题1、有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm 2、下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°4、如图4,△ABD 和△ACE 都是等边三角形,那么△ADC ≌△ABE 的根据是( )图4A.SSSB.SASC.ASAD.AAS 5、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )F EDC BAA.带①去B. 带②去C. 带③去D. 带①和②去 6、下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等其中正确的个数是( )A .1个B .2个C .3个D .4个第7题 第8题 第9题7、如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A.BC=BDB.CE=DEC.BA 平分∠CBDD.图中有两对全等三角形8、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( ) (A )AD=AE (B )AB=AC(C )BE=CD (D )∠AEB=∠ADC9、如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( ) A .3个 B .2个 C .1个 D .0个10、下列条件中能确定两个三角形全等的是( )A.一边及这条边上的高相等B.一边及这条边上的中线对应相等C.两角及第三个角平分线对应相等D.两条边及夹角的平分线对应相等11、下列各组图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都为3 cm 的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形 三、解答题1、已知,如图,∠1=∠2,BD=CD,求证:AD 是∠BAC 的平分线.2、如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若∠1=∠2=∠3,AC=AE ,求证:△ABC ≌△ADEA B C D EC B A E F O3、已知线段a 和∠1,作一个△ABC ,使得AB=a ,AC=2a ,∠A=∠ 1.4、如图,已知AB =DC ,AC =DB ,E 是BC 的中点,求证:AE =DE5、如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
教学设计用图象表示的变量间关系课题 3.3.1 用图象表示的变量间关系单元第2单元学科数学年级七年级(下)学习目标1、结合具体情境,能理解图象上的点所表示的意义。
2、能从图象中获取变量之间关系的信息,并对未来的情况作一个预测。
重点能够从曲线型图象中获取关于两个变量的信息.难点在给出图象中发现变量之间存在的关系,并能将图中的有用信息读取出来.教学过程教学环节教师活动学生活动设计意图导入新课一、创设情景,引出课题1、到今天为止我们一共学了几种方法来表示自变量与因变量之间的关系?答案:列表格与列关系式两种方法2、某河受暴雨袭击,某天此河水的水位记录为下表:在这个表中反映了________个变量之间的关系,________是自变量,________是因变量.答案:2;时间;水位某出租车每小时耗油5千克,若t小时耗油q千克,则自变量是________,因变量是________,q与t的关系式是________。
T,q,q=5t问题:温度的变化,是人们经常谈论的话题.请你根据右图,与同伴讨论某地思考自议图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.曲线型图象能够反映出数据的变化趋势,通过结合横纵坐标轴表示的意义,我们能够很直观的感受到数据的意义.的变化而发生较大的变化.(1)一天中,骆驼的体温的变化范围是什么?它的体温从最低上升到最高需要多少时间?答案:35至40℃12小时(2)从16时到24时,骆驼的体温下降了多少?答案:3℃(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?答案:上升:4至16时和28至40时下降:0至4时,16至28时和40至48时(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?答案:体温一样(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?答案:表示12时骆驼的体温;20,36,44时(6)你还知道哪些关于骆驼的趣事?与同伴进行交流.四、巩固训练1、某市一周平均气温(°C)如图所示,下列说法不正确的是()A、星期二的平均气温最高;B、星期四到星期日天气逐渐转暖;C、这一周最高气温与最低气温相差4 °C;D、星期四的平均气温最低答案:C2、在夏天一杯开水放在桌面上,其水温T与放置时间t 的关系大致图象为()A3.海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.下面是某港口从0时到12时的水深情况.(1)大约什么时刻港口的水最深?深度约是多少?(2)大约什么时刻港口的水最浅?深度约是多少?(3)在什么时间范围内,港口水深在增加?(4)在什么时间范围内,港口水深在减少?(5)A,B 两点分别表示什么?还有几时水的深度与A 点所表示的深度相同?(6)说一说这个港口从0 时到12 时的水深是怎样变化的.4.假日里,小亮和爸爸骑自行车郊游,上午8时从家出发,16时返回家中,他们离家的距离与时间的关系可用图中的折线表示.(1)他们何时到达离家最远的地方?(2)他们何时开始第一次休息?(3)10时到13时,他们走了多少千米?(4)返回时,他们的平均速度是多少?解:(1)14时.(2)10时.(3)5 千米.。
【关键字】数学三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、尺规作图、辅助线、线段笔直平分线的集合定义、轴对称的定义、轴对称图形的定义。
二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即:(1)AC·CB=CD·AB ;(2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“AAA”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD是角平分线)。
教 学 反 思4.1 认识三角形(1)三角形中角的关系:(1)三角形的三个内角之和是 ;(2)直角三角形的两个锐角 三角形的分类:按角分为三类: 三角形; 三角形和 三角形。
(一) 学习过程例1 证明三角形的内角和为180°例2 在△ABC 中,(1)0082,42,C A B ∠=∠=∠则= (2)5,A B C C ∠+∠=∠∠那么=(3)在△ABC 中,C ∠的外角是120°,B ∠的度数是A ∠度数的一半,求△ABC 的三个内角的度数变式训练:在△ABC 中(1)0078,25,B A C ∠=∠=∠则= (2)若C ∠=55°,010B A ∠-∠=,那么A ∠= ,B ∠=例3 已知△ABC 中,::1:2:3A B C ∠∠∠=,试判断此三角形是什么形状?变式训练:已知△ABC 中,090,2,A B B C ∠-∠=∠=∠试判断此三角形是什么形状?例4 如图,在△ABC 中,90ACB ∠=,CD ⊥AB 于点D ,1,2?A B ∠∠∠∠与有何关系与呢例5 如图,已知00060,30,20,A B C BOC ∠=∠=∠=∠求的度数。
变式训练:如图在锐角三角形ABC 中,BE 、CD 分别垂直AC 、AB ,若040A ∠=,求BH C ∠的度数。
21DC AOCBAHE DCBA拓展:1、如图所示,求A B C D E ∠+∠+∠+∠+∠的度数。
2、如图在△ABC 中,已知1,2,,A B ABC ACB ACB ∠=∠∠=∠∠=∠∠求的度数。
4.1认识三角形(2)如图,已知AD ⊥BC 于点D ,DE ⊥AB 于点E ,点F 是AE 的中点,则图中有 个三角形, 个直角三角形, 个锐角三角形, 个钝角三角形;以B ∠为内角的三角形有 个,它们分别是 ;以BE 为一边的三角形是 。
(二)学习过程1、三角形的有关概念(1)三角形的定义:由不在 上的三条线段首尾 相连所组成的图形。
2015—2016学年度七年级第二学期数学科教学计划梁施丽一.基本情况本学期我担任七(4)班数学教学,该班有学生49人,上学期期末考试有14个同学及格,最高分91,最低分10分,平均分49,学生基础中等,整体水平稍微偏低,两极分化有点严重,基础知识掌握还不够牢固。
二.教材分析本学期学习的章节:有《整式的乘除》、《相交线与平行线》、《变量之间的关系》、《三角形》、、《生活中的轴对称》、《概率初步》。
各章教学内容概述如下:《整式的乘除》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础。
重点是探索整式运算的运算法则,理解整式运算的算理,推导乘法公式。
难点是灵活运用整式运算法则解决一些实际问题,正确地运用乘法公式。
《相交线与平行线》两条直线被第三条直线所截,即所谓的“三线八角”问题和对平行线的讨论是平面几何中重要的议题,也是基础性的内容,有很大的教育价值。
《变量之间的关系》:把变量之间的关系列为单独一章,这是在学习了代数式求值和探索规律等地方渗透了变化的思想基础上引入的,为进一步学习函数概念进行铺垫,因为函数是一种特殊的变量之间的“关系”。
《三角形》:教材提供许多活动,给学生充分的实践和探索的空间,使他们通过探索和交流发现一些与三角形有关的结论,并应用它解决实际问题,给学生提供积累数学经验的可能,建立推理意识,用自己的方式来表达推理过程。
重点是三角形的性质与三角形全等的判定、三角形的分类。
难点是能进行简单的说理。
《生活中的轴对称》:实际上是轴对称图形的认识和讨论,并通过轴对称图形来探索轴对称图形的性质。
轴对称可以看成反射变换,也是一种几何变换。
事实上,平移和旋转可以经过两次反射变换得到,因此它更基本。
重点是研究轴对称及轴对称的基本性质。
难点是从具体的现实情境中抽象出轴对称的过程。
《概率初步》一章,在七年级上册感受了可能性有大有小的基础上,进一步刻画可能性的大小,因而十分自然地给出了概率的概念,重点是理解概率的意义,并会计算一些事件发生的概率,能设计出符合要求的简单概率模型。
北师大版七下数学4.1认识三角形(第1课时)说课稿一. 教材分析北师大版七下数学4.1认识三角形是初中学段数学课程的一部分,本节课的主要内容是让学生掌握三角形的概念、特性以及分类。
通过本节课的学习,使学生能够认识三角形,了解三角形的性质,能够运用三角形的知识解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了线段、射线的基本知识,对图形的认知有一定的基础。
但是,对于三角形的特性以及分类,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的实际情况,从简单到复杂,逐步引导学生掌握三角形的知识。
三. 说教学目标1.知识与技能目标:使学生能够理解三角形的概念,掌握三角形的特性,了解三角形的分类。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念,提高学生的动手操作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活实际的联系。
四. 说教学重难点1.教学重点:三角形的概念、特性以及分类。
2.教学难点:三角形的高的概念以及计算方法的掌握。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入新课:通过展示生活中的三角形实例,引导学生回顾已学的线段、射线知识,为新课的学习做好铺垫。
2.探究新知:(1)介绍三角形的概念:让学生观察课件中的三角形实例,引导学生发现三角形的特征,从而总结出三角形的定义。
(2)探讨三角形的高:通过几何画板演示,让学生直观地理解三角形的高的概念,并引导学生掌握计算三角形高的方法。
(3)介绍三角形的分类:让学生观察不同类型的三角形,引导学生根据三角形的特性进行分类。
3.巩固练习:设计一些有关三角形的问题,让学生运用所学知识解决问题,巩固新学的知识。
4.课堂小结:对本节课的内容进行总结,使学生对三角形有更清晰的认识。
三角形的三边关系知识技能目标1.掌握和理解三角形的三边关系;2.认识三角形的稳定性,并能利用三角形的稳定性解决一些实际问题.过程性目标1.联系三角形的三个内角、外角以及外角与内角之间的数量关系,探索三角形的三边之间的不等量关系;2.结合实践与应用,充分感受三角形的三边关系,体会三角形的稳定性.教学过程一、创设情境让学生拿出预先准备好的四根牙签(2cm,3cm,5cm,6cm各一根)请你用其中的三根,首尾相接,摆成三角形,是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以?你从中发现了什么?二、探索归纳从4根中取出3根有一下几种情况:(1) 2cm,5cm,6cm (2) 3cm,5cm,6cm(3) 2cm,3cm,5cm (4) 2cm,3cm,6cm通过实践可知(1),(2)可以摆出三角形,(3),(4)不能摆成三角形我们可以发现这三根牙签中,如果较小的两根的和不大于最长的第三根,就不能组成三角.这就是说:三角形的任意两边的和大于第三边.三、实践应用例1 画一个三角形,使它的三条边分别为7cm,5cm,4cm.画法步骤如下:(1)先画线段AB=7cm;(2)以点A为圆心,5cm长为半径画圆弧;(3)再以B为圆心,4cm长为半径画圆弧,两弧相交于点C;(4)连结AC,BC.△ABC就是所要画的三角形.练习:以下列长度的各组线段为边,能否画一个三角形?(1)7cm,4cm,2cm; (2)9cm,5cm,4m.例2 有两根长度分别为5cm和8cm的木棒,现在再取一根木棒与它们摆成一三角形,你说第三根要多长呢?用长度为3cm的木棒行吗?为什么?长度为14cm的木棒呢?解取长度3cm的木棒时,由于3+5=8,与三角形两边之和大于第三边相矛盾,所以不能摆成三角形;取长度为14cm的木棒时,由于5+8<14,同样与三角形两边之和大于第三边相矛盾,所以也不能摆成三角形. 从上可知第三木棒的长度应该是大于3cm且小于13cm.结论 1. 三角形两边之差小于第三边;2.已知三角形的两边长度,第三边长度范围是大于这两边的差小于这两边的和.练习下列长度的各组线段能否组成一个三角形?(1)15cm、10cm、7cm; (2)4cm、5cm、10cm;(3)3cm、8cm、5cm; (4)4cm、5cm、6cm.例3 (1)如果等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长为多少?(2)如果等腰三角形的一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是多少?解 (1)若4cm为底边9cm为腰时,有4+9>9和9+9>4能构成三角形周长为22cm;若4cm为腰9cm为底时,有4+4<9不能构成三角形假设不成立;(2)若5cm为底8cm为腰时,有5+8>8和8+8>5能构成三角形,周长为21 cm;若5cm为腰8cm为底时,有5+5>8和8+5>8也能构成三角形,周长为18cm.故已知等腰三角形的二条边求第三边的长时,首先要判断这三边能否构成三角形,再求第三边的长.用三根木条钉一个三角形,你会发现再也无法改变这个三角形的形状和大小,也就是说,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形稳定性.有四根木条钉一个四边形,你会发现可以任意改变这个四边形的形状和大小,这说明四边形具有不稳定性.三角形的稳定性在生产实践中有着广泛的应用.例如桥梁拉杆、电视塔底座都是三角形结构.交流反思三角形的三边关系:三角形任何两边的和大于第三边.注意“任何”两字.如三角形的三边分别为a、b、c则a+b>c,a+c>b,b+c>a都成立才可以,三角形任何两边之差小于第三边也同样如此.五、检测反馈1.画一个三角形,使它的三条边长分别为3cm、4cm、6cm;2.已知△ABC是等腰三角形,如果它的两条边的长分别为8cm和3cm,那么它的周长是多少?七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠BED的度数是()A.70°B.68°C.60°D.72°【答案】A【解析】先根据平行线的性质求出∠ABC的度数,再由BC平分∠ABE可得出∠ABE的度数,进而可得出结论.【详解】解:∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°.∵BC平分∠ABE,∴∠ABE=2∠ABC=70°.∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.将一副直角三角尺按如图所示摆放,则图中∠α的度数是()A.45°B.60°C.70°D.75°【答案】D【解析】分析:如下图,根据“三角形外角的性质结合直角三角尺中各个角的度数”进行分析解答即可.详解:如下图,由题意可知:∠DCE=45°,∠B=30°,∵∠ =∠DCE+∠B,∴∠α=45°+30°=75°. 故选D.点睛:熟悉“直角三角尺中各个内角的度数,且知道三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和”是解答本题的关键.3.如图是北京城镇居民家庭年每百户移动电话拥有量折线统计图,根据图中信息,相邻两年每百户移动电话拥有量变化最大的是A .2010年至2011年B .2011年至2012年C .2014年至2015年D .2016年至2017年 【答案】B【解析】观察折线统计图可知:2011年至2012年每百户移动电话拥有量变化最大. 【详解】解:观察折线统计图可知:2011年至2012年每百户移动电话拥有量变化最大. 故选:B . 【点睛】本题考查折线统计图,关键是能够根据统计图提供的信息,解决有关的实际问题.4.如图,ABC ∆中,AB =AC ,D 、E 分别在边AB 、AC 上,且满足AD =AE ,下列结论中:①ABE ACD ∆≅∆;②AO 平分∠BAC ;③OB =OC ;④AO ⊥BC ;⑤若12AD BD =,则13OD OC =;其中正确的有( )A .2个B .3个C .4个D .5个【答案】D【解析】利用SAS 可证明△ABE ≌△ACD ,判断①正确;根据全等三角形的性质以及邻补角定义可得∠BDO=∠BEC ,继而利用AAS 证明△BOD ≌△COE ,可得OD=OE ,BO=OC ,判断③正确;利用SSS 证明△AOD ≌△AOE ,可得AO 平分∠BAC ,判断②正确,继而根据等腰三角形三线合一的性质可判断④正确,根据三角形的高相等时,两三角形的面积比就是底边之比,通过推导可判断⑤正确. 【详解】在△ABE 与△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD ,故①正确; ∴∠AEB=∠ADC , ∴∠BDO=∠BEC ,∵AB=AC ,AD=AE ,∴BD=CE , 在△BOD 与△COE 中,BDO CEO BOD COE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BOD ≌△COE ,∴OD=OE ,BO=OC ,故③正确; 在△AOD 与△AOE 中,AD AE AO AO OD OE =⎧⎪=⎨⎪=⎩, ∴△AOD ≌△AOE , ∴∠DAO=∠EAO ,即AO 平分∠BAC ,故②正确, 又∵AB=AC ,∴AO⊥BC,故④正确,∵12AD BD=,∴S△BOD=2S△AOD,又∵△BOD≌△COE,∴S△COE=2S△AOD,又∵△AOD≌△AOE,∴S△AOC=3S△AOD,∴OC=3OD,即13OD OC=,故⑤正确,故选D.【点睛】本题考查了等腰三角形的的性质,全等三角形的判定与性质,角平分的定义,三角形的面积等,综合性较强,准确识图,正确分析,熟练运用相关知识是解题的关键.5.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.7{2x yx y+==B.7{2x yy x+==C.27{2x yx y+==D.27{2x yy x+==【答案】A【解析】设甲数为x,乙数为y,根据题意得:7 {2x yx y+==,故选A.6.一个不等式组的两个不等式的解集如图所示,则这个不等式组的解集为( )A.1 <x ≤ 0B.0 <x ≤1C.0 ≤ x<1 D.0<x<1【答案】B【解析】分析:由数轴可知,两个不等式的解集分别为x>0,x≤1,由此可求出不等式组的解集. 详解:由数轴得,不等式组的解集为0 <x ≤1.故选B.点睛:此题主要考查了在数轴上表示不等式的解集,关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.写出图中表示的两个不等式的解集,这两个式子公共部分就是对应不等式组的解集.=++,则称n为“好数”.例如:7.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有()个31111A.1 B.2 C.3 D.4【答案】C【解析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=1,1是一个质数,∴10不是好数;∵1=2+3+2×3,∴1是好数.综上,可得在8,9,10,1这四个数中,“好数”有3个:8、9、1.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.8.不等式-3x≤6 的解集在数轴上正确表示为()A.B.C.D.【答案】D【解析】先求出不等式的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集在数轴上表示出来,比较得到结果.【详解】−3x⩽6,x⩾−2.不等式的解集在数轴上表示为:故选D.【点睛】此题考查在数轴上表示不等式的解集,解题关键在于掌握表示方法9.画△ABC中AC上的高,下列四个画法中正确的是()A.B.C.D.【答案】C【解析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【详解】过点B作直线AC的垂线段,即画AC边上的高BD,所以画法正确的是C.故选C.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握作图法则.10.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)【答案】B【解析】由A(﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B点变化后的坐标.【详解】解:∵A(﹣2,3)平移后坐标变为(﹣3,2),∴可知点A向左平移1个单位,向下平移1个单位,∴B 点坐标可变为(1,0). 故选:B . 【点睛】本题运用了坐标的平移变化规律,由分析A 点的坐标变化规律可求B 点变化后坐标. 二、填空题题11.定义:f (a ,b )=(﹣a ,b ),g (m ,n )=(m ,﹣n ),例 f (1,2)=(﹣1,2),g (﹣4,﹣5)=(﹣4,5),则 g ( f (2,﹣3))=_____. 【答案】(﹣2,3).【解析】根据新定义法则,分步完成.即: g ( f (2,﹣3))= g (-2,﹣3))=(﹣2,3). 【详解】g ( f (2,﹣3))= g (-2,﹣3))=(﹣2,3). 故答案为:(﹣2,3) 【点睛】本题考核知识点:点的坐标.解题关键点:根据新定义写坐标.12.一个凸多边形的内角和为720°,则这个多边形的边数是__________________ 【答案】1【解析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可. 【详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯= 解得n 6=. 故答案为:1. 【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.13.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数,(1)表格中反映的变量是_____,自变量是_______,因变量是___________.(2)估计小亮家4月份的用电量是_____°,若每度电是0.49元,估计他家4月份应交的电费是_________. 【答案】 日期和电表读数 日期 电表读数 120 58.8【解析】分析:(1)、根据表格即可得出自变量和因变量;(2)、首先根据表格得出每天的平均用电量,然后得出4月份的用电量,根据电价得出答案.详解:(1)、变量有两个:日期和电表读数,自变量为日期,因变量为电表读数; (2)、每天的用电量:(49-21)÷7=4°,4月份的用电量=30×4=120°, ∵每度电是0.49元,∴4月份应交的电费=120×0.49=58.8元. 点睛:本题主要考查的是函数的变量,属于基础题型.在看这个表格的时候一定要注意两天数值的差才是前一天的用电量.14.已知,x=3、y=2是方程组6324x by ax by +=⎧⎨-=⎩的解,则a=_____,b=_____【答案】6; 7【解析】把x 与y 的值代入方程组计算即可求出a 与b 的值.【详解】把x=3、y=2代入6324x by ax by +=⎧⎨-=⎩中得:18232324b a b +⎧⎨-⎩== 解得:67a b ⎧⎨⎩==故答案是:6,7. 【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.已知方程组123a b b c a c -=-⎧⎪-=⎨⎪+=⎩,则a =______________.【答案】2【解析】利用“加减消元法”解三元一次方程组,即可求出a 的值.【详解】123a b b c a c -=-⎧⎪-=⎨⎪+=⎩①②③解:①+②得:12a b b c -+-=-+ 合并同类项,得:1a c -=④ ③+④得:314a c a c ++-=+= 合并同类项,得:24a =解得:a=2故答案为:2【点睛】本题考查解三元一次方程组,熟练掌握“加减消元法”是解题关键.16.如图,△ABC的周长为15cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D、交AC边于点E,连接AD,若AE=2cm,则△ABD的周长是_____cm.【答案】11【解析】根据垂直平分线的性质即可求解.【详解】由题意可知EC=AE=2cm,AD=CDAB+AC+BC=15cm;∴AB +BC=15-2×2=11cm∴△ABD的周长为AB+BD+AD=AB+BC-CD+AD= AB+BC=11cm【点睛】此题主要考查周长的计算,解题的关键是熟知垂直平分线的的性质.17.按如图所示的程序进行运算时,发现输入的x恰好经过3次运算输出,则输入的整数x的值是________ .【答案】11或12或13或14或1.【解析】试题分析:第一次的结果为:2x-5,没有输出,则2x-545,解得:x25;第二次的结果为:2(2x-5)-4=4x-1,没有输出,则4x-145,解得:x1;第三次的结果为:2(4x-1)-5=8x-35,输出,则8x-3545,解得:x10,综上可得:,则x的最小整数值为11.考点:一元一次不等式组的应用三、解答题18.为保护环境,增强居民环保意识,某校积极参加即将到来的6月5日的“世界环境日”宣传活动,七年级(1)班所有同学在同一天调查了各自家庭丢弃塑料袋的情况,统计结果的条形统计图如下:根据统计图,请回答下列问题:(1)这组数据共调查了居民有多少户?(2)这组数据的居民丢弃塑料袋个数的中位数是_______个,众数是 _______个.(3)该校所在的居民区约有3000户居民,估计该居民区每天丢弃的塑料袋总数大约是多少?【答案】 (1)50(2)中位数 4 众数 4(3)12600【解析】(1)计算居民总数(2)中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
三角形 1.认识三角形1、它的三个顶点分别是 ,三条边分别是 ,三个内角分别是 。
2、分别量出这三角形三边的长度,并计算任意两边之和以及任意两边之差。
你发现了什么?结论:三角形任意两边之和大于第三边三角形任意两边之差小于第三边例:有两根长度分别为5cm 和8cm 的木棒,用长度为2cm 的木棒与它们能摆成三角形吗?为什么?长度为13cm 的木棒呢?长度为7cm 的木棒呢? 二、稳固练习:1、以下每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?〔单位:cm 〕 〔1〕 1, 3, 3 〔2〕 3, 4, 7 〔3〕 5, 9, 13 〔4〕 11, 12, 22 〔5〕 14, 15, 302、已知一个三角形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围是 。
假设X 是奇数,则X 的值是 。
这样的三角形有 个;假设X 是偶数,则X 的值是 , 这样的三角形又有 个3、一个等腰三角形的一边是2cm ,另一边是9cm ,则这个三角形的周长是 cm夯实基础1、填空:〔1〕当0°<α<90°时,α是 角; 〔2〕当α= °时,α是直角;〔3〕当90°<α<180°时,α是 角; 〔4〕当α= °时,α是平角。
2、如右图,∵AB ∥CE ,〔已知〕 ∴∠A = ,〔 〕∴∠B = ,〔 〕 〔第2题〕 二、探索练习:根据知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?〔提出问题,激发学生的兴趣〕结论:三角形三个内角和等于180°〔几何表示〕 练习1: 1、判断:〔1〕一个三角形的三个内角可以都小于60°; 〔 〕 〔2〕一个三角形最多只能有一个内角是钝角或直角; 〔 〕 2、在△ABC 中,A BC a bcABCDE123〔1〕∠C=70°,∠A=50°,则∠B= 度; 〔2〕∠B=100°,∠A=∠C ,则∠C= 度; 〔3〕2∠A=∠B+∠C ,则∠A= 度。
, 北师大版七年级数学下册第 3 章《三角形》单元测试试卷及答案(3)一、填空题(共 10 小题)1.一个等腰三角形的两边长分别是 3cm 和 7cm ,则它的周长是_________ cm .△2.若∠A=∠B=2∠C ,则 ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直 角”)△3.如图, ABC≌△DEF ,△ABC 的周长为 25cm AB=6cm ,CA=8cm ,则 DE= _________ , DF= _________ ,EF= _________ .4.如图,AB=AD ,BC=DC ,要证∠B=∠D ,则需要连接 _________ ,从而可证 _________和 _________ 全等.5.如图,AD ,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= _________ .△6.如图,CA⊥BE ,且 ABC≌△ADE ,则 BC 与 DE 的关系是 _________ .7.如图,有一块边长为 4 的正方形塑料模板 ABCD ,将一块足够大的直角三角板的直角顶 点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延长线交于点 E .则四边形 AECF 的 面积是 _________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________,根据是_________.△9.如图,ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB=_________.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA,得到A B C,至点A,B,C,使得A B=2AB,B C=2BC,C A=2CA,顺次连接A,B,C△1 11111111111记其面积为S;第二次操作,分别延长A B,B C,C A至点A,B,C,使得A B=2A B,11111112222111,得到A B C,记其面积为S;…;按B C=2B C,C A=2C A,顺次连接A,B,C△221112111222222B C,则其面积S=_________.此规律继续下去,可得到A△5555二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由..23.如图,公园有一条“Z”字形道路 ABCD ,其中 AB∥CD ,在 E 、M 、F 处各有一个小 石凳,且 BE=CF ,M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理 由.△24.如图, ABC 中,AB=BC=CA ,∠A=∠ABC=∠ACB ,在△ABC 的顶点 A ,C 处各有 一只小蚂蚁,它们同时出发,分别以相同速度由 A 向 B 和由 C 向 A 爬行,经过 t (s )后, 它们分别爬行到了 D ,E 处,设 DC 与 BE 的交点为 F .(△1)证明 ACD≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与 BE 所成的∠BFC 的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什 么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l求证:ABC≌ A △1B C .1 1(请你将下列证明过程补充完整.)证明:分别过点 B ,B 作 BD⊥CA 于 D , 1B D ⊥C A 于D .1 11 11 则∠BDC=∠B D C =90°, 1 1 1∵BC=B C ,∠C=∠C , 1 11∴ BCD≌ B △1C D ,1 1∴BD=B D .1 1(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.△2.若∠A=∠B=2∠C,则ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.△3.如图,ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE=6cm,DF=8cm,EF=11cm.考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC,从而可证△ABC和△ADC全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为△AC,ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠B AE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.△6.如图,CA⊥BE,且ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.△S AEB =S△=S△ , 考点: 正方形的性质;全等三角形的判定与性质.分析: 由四边形 ABCD 为正方形可以得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,所以可以证明△AEB≌△AFD ,所以 AFD ,那么它们 都加上四边形 ABCF 的面积,即可四边形 AECF 的面积=正方形的面积,从而求出 其面积.解答: 解:∵四边形 ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE , ∴△AEB≌△AFD ,△∴S AEB AFD∴它们都加上四边形 ABCF 的面积,可得到四边形 AECF 的面积=正方形的面积=16.故答案为:16.点评: 本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD ,∠A=90°,AB=CE ,BC=ED ,则△CED≌ △ABC ,根据是HL .考点: 全等三角形的判定.分析: 根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED 和△ABC 全等.解答: 解:∵BA∥CD ,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°, ∵在 Rt△CED 和 Rt△ABC 中,,∴ CED≌ ABC (△HL ). 故答案为: ABC ,△HL .点评: 本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.△9.如图, ABC 中,AB=AC ,BC=8,BD 是 AC 边上的中线,△ABD 与△BDC 的周长的 差是 2,则 AB= 10 .考点: 等腰三角形的性质.分析: 根据三角形中线的定义可得 AD=CD ,然后求出△ABD 与△BDC 的周长的差=AB﹣BC ,再代入数据进行计算即可得解.解答: 解:∵BD 是 AC 边上的中线,∴AD=CD ,∴△ABD 与△BDC 的周长的差=(AB+AD+BD )﹣(BC+CD+BD )=AB ﹣BC , ∵△ABD 与△BDC 的周长的差是 2,BC=8, ∴AB ﹣8=2, ∴AB=10.故答案为:10.点评: 本题考查了等腰三角形腰上的中线的定义,求出△ABD 与△BDC 的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为 1 的△ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A ,B ,C ,使得 A B=2AB ,B C=2BC ,C A=2CA ,顺次连接 A ,B ,C △1,得到 A B C ,111111111 1 1记其面积为 S ;第二次操作,分别延长 A B ,B C ,C A 至点 A ,B ,C ,使得 A B =2A B , 11 11 11 12222 1 1 1B C =2B C ,C A =2C A ,顺次连接 A ,B ,C △2,得到 A B C ,记其面积为 S ;…;按 2 11 12 11 1222 2 22此规律继续下去,可得到A △5BC ,则其面积 S = 195 .5 5 5考点: 三角形的面积. 专题: 压轴题;操作型.分析: 根据高的比等于面积比推理出A △1BC 的面积是 A △1BC 面积的 2 倍,则 A △1B B 的11面积是A △1BC 面积的 3 倍…,以此类推,得出 A △2BC 的面积.2 2解答: 解:连接 A C ,根据 A B=2AB ,得到:AB :A A=1:3,111因而若过点 B ,A 作△ABC 与 AA △1C 的 AC 边上的高,则高线的比是 1:3, 1因而面积的比是 1:△3,则 A BC 的面积是△ABC 的面积的 2 倍,1设△ABC 的面积是 △a ,则 A BC 的面积是 2a , 1同理可以得到A △1BC 的面积是 A △1BC 面积的 2 倍,是 4a ,1则 A △1B B 的面积是 6a ,1同理B △1C C 和 A △1C A 的面积都是 6a ,11△A B C 的面积是 19a ,1 1 1即 A △1B C 的面积是△ABC 的面积的 19 倍, 1 1同理A △2BC 的面积是 A △1B C 的面积的 19 倍,2 21 1即 A △1B C 的面积是 △19, A B C 的面积 192,1 12 2 2依此类推,AB C的面积是S=195=2476099.△5555点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形C.∠1和∠B都是∠A的余角B.∠1=∠2 D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∴∠2=∠A;故本选项正确.故选B.点评:本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高C.DE是△DBE和△ABE的高B.DE,DC都是△BCD的高D.AD,CD都是△ACD的高考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:A、AC是△ABC和△ABE的高,正确;B、DE,DC都是△BCD的高,正确;C、DE不是△ABE的高,错误;D、AD,CD都是△ACD的高,正确.故选C.点评:考查了三角形的高的概念.15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.考点:余角和补角.分析:根据互为补角的两个角的和等于180°表示出α+β,再根据互为余角的两个角的和等于90°列式整理即可得解.解答:解:∵角α和β互补,∴α+β=180°,∴β的余角为:90°﹣β=(α+β)﹣β=(α﹣β).故选C.点评:本题考查了余角和补角,利用90°和180°的倍数关系消掉常数是解题的关键.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F考点:全等三角形的判定.分析:根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解答:解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选C.点评:本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△BCD,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.解答:解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△BCD,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选B.点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.考点:三角形三边关系.分析:延长AC交BD于E,根据三角形的任意两边之和大于第三边可得AD+DE>AC+CE,CE+BE>BC,然后整理得到AD+BD>AC+BC,从而得解.解答:解:如图,延长AC交BD于E,在△ADE中,AD+DE>AC+CE,在△CBE中,CE+BE>BC,∴AD+DE+CE+BE>AC+CE+BC,∴AD+BD>AC+BC,因此,邮递员由A村到B村送信,经过C村路程近些,所以,他总是走经过C村的道路,不走经过D村的道路.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)考点:全等三角形的判定与性质.专题:开放型.分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,由对称性可知:DE=BE,DE⊥AC于△E,ABC≌ADC,△AC平分∠BAD等.点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.考点:全等三角形的应用.专题:证明题.分析:AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题.解答:证明:△ABC与△ADC中,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.不论∠DAB是大还是小,始终有AE平分∠BAD.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.考点:全等三角形的应用.分析:可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.解答:解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.点评:本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、△MF,再证明BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.,∴在△BEM和△CFM中∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.△24.如图,ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(△1)证明ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.考点:全等三角形的应用.分析:(1)根据小蚂蚁的速度相同求出AD=CE,再利用“边角边”证明△ACD和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC=∠ACD,然后表示出∠BFC,再根据等边三角形的性质求出∠ACB,从而得到∠BFC.解答:(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(△2)解:∵ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.点评:本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.25.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?.△1B △1(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l 求证:ABC≌ A △1B C . 1 1 (请你将下列证明过程补充完整.) 证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1则∠BDC=∠B D C =90°,1 1 1 ∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.考点: 全等三角形的判定.专题: 压轴题;阅读型.分析: 本题考查的是全等三角形的判定,首先易证得 ADB≌ A △1B C 然后易证出 1 1 ABC≌ A C .1 1解答: 证明:(1)证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1 则∠BDC=∠B D C =90°,1 1 1∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 补充:∵AB=A B ,∠ADB=∠A D B =90°.1 1 1 1 1 ∴ ADB≌ A △1D B (HL ),1 1 ∴∠A=∠A , 1又∵∠C=∠C ,BC=B C ,1 1 1 在△ABC 与 A △1B C 中,1 1∵,∴ ABC≌ A △1B C (AAS );1 1(△2)解:若两三角形( ABC 、 AB C )均为锐角三角形或均为直角三角形或均 1 1为钝角三角形,则它们全等(AB=A B,BC=B C,∠C=∠C△1,则ABC≌A△1B C).111111点评:命题立意:考查三角形全等的判定,阅读理解能力及分析归纳能力.做题时要认真读题,明白题意,然后按要求答题.。
教 学 反 思第3章 三角形 3.1 认识三角形(1)学习目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、能证明出“三角形内角和等于180°”,能发现“直角三角形的两个锐角互余”;3、按角将三角形分成三类。
学习重难点:三角形内角和定理推理和应用。
学习设计:(一) 预习准备 (1)预习书62-65页(2)思考①三角形的角之间的关系②三角形的分类 (3)预习作业三角形中角的关系:(1)三角形的三个内角之和是 ;(2)直角三角形的两个锐角 三角形的分类:按角分为三类: 三角形; 三角形和 三角形。
(二) 学习过程例1 证明三角形的内角和为180°例2 在△ABC 中,(1)082,42,C A B ∠=∠=∠则= (2)5,A B C C ∠+∠=∠∠那么=(3)在△ABC 中,C ∠的外角是120°,B ∠的度数是A ∠度数的一半,求△ABC 的三个内角的度数变式训练:在△ABC 中(1)078,25,B A C ∠=∠=∠则= (2)若C ∠=55°,010B A ∠-∠=,那么A ∠= ,B ∠=教 学 反 思例3 已知△ABC 中,::1:2:3A B C ∠∠∠=,试判断此三角形是什么形状?变式训练:已知△ABC 中,090,2,A B B C ∠-∠=∠=∠试判断此三角形是什么形状?例4 如图,在△ABC 中,090ACB ∠=,CD ⊥AB 于点D ,1,2?A B ∠∠∠∠与有何关系与呢例5 如图,已知060,30,20,A B C BOC ∠=∠=∠=∠求的度数。
21DC AOCBA教 学 反 思变式训练:如图在锐角三角形ABC 中,BE 、CD 分别垂直AC 、AB ,若040A ∠=,求B H C ∠的度数。
拓展:1、如图所示,求A B C D E ∠+∠+∠+∠+∠的度数。
2、如图在△ABC 中,已知1,2,,A B ABC ACB ACB ∠=∠∠=∠∠=∠∠求的度数。
回顾小结:1、三角形的三个内角的和等于180°; 2、三角形按角分为三类:(1)锐角三角形 (2)直角三角形 (3)钝角三角形 3、直角三角形的两个锐角互余HE DCB AHED CB A 21D C BA教 学 反 思3.1认识三角形(2)一、学习目标:1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
二、学习重点:三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
三、学习难点: 灵活运用三角形三边关系解决一些实际问题。
四、学习设计 (一)预习准备(1)预习书66-67页(2)思考①什么叫三角形?②三角形的基本构造③三角形的三边关系 (3)预习作业:如图,已知AD ⊥BC 于点D ,DE ⊥AB 于点E ,点F 是AE 的中点,则图中有 个三角形, 个直角三角形, 个锐角三角形, 个钝角三角形;以B 为内角的三角形有 个,它们分别是 ;以BE 为一边的三角形是 。
(二)学习过程1、三角形的有关概念(1)三角形的定义:由不在 上的三条线段首尾 相连所组成的图形。
(2)三角形的基本构造:①组成三角形的三条线段叫做三角形的 ②两条边相接的点叫做三角形的 ③相邻两边组成的角叫做三角形的 2、三角形的三边关系: (1)三角形任意两边之和 第三边 (2)三角形任意两边之差 第三边例1 图中共有几个三角形?并把它们用符号表示出来。
例2 下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。
(1)1 ;4 ;5 (2)3 ;3 ;5(3)3x ;5x ;7x (x 为正数) (4)三条线段长度之比为4:7:6 变式训练:有下列长度的三条线段能否构成三角形?为什么? (1)3 ;4 ;8 (2)5 ;6 ;11 (3)5 ;7 ;10 (4)4 ;4 ;9 (5)5 ;5 ;5例3 小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm ,5cm (1) 他该如何选择第三根铁丝?你能帮助小明确定它的长度或范围吗? (2) 如果要求第三根铁丝的长度是整数,那么小明有几种选择?F EDC B A G FE D CBA教 学 反 思变式训练:1、已知两条线段的长为5cm 和8cm ,要订成一个三角形,试求: (1) 第三条线段的长度范围;(2) 若第三条线段的长度为奇数,求此时三角形的周长。
2、已知等腰三角形中,有两边长为3和7,求此等腰三角形的底边和腰长例4 如图所示,在小河的同侧有A,B,C 三个村庄,图中的线段表示道路,某邮递员从A 村送信到B 村,总是走经过C 村的道路,不走经过D 村的道路,这是为什么呢? 请利用你所学的数学知识加以证明。
拓展:1、若设,,a b c 是△ABC 的三边,则a b c a b c +++--=2、已知,,a b c 是△ABC 的三边,2,5a b ==,且三角形的周长是偶数,(1)求c 的值;(2)判断△ABC 的形状。
回顾小结:掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
E DCB A教 学 反 思3.1认识三角形(3)学习目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的角平分线、中线、高线,并能在具体的三角形中作出高线。
学习重点:1、角平分线的概念2、三角形的中线、高线。
学习难点:高线的画法以及三个定义做计算 学习设计:(一) 预习准备(1) 预习书68-72(2) 思考:什么是三角形的角平分线?中线?高线? (3) 预习作业画出下图三角形的三条高(二) 学习过程1、在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做2、在三角形中, 的线段,叫做这个三角形的中线。
3、从三角形的一个顶点向它的对边所在直线作垂线, 之间的线段叫做三角形的高。
例1 (1)如图1,D 为S △ABC 的变BC 边的中点,若S △ADC =15, 那么S △ABC = (2)如图2,已知AD 、BE 分别是△ABC 中BC 、AC 边上的高,若0070,120,2C ∠=∠=∠=那么D CBA21ECBA图1 图2变式训练:如图在△ABC 中,BD 平分0,66,24,ABC C ABD A ∠∠=∠=∠那么=DCB A教 学 反 思例2 如图,已知在△ABC 中,ABC ACB ∠∠与的平分线交于点O ,试说明: (1)01180()2BOC ABC ACB ∠=-∠+∠ (2)01902BOC A ∠=+∠变式训练:如图在△ABC 中,已知I 是△ABC 三个内角平分线的交点,0130BIC BAC ∠=∠,则为( )A 、40°B 、50°C 、65°D 、80°例3 如图,已知在△ABC 中,CF 、BE 分别是AB 、AC 边上的中线,若AE=2,AF=3,且△ABC 的周长为15,求BC 的长。
变式训练:如图,在△ABC 中,AB=AC ,AC 边上的中线BD 把三角形的周长分为12和15两部分,求△ABC 各边的长。
OCBAICBAOF E CB A DC BA教 学 反 思拓展:1、(1)如图,若AD 为△ABC 底边BC 的中线,则ABD S = =12;(2)两个等底(同底)三角形面积之比等于它们的 之比;两个等高(同高)三角形面积之比等于它们的 之比;(3)如图,在四边形ABCD 中,点E 、F 分别在BC 、CD 上,DF=FC,CE=2EB 。
已知,SDF AECF S m S n == 四边形(其中n>m ),则ABCD S 四边形=2、如图1在△ABC 中,AD ⊥BC 于点D ,AE 平分()BAC C B ∠∠>∠ (1)试探究,EAD C B ∠∠∠与的关系;(2)若F 是AE 上一动点①若F 移动到AE 之间的位置时,FD ⊥BD ,如图2所示,此时EFD C B ∠∠∠与与的关系如何?②当F 继续移动到AE 延长线上时,如图3所示FD ⊥BC ,①中的结论是否还成立,如果成立说明理由,如果不成立,写出新的结论。
回顾小结:(1)三角形的角平分线、中线、高线的定义;(2) 三角形的角平分线、中线、高线是线段.FEDC BA 图1E D CBAF 图2E D CBA F 图3E DC B A教学反思3.2 图形的全等一、学习目标:1.了解全等图形、全等多边形、全等三角形.2.平移、旋转、翻折等图形基本运动对全等图形的影响.3.掌握全等多边形性质与识别方法,全等三角形的性质.4.简单应用全等多边形性质、全等三角形的性质解决实际问题.二、学习重点:全等多边形的性质与识别方法;全等三角形的性质应用.三、学习难点:平移、旋转、翻折等图形基本运动对全等图形的影响.四、学习设计:(一)引入观察教材 P73 图 3-21几组图形。
(二)学习过程阅读课本P73-75填空:_________________两个图形就是全等图形。
全等图形的________和______都相同。
下面,我们看看图形的运动对全等图形有何影响?活动请同学们在方格纸中任意画一个多边形,先将这个多边形沿某一方向平移一定距离(与原图形无重叠);再将原多边形绕形外一点顺时针(或逆时针)旋转一定角度(与原图形无重叠);然后将原图形沿形外某格线对称;最后将这些图形剪下来,将其叠合.你能发现什么?通过这个活动过程,说明了什么问题?说明图形经过平移、旋转、翻折的图形运动,位置发生了变化,但形状和大小却没有改变,图形运动前后的两个图形是全等的;反过来,也就是说,两个全等的图形经过图形运动一定能重合.请你说说什么是全等多边形?什么是全等多边形的对应顶点、对应角、对应边?你认为全等多边形有何特征?全等多边形对应边、对应角分别相等.如图1,四边形ABCD与四边形EFGH全等,可记为四边形ABCD≌四边形 EFGH,请指出对应顶点、对应角、对应边.全等多边形的识别方法:如果两个多边形对应边、对应角分别相等,那么这两个多边形全等.三角形是特殊的多边形,所以,全等三角形的对应边、对应角分别相等;如果两个三角形的___________、__________分别相等,那么这两个多边形全等.例1 如图2,已知将△ABC绕其顶点A顺时针方向旋转20°后得到△ADE.(1)△ABC与△ADE的关系如何?教 学 反 思(2)求∠BAD 的度数. 分析:将△ABC 绕其顶点A 旋转得到△ADE ,故△ADE 是由△ABC 旋转得到的,若将△ADE 逆时针方向旋转20°,则能与△ABC 重合,所以△ABC 与△ADE 是全等的. 由学生自主思考、分析解答.探索:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?并画出这些位置关系的代表性图形.3.3 探索三角形全等的条件(1)一、学习目标:1.经历探索三角形全等的“边边边”的条件的过程. 2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 二、学习重点: 三角形全等的条件. 三、学习难点:寻求三角形全等的条件 四、学习设计: (一)、预习准备(1)回忆前面研究过的全等三角形. (2)预习课本P157-158 (二)、学习过程已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A ′B 、BC=B ′C ′、AC=A ′C . 相等的角是:∠A=∠A ′、∠B=∠B ′、∠C=∠C ′.(1)提出问题:你能画一个三角形与它全等吗?怎样画? (提示:可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.(2)小明家衣橱上两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明快速配一块回来,如果只有一把尺子,小明该怎么办?讨论下面几种情况: 1.给一个条件: 只给定一条边时:教 学 反 思只给定一个角时:2.给出两个条件可能是:①一边一内角;②两内角;③两边.①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒③6cm4cm4cm6cm可以发现按这些条件画出的三角形都_______________保证一定全等. 给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条___、两边一内角、两_____一边. 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.这反映了一个规律:_______________的两个三角形全等,简写为_________或_________.用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的__________.教 学 反 思[例1]如图,1、如图,△ABC 中 AB=AC , D 为BC 中点求证:①△ABD ≌△ACD . ②∠BAD=∠CAD③AD ⊥BC证明:变式训练:如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?例2、如图,已知AB=CD ,AC=BD ,求证:∠A=∠DDCBA教 学 反 思拓展延伸1、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .2、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD. ⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.3、 已知:AB =AC, D 为△ABC 内部一点, 且BD = CD,连接AD 并延长,交BC 于点E. 试找出图中的一对全等的三角形,并证明你的结论。